CN115322315B - 一种制备球形聚芳醚酮微粉的聚合-沉淀法 - Google Patents

一种制备球形聚芳醚酮微粉的聚合-沉淀法 Download PDF

Info

Publication number
CN115322315B
CN115322315B CN202211002332.4A CN202211002332A CN115322315B CN 115322315 B CN115322315 B CN 115322315B CN 202211002332 A CN202211002332 A CN 202211002332A CN 115322315 B CN115322315 B CN 115322315B
Authority
CN
China
Prior art keywords
polyaryletherketone
micropowder
polymerization
spherical
difluorobenzophenone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211002332.4A
Other languages
English (en)
Other versions
CN115322315A (zh
Inventor
赵芸
陈金风
常浩
矫庆泽
冯彩虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202211002332.4A priority Critical patent/CN115322315B/zh
Publication of CN115322315A publication Critical patent/CN115322315A/zh
Application granted granted Critical
Publication of CN115322315B publication Critical patent/CN115322315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/02Condensation polymers of aldehydes or ketones with phenols only of ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyethers (AREA)

Abstract

本发明公开了一种用于制备球形聚芳醚酮微粉的聚合‑沉淀法。该方法将单体溶于有机溶剂并在催化剂碳酸钾存在下经高温聚合反应合成聚芳醚酮后,将聚芳醚酮溶液降温并滴加入沉淀剂,得到球形聚芳醚酮微粉。本发明提供了获得球形聚芳醚酮微粉的一步法,即在聚合反应结束后通过调控沉淀剂种类及沉淀条件一步获得球形聚芳醚酮微粉,制备方法简单、成本低、易于实现工业化,且应用该法所制得的聚芳醚酮微粉粒径均匀,在小于10微米范围内可调控尺寸,对涂料及油墨涂层起到优异的耐擦划及防磨性。

Description

一种制备球形聚芳醚酮微粉的聚合-沉淀法
技术领域
本发明涉及一种制备球形聚芳醚酮微粉的聚合-沉淀法,属于聚合物助剂领域。
背景技术
常见的聚合物微粉如聚乙烯微粉、聚丙烯微粉、聚酯微粉以及聚酰胺微粉作为助剂可应用于生产粉未涂料、罐头涂料、UV固化、金属装饰涂料、高光泽溶剂性涂料、水性涂料、纸板防潮涂料、半导体、不粘炊具和食品加工领域、运动器材、手机零配件、油墨、套印光油中,提高涂膜的光泽、耐擦划、防磨性以及耐溶剂性。基于涂层或油墨层的厚度限制,要求作为助剂的聚合物微粉尺寸小于10微米,才能发挥有效功能。
基于功能涂料等领域对于助剂的要求越来越高,开发性能优异的其他聚合物微粉显得尤为重要。这种情况下,聚四氟乙烯(PTFE)微粉应运而生,其粒径小于10微米,做为添加剂用于印刷油墨及涂料,特别是用于胶版印刷、凹板印刷、柔性印刷油墨,可显著改善墨膜表面平滑性、光泽以及不粘性。其用于涂料的作用是改善防粘性及润滑性,降低摩擦系数,提高耐腐蚀性减少吸潮。微粉作为防粘涂料,广泛用于食品及包装工业,用于家庭物品(小电器、软点心模具、锅、平底锅),也做防化学腐蚀、耐候性的金属零件,做花园用具、工具,汽车零件等。但是PTFE微粉存在生产工艺复杂且价格高的缺点。
聚芳醚酮是一类综合性能优异的高性能工程塑料,具有耐热等级高、自润滑性能好、耐磨、耐疲劳、抗冲击、耐湿热、抗辐射及化学稳定性等突出优点,被广泛应用于航天、电子、机械、信息、汽车及核工业等领域。如能将聚芳醚酮制备成具有规则形貌及特定尺寸的微粉,则可替代PTFE微粉用于涂料、油墨等领域。所述聚芳醚酮包含聚醚醚酮、聚醚酮、聚醚酮酮、聚醚醚酮酮、含氟聚醚醚酮、含氟聚醚酮、含氟聚醚酮酮以及含氟聚醚醚酮酮。
专利CN111499890A公开了一种喷雾干燥法制备聚芳醚酮聚合物中空微粉的方法,通过喷雾干燥塔进行喷雾雾化,随着雾滴降落,有机溶剂逐渐挥发,经旋风分离器后将溶剂与聚合物分离,干燥,得到聚芳醚酮聚合物中空微粉,该方法制得的粉体直径小于100微米,该法能耗大,所得产物粒形不规则且粒度分布宽。
专利CN101293948A公开了一种吡啶封端的聚醚醚酮在溶液中可与其他一些含有特殊基团的聚合物通过非共价键的相互作用(如聚丙烯酸)组装成胶束,并可通过使吡啶基团发生进一步的交联反应使胶束的结构固定,进而制备结构稳定的聚醚醚酮微球材料,该微球尺寸为30-900nm。
上述专利公开的聚芳醚酮微粉制备工艺复杂,需要对聚合所得聚芳醚酮经过溶解及喷雾或交联组装等再加工而获得,且无法对聚芳醚酮微粉的尺寸进行有效调控。
发明内容
本发明的目的是提供一种制备球形聚芳醚酮微粉的聚合-沉淀法,具体步骤为:将单体溶于有机溶剂并在催化剂碳酸钾存在下经高温聚合反应合成聚芳醚酮,所述聚芳醚酮为聚醚醚酮、聚醚酮、聚醚酮酮、聚醚醚酮酮、含氟聚醚醚酮、含氟聚醚酮、含氟聚醚酮酮或含氟聚醚醚酮酮,其结构包括但不限于如下所示的重复单元,
所述单体根据聚芳醚酮种类而变化,可以是4,4’-二氟二苯甲酮、对苯二酚;4,4’-二羟基二苯酮、4,4’-二氟二苯甲酮;二苯醚、对苯二甲酰氯;4,4’-二氟三苯二酮、对苯二酚;4,4’-二氟二苯甲酮、六氟双酚A;4,4’-二氟二苯甲酮、邻氟对苯二酚;4,4’-二氟二苯甲酮、(4-三氟甲基)苯代对苯二酚、对苯二酚;氟代二苯醚、对苯二甲酰氯;4,4’-二氟三苯二甲酮、邻氟对苯二酚;所述有机溶剂为沸点高于130℃的环己酮、二苯砜、环丁砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜或其任何比例的混合物;所述聚合反应温度为130~240℃,反应时间为0.5~7h;所述体系聚芳醚酮的浓度为3~50wt%;然后将聚芳醚酮溶液降温至100℃以下,开始滴加沉淀剂,所述沉淀剂为水、丙酮、甲醇、丙醇、异丙醇、丁醇、二甲苯或其任何比例的混合物,用量为聚芳醚酮质量的1~10倍,滴加速率1~10毫升/分钟;然后将沉淀用离心或抽滤漏斗分离,用工业酒精洗涤,在100℃干燥,即得球形聚芳醚酮微粉,所述聚芳醚酮微粉粒径均匀,微粉收率为95%以上。采用电子显微镜观测形貌及粒径。
本发明有益效果是提供获得球形聚芳醚酮微粉的一步法,即在聚合反应结束后通过调控沉淀剂种类及沉淀条件一步获得球形聚芳醚酮微粉,因此制备方法简单、成本低、易于实现工业化,且应用该法所制得的聚芳醚酮微粉粒径均匀,在小于10微米范围内可调控尺寸,对涂料及油墨涂层起到优异的耐擦划及防磨性。
附图说明:
图1.球形聚芳醚酮微粉制备流程图
图2.实施例2所制备的球形聚芳醚酮微粉的透射电镜照片
图3.实施例2所制备的球形聚芳醚酮微粉的分子量分布图
具体实施方式
实施例
下面再举实施例对本发明予以进一步说明。
实施例1
在装有机械搅拌装置、温度计、分水器和通氮气的反应器中依次加入2.7320g单体4,4’-二氟二苯甲酮、4.6138g对苯二酚,2.254g催化剂无水碳酸钾,40mL N-甲基吡咯烷酮溶剂,搅拌下升温至180℃反应4h,得到聚醚醚酮。用20℃的冷水通过内外循环冷却方式使溶液降至30℃,将70毫升甲醇以10毫升/分钟速率滴加至溶液中,生成沉淀,将沉淀物用离心分离,分离出的产物用工业酒精重复洗涤。最后,样品在100℃干燥,即得聚醚醚酮微粉。
由本方法制得的聚醚醚酮微粉为球形,收率为98.5%,微粉粒径范围为7-10微米。
实施例2
在装有机械搅拌装置、温度计、分水器和通氮气的反应器中依次加入2.7211g单体4,4’-二氟二苯甲酮、4.5816g六氟双酚A,2.462g催化剂无水碳酸钾,42mL溶剂环丁砜,搅拌升温至240℃继续反应0.5h;得到含氟聚醚醚酮。用20℃的冷水通过内外循环冷却方式使溶液降温至60℃,将65毫升水以1毫升/分钟速率滴加至溶液中,生成沉淀,离心分离。分离出的产物用工业酒精洗涤。最后,样品在100℃干燥,即得含氟聚醚醚酮微粉。
由本方法制得的含氟聚醚醚酮微粉为球形,收率为97.3%,微粉粒径范围为0.2-0.3微米。
实施例3
在装有机械搅拌装置、温度计、分水器和通氮气的容器中依次加入3.1543g单体4,4’-二羟基二苯酮、2.8316g 4,4’-二氟二苯甲酮,2.674g催化剂无水碳酸钾,50mL溶剂N,N-二甲基甲酰胺,搅拌升温至150℃继续反应6h;得到聚醚酮。用30℃的冷水通过内外循环冷却方式使溶液降温至40℃,将50毫升异丙醇以3毫升/分钟速率滴加至溶液中并不断搅拌,生成沉淀,离心分离。分离出的产物用工业酒精洗涤。最后,样品在100℃干燥,即得聚醚酮微粉。
由本方法制得的聚醚酮微粉为球形,收率为95.8%,微粉粒径范围为1-3微米。
实施例4
在装有机械搅拌装置、温度计、分水器和通氮气的容器中依次加入3.6918g单体二苯醚、2.7853g对苯二甲酰氯,2.389g催化剂无水碳酸钾,45mL溶剂N,N-二甲基乙酰胺,搅拌升温至130℃反应7h;得到聚醚酮酮。用20℃的冷水通过内外循环冷却方式使溶液降温至20℃,将60毫升丙酮以6毫升/分钟速率滴加至溶液中并不断搅拌,生成沉淀,离心分离。分离出的产物用工业酒精洗涤。最后,样品在100℃干燥,即得聚醚酮酮微粉。
由本方法制得的聚醚酮酮微粉为球形,收率为96.3%,微粉粒径范围为3-6微米。
实施例5
在装有机械搅拌装置、温度计、分水器和通氮气的容器中依次加入5.6910g单体4,4’-二氟三苯二酮、3.5616g对苯二酚,3.567g催化剂无水碳酸钾,60mL溶剂二甲基亚砜,搅拌升温至160℃继续反应5h;得到聚醚醚酮酮。用10℃的冷水通过内外循环冷却方式使溶液降温至15℃,将70毫升丙酮以4毫升/分钟速率滴加至溶液中并不断搅拌,生成沉淀,离心分离。分离出的产物用工业酒精洗涤。最后,样品在100℃干燥,即得聚醚醚酮酮微粉。
由本方法制得的聚醚醚酮酮微粉为球形,收率为96.5%,微粉粒径范围为0.5-1.0微米。
实施例6
在装有机械搅拌装置、温度计、分水器和通氮气的容器中依次加入3.9213g单体氟代二苯醚、2.7853g对苯二甲酰氯,2.488g催化剂无水碳酸钾,45mL溶剂N,N-二甲基乙酰胺,搅拌升温至140℃反应5h;得到含氟聚醚酮酮。用20℃的冷水通过内外循环冷却方式使溶液降温至60℃,将60毫升水以5毫升/分钟速率滴加至溶液中并不断搅拌,生成沉淀,离心分离。分离出的产物用工业酒精洗涤。最后,样品在100℃干燥,即得含氟聚醚酮酮微粉。
由本方法制得的含氟聚醚酮酮微粉为球形,收率为96.8%,微粉粒径范围为0.30-0.40微米。
实施例7
在装有机械搅拌装置、温度计、分水器和通氮气的容器中依次加入2.7320g单体4,4’-二氟二苯甲酮、4.9022g邻氟对苯二酚,2.383g催化剂无水碳酸钾,40mL N-甲基吡咯烷酮溶剂,搅拌下升温至200℃反应2h,得到含氟聚醚醚酮。用20℃的冷水通过内外循环冷却方式使溶液降温至60℃,将60毫升水以5毫升/分钟速率滴加至溶液中并不断搅拌,生成沉淀,离心分离。分离出的产物用工业酒精洗涤。最后,样品在100℃干燥,即得含氟聚醚醚酮微粉。
由本方法制得的含氟聚醚醚酮微粉为球形,收率为95.6%,微粉粒径范围为0.20-0.30微米。
实施例8
在装有机械搅拌装置、温度计、分水器和通氮气的容器中依次加入3.6918g单体4,4’-二氟二苯甲酮、2.801g(4-三氟甲基)苯代对苯二酚、2.193g对苯二酚,2.595g催化剂无水碳酸钾,45mL溶剂N,N-二甲基乙酰胺,搅拌升温至220℃反应3h;得到三氟甲苯基代聚醚醚酮。用20℃的冷水通过内外循环冷却方式使溶液降温至50℃,将60毫升水以5毫升/分钟速率滴加至溶液中并不断搅拌,生成沉淀,离心分离。分离出的产物用工业酒精洗涤。最后,样品在100℃干燥,即得三氟甲苯基代聚醚醚酮微粉。
由本方法制得的三氟甲苯基代聚醚醚酮微粉为球形,收率为97.3%,微粉粒径范围为0.40-0.60微米。
用本发明为添加剂所制得油墨涂层性能测试:
称取一定量的水性聚氨酯乳液、颜料、去离子水、异丙醇、分散剂、消泡剂加入铁罐中,再加入上述各实施例所制备的聚芳醚酮微粉,添加量为1%,同时加入200g玻璃珠(直径2.5mm)后密封,在振动式混合机中分散2小时,取出后再加入一定量的异丙醇和消泡剂,充分搅拌后得到油墨。将油墨用丝棒涂覆在基材上面,干燥固化成膜。在10001耐磨仪上进行耐磨性测定;在MXD-01摩擦系数仪上测试样品的摩擦系数。测试结果汇总于表1。
表1实施例制备的涂层性能
注:对照样为添加1%聚乙烯微粉(市售)的涂层样品
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种用于制备球形聚芳醚酮微粉的聚合-沉淀法,其特征在于:将单体溶于有机溶剂并在催化剂碳酸钾存在下经高温聚合反应合成聚芳醚酮后,再将聚芳醚酮溶液降温并滴加入沉淀剂,得到球形聚芳醚酮微粉,
所述有机溶剂为沸点高于 130℃的环己酮、二苯砜、环丁砜、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜或其任何比例的混合物;
所述沉淀剂为水、丙酮、甲醇、丙醇、异丙醇、丁醇、二甲苯或其任何比例的混合物,用量为聚芳醚酮质量的1~10倍,其加入方式是滴加且滴加速率1~10毫升/分钟;
应用该法所制备的聚芳醚酮微粉呈球形、粒径均匀,且可以在小于 10 微米范围内调控尺寸;
具体步骤为:将单体溶于有机溶剂并在催化剂碳酸钾存在下经高温聚合反应合成聚芳醚酮,然后将聚芳醚酮溶液降温至100℃以下,开始滴加沉淀剂,然后将沉淀用离心或抽滤漏斗分离,用工业酒精洗涤,在100℃干燥,即得球形聚芳醚酮微粉。
2.根据权利要求1所述一种用于制备球形聚芳醚酮微粉的聚合-沉淀法,其特征在于所述聚芳醚酮为聚醚醚酮、聚醚酮、聚醚酮酮、聚醚醚酮酮、含氟聚醚醚酮、含氟聚醚酮、含氟聚醚酮酮或含氟聚醚醚酮酮,其结构包括如下所示的重复单元,
3.根据权利要求1所述一种用于制备球形聚芳醚酮微粉的聚合-沉淀法,其特征在于:所述单体根据聚芳醚酮种类而变化,是4,4’-二氟二苯甲酮、对苯二酚;4,4’-二羟基二苯酮、4,4’-二氟二苯甲酮;二苯醚、对苯二甲酰氯;4,4’-二氟三苯二酮、对苯二酚;4,4’-二氟二苯甲酮、六氟双酚A;4,4’-二氟二苯甲酮、邻氟对苯二酚;4,4’-二氟二苯甲酮、(4-三氟甲基)苯代对苯二酚、对苯二酚;氟代二苯醚、对苯二甲酰氯;4,4’-二氟三苯二甲酮、邻氟对苯二酚。
4.根据权利要求1所述一种用于制备球形聚芳醚酮微粉的聚合-沉淀法,其特征在于:聚合反应温度为130~240℃,反应时间为0.5~7h。
5.根据权利要求1所述一种用于制备球形聚芳醚酮微粉的聚合-沉淀法,其特征在于:所述聚芳醚酮的浓度为3~50wt%。
CN202211002332.4A 2022-08-22 2022-08-22 一种制备球形聚芳醚酮微粉的聚合-沉淀法 Active CN115322315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211002332.4A CN115322315B (zh) 2022-08-22 2022-08-22 一种制备球形聚芳醚酮微粉的聚合-沉淀法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211002332.4A CN115322315B (zh) 2022-08-22 2022-08-22 一种制备球形聚芳醚酮微粉的聚合-沉淀法

Publications (2)

Publication Number Publication Date
CN115322315A CN115322315A (zh) 2022-11-11
CN115322315B true CN115322315B (zh) 2023-12-01

Family

ID=83926096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211002332.4A Active CN115322315B (zh) 2022-08-22 2022-08-22 一种制备球形聚芳醚酮微粉的聚合-沉淀法

Country Status (1)

Country Link
CN (1) CN115322315B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910558A (en) * 1993-01-08 1999-06-08 Basf Aktiengesellschaft Micropowders
CN1602325A (zh) * 2001-12-11 2005-03-30 三井化学株式会社 聚醚酮及其生产方法
CN1986609A (zh) * 2006-10-09 2007-06-27 北京理工大学 球形聚烯烃微粉的制备方法
CN113321800A (zh) * 2017-11-24 2021-08-31 江汉大学 一种以采用四甲基胍四氟硼酸盐制备的聚醚醚酮作为原料的选择性激光烧结的应用
CN114479062A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种含萘结构的聚芳醚酮及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910558A (en) * 1993-01-08 1999-06-08 Basf Aktiengesellschaft Micropowders
CN1602325A (zh) * 2001-12-11 2005-03-30 三井化学株式会社 聚醚酮及其生产方法
CN1986609A (zh) * 2006-10-09 2007-06-27 北京理工大学 球形聚烯烃微粉的制备方法
CN113321800A (zh) * 2017-11-24 2021-08-31 江汉大学 一种以采用四甲基胍四氟硼酸盐制备的聚醚醚酮作为原料的选择性激光烧结的应用
CN113429562A (zh) * 2017-11-24 2021-09-24 江汉大学 一种以聚醚醚酮作为原料的选择性激光烧结的应用
CN114479062A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种含萘结构的聚芳醚酮及其制备方法

Also Published As

Publication number Publication date
CN115322315A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
Zhu et al. Fabrication of durable superhydrophobic coatings based on a novel branched fluorinated epoxy
Wang et al. Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces
Yuan et al. Preparation and characterization of poly (urea-formaldehyde) microcapsules filled with epoxy resins
Wang et al. Morphology and properties of UV-curing epoxy acrylate coatings modified with methacryl-POSS
Tang et al. Synthesis of fluorinated hyperbranched polymers capable as highly hydrophobic and oleophobic coating materials
Mo et al. A simple process for fabricating organic/TiO2 super-hydrophobic and anti-corrosion coating
Xu et al. Fabrication of superhydrophobic surfaces with perfluorooctanoic acid modified TiO2/polystyrene nanocomposites coating
CN111356721B (zh) 磺化的聚(芳基醚酮)或磺化的非聚合芳基醚酮作为分散剂的用途
Zhi et al. Reactive silica nanoparticles turn epoxy coating from hydrophilic to super-robust superhydrophobic
Sun et al. Superhydrophobicity of silica nanoparticles modified with polystyrene
Saito et al. Facile creation of superoleophobic and superhydrophilic surface by using fluoroalkyl end-capped vinyltrimethoxysilane oligomer/calcium silicide nanocomposites—development of these nanocomposites to environmental cyclical type-fluorine recycle through formation of calcium fluoride
Zheng et al. Formation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coating
CN102120820B (zh) 一种水相合成热固性聚酰亚胺的方法
CN105860120B (zh) 一种超疏水聚丙烯薄膜及其制备方法
Gao et al. Synthesis and properties of waterborne epoxy acrylate nanocomposite coating modified by MAP-POSS
Sun et al. Facile fabrication of superhydrophobic coating based on polysiloxane emulsion
Wimalasiri et al. Silica based superhydrophobic nanocoatings for natural rubber surfaces
CN115322315B (zh) 一种制备球形聚芳醚酮微粉的聚合-沉淀法
Huang et al. Facile fabrication of superhydrophobic coatings based on two silica sols
CN110272679A (zh) 紫外光固化漆酚基超支化超双疏防腐涂料及其制备方法
Zhu et al. Facile synthesis of superhydrophobic coating with icing delay ability by the self-assembly of PVDF clusters
Ma et al. Cage and linear structured polysiloxane/epoxy hybrids for coatings: Surface property and film permeability
Wang et al. A novel method to prepare a microflower-like superhydrophobic epoxy resin surface
Cui et al. Preparation and characterization of a durable superhydrophobic hyperbranched poly (dimethylolbutanoic acid-glycidyl ester of versatic acid)/nano-SiO2 coating
Barman et al. Synthesis and characterization of styrene-based polyfluoroacrylate film for hydrophobic/icephobic applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant