CN115313675A - 基于复合式双频拓扑的恒压抗偏移无线电能传输系统 - Google Patents

基于复合式双频拓扑的恒压抗偏移无线电能传输系统 Download PDF

Info

Publication number
CN115313675A
CN115313675A CN202210712815.7A CN202210712815A CN115313675A CN 115313675 A CN115313675 A CN 115313675A CN 202210712815 A CN202210712815 A CN 202210712815A CN 115313675 A CN115313675 A CN 115313675A
Authority
CN
China
Prior art keywords
primary side
capacitor
inductance
secondary side
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210712815.7A
Other languages
English (en)
Inventor
麦瑞坤
黎祎阳
杨斌
陈阳
何正友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University Shenzhen Research Institute
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202210712815.7A priority Critical patent/CN115313675A/zh
Publication of CN115313675A publication Critical patent/CN115313675A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • H02M3/015Resonant DC/DC converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Rectifiers (AREA)

Abstract

本发明公开了一种基于复合式双频拓扑的恒压抗偏移无线电能传输系统,属于无线电能传输技术领域,解决了现有无线电能传输系统在实现抗偏移恒压输出时控制成本高,耦合机构结构复杂的问题,本发明包括直流电压源E、高频逆变模块H,原边补偿电感L0、原边补偿电容C1、原边补偿电感Lx、原边补偿电容Cx、原边发射线圈L1、副边接收线圈L2、副边接收线圈L3、副边线圈补偿电容C2、副边线圈补偿电容C3、副边线圈补偿电容C4、副边接收线圈L4、整流模块Da、整流模块Db、滤波电容Co1、滤波电容Co2和负载RL。本发明用于无线电能传输系统中的抗偏移输出,耦合机构结构更简单,偏移调节更加稳定,提升了系统性能。

Description

基于复合式双频拓扑的恒压抗偏移无线电能传输系统
技术领域
本发明属于无线充电领域,具体涉及基于复合式双频拓扑的恒压抗偏移无线电能传输系 统。
背景技术
无线电能传输技术利用电磁场近场耦合方式实现电能的非接触传输,具有供电灵活、 安全可靠等技术特点。相较于传统供电方式,无线电能传输方式由于其无线路老化、漏电 危险、机械磨损等优点而在多种场合得到应用研究。
利用无线电能传输技术给用电设备供电时,为了保证充电过程中的供电稳定性,一般 要求耦合机构中原边线圈与副边线圈保持相对位置恒定,但在实际应用中,耦合机构发生 偏移的情况不可避免,这可能导致系统输出电压或电流等参数的急剧变化,影响系统的稳 定性。
为了增强无线电能传输系统在偏移情况下的恒定输出能力,传统的方案通常有以下几种: 1、通过持续的闭环控制调节策略,维持系统输出电流或电压恒定。2、通过优化耦合机构 结构,构造均匀磁场,减少漏磁,使互感参数在系统偏移过程中不发生剧烈变化3、设计耦 合系数不敏感的系统参数实现相对恒定的输出电流或电压。4、利用具有两种输出特性相反 的电路构造成混合拓扑,结合适当的参数设计维持系统输出的稳定性。然而第一种方式对 于反馈信号的检测精度有较高要求且需要持续检测,另外调节深度受到脉冲宽度限制;第 二种方式中优化后的耦合机构结构更加复杂,增加了成本;由于采用非谐振参数,第三种 方式无法在负载大范围变化的情况下实现恒定输出;第四种方式需要求系统接入额外的补 偿元件会增加系统的体积与成本。
发明内容
本发明的目的在于:
为解决现有无线电能传输系统在偏移情况下供电时输出稳定性下降,耦合机构复杂,成 本高的问题,本发明提出基于复合式双频拓扑的恒压抗偏移无线电能传输系统。
本发明采用的技术方案如下:
一种基于复合式双频拓扑的恒压抗偏移无线电能传输系统,包括直流电压源E、高频逆 变模块H,原边补偿电感L0、原边补偿电容C1、原边补偿电感Lx、原边补偿电容Cx、原边发射线圈L1、副边接收线圈L2、副边接收线圈L3、副边线圈补偿电容C2、副边线圈补偿电 容C3、副边线圈补偿电容C4、副边接收线圈L4、整流模块Da、整流模块Db、滤波电容Co1、 滤波电容Co2和负载RL,所述高频逆变模块H包括:开关管Q1、开关管Q2、开关管Q3和 开关管Q4,所述整流模块Da包括:二极管D1、二极管D2、二极管D3和二极管D4,所述 整流模块Db包括:二极管D5、二极管D6、二极管D7和二极管D8
所述直流电压源E与高频逆变模块H输入端相连,高频逆变模块H中开关管Q1和Q2的连接点与原边补偿电感L0首端相连,开关管Q3和Q4的连接点与原边补偿电容Cx、原边 补偿电感Lx、原边发射线圈L1尾端相连,原边补偿电感L0尾端与原边补偿电容Cx、原边 补偿电感Lx、原边补偿电容C1的首端相连,原边补偿电容C1尾端与原边发射线圈L1首端 相连;副边接收线圈L2与副边补偿电容C2串联后与副边补偿电容C4并联连接并与副边补 偿电感L4串联连接后接入整流模块Db的输入端;副边接收线圈L3串联副边线圈补偿电容 C3后与整流模块Db输入端相连,整流模块Da与整流模块Db输出端分别并联滤波电容Co1和滤波电容Co2后串接并与负载RL连接。
进一步地,所述原边发射线圈L1与副边接收线圈L2之间的互感M12和原边发射线圈L1与副边接收线圈L3之间的互感M13函数关系为M13=aM12+b,其中a为斜率系数,b为轴截 距常数。
进一步地,副边接收线圈L2与副边接收线圈L3之间的交叉耦合为零。
进一步地,原边元件参数关系为:
Figure BDA0003708673220000021
所述原边补偿电感L0的电感值
Figure BDA0003708673220000022
为:
Figure BDA0003708673220000023
所述原边补偿电感Lx的电感值
Figure BDA0003708673220000024
为:
Figure BDA0003708673220000025
所述原边补偿电容Cx的电容值
Figure BDA0003708673220000026
为:
Figure BDA0003708673220000027
所述原边补偿电容C1的电容值
Figure BDA0003708673220000028
为:
Figure BDA0003708673220000029
所述副边补偿电容C3的电容值
Figure BDA0003708673220000031
为:
Figure BDA0003708673220000032
所述副边补偿电感L4的电感值
Figure BDA0003708673220000033
为:
Figure BDA0003708673220000034
所述副边补偿电容C4的电容值
Figure BDA0003708673220000035
为:
Figure BDA0003708673220000036
所述副边补偿电容C2的电容值
Figure BDA0003708673220000037
为:
Figure BDA0003708673220000038
上述式中,
Figure BDA0003708673220000039
为直流电压源E的输出电压,ω1为逆变器输出方波电压基波角频率,ω3为 三次谐波角频率,ω3=3ω1,Δ为负载RL上的输出电压的最大允许波动,VR为负载RL的额 定电压,
Figure BDA00037086732200000310
分别为原边发射线圈L1、副边接收线圈L2和副边接收线圈L3的自感 值,
Figure BDA00037086732200000311
为原边补偿电容Cx与原边补偿电感Lx在ω3下的并联等效电容C0的值,a为斜率系数,b为轴截距常数。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.本发明的恒压抗偏移无线电能传输系统相比于现有无线电能传输系统发生偏移时采 用的方案,不需要复杂的闭环调节控制,仅通过电路自身特性结合系统参数设计,即可完 成系统的输出电压在一定偏移范围内的自适应稳定,避免了持续检测反馈所存在的反馈数 据延迟问题且没有因深度调节带来的系统稳定性能下降的问题。
2.本发明与现有的无线电能传输系统混合拓扑中采用的双发射双接收耦合机构相比,仅 需要一个原边发射线圈,简化了耦合机构结构,节省了线材成本。
3.本发明在负载发生变化的情况下依然可以保持较为稳定的电压输出特性,更加适应实 际工作情况,适用范围更广。
附图说明
图1为本发明无线电能传输系统的电路图;
图2为本发明基波通路的系统等效电路图;
图3为本发明三次谐波通路的系统等效电路图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行 进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定 本发明。
如图1所示,本发明的一种基于复合式双频拓扑的恒压抗偏移无线电能传输系统,包括 直流电压源E、高频逆变模块H,原边补偿电感L0、原边补偿电容C1、原边补偿电感Lx、原边补偿电容Cx、原边发射线圈L1、副边接收线圈L2、副边接收线圈L3、副边线圈补偿电 容C2、副边线圈补偿电容C3、副边线圈补偿电容C4、副边接收线圈L4、整流模块Da、整 流模块Db、滤波电容Co1、滤波电容Co2和负载RL,所述高频逆变模块H包括:开关管Q1、 开关管Q2、开关管Q3和开关管Q4,所述整流模块Da包括:二极管D1、二极管D2、二极 管D3和二极管D4,所述整流模块Db包括:二极管D5、二极管D6、二极管D7和二极管D8
所述直流电压源E与高频逆变模块H输入端相连,高频逆变模块H中开关管Q1和Q2的连接点与原边补偿电感L0首端相连,开关管Q3和Q4的连接点与原边补偿电容Cx、原边 补偿电感Lx、原边发射线圈L1尾端相连,原边补偿电感L0尾端与原边补偿电容Cx、原边 补偿电感Lx、原边补偿电容C1的首端相连,原边补偿电容C1尾端与原边发射线圈L1首端 相连;副边接收线圈L2与副边补偿电容C2串联后与副边补偿电容C4并联连接并与副边补 偿电感L4串联连接后接入整流模块Db的输入端;副边接收线圈L3串联副边线圈补偿电容 C3后与整流模块Db输入端相连,整流模块Da与整流模块Db输出端分别并联滤波电容Co1和滤波电容Co2后串接并与负载RL连接。
进一步地,所述原边发射线圈L1与副边接收线圈L2之间的互感M12和原边发射线圈L1与副边接收线圈L3之间的互感M13函数关系为M13=aM12+b,其中a为斜率系数,b为轴截 距常数。
进一步地,副边接收线圈L2与副边接收线圈L3之间的交叉耦合为零。
进一步地,原边元件参数关系为:
Figure BDA0003708673220000041
所述原边补偿电感L0的电感值
Figure BDA0003708673220000051
为:
Figure BDA0003708673220000052
所述原边补偿电感Lx的电感值
Figure BDA0003708673220000053
为:
Figure BDA0003708673220000054
所述原边补偿电容Cx的电容值
Figure BDA0003708673220000055
为:
Figure BDA0003708673220000056
所述原边补偿电容C1的电容值
Figure BDA0003708673220000057
为:
Figure BDA0003708673220000058
所述副边补偿电容C3的电容值
Figure BDA0003708673220000059
为:
Figure BDA00037086732200000510
所述副边补偿电感L4的电感值
Figure BDA00037086732200000511
为:
Figure BDA00037086732200000512
所述副边补偿电容C4的电容值
Figure BDA00037086732200000513
为:
Figure BDA00037086732200000514
所述副边补偿电容C2的电容值
Figure BDA00037086732200000515
为:
Figure BDA00037086732200000516
上述式中,
Figure BDA00037086732200000517
为直流电压源E的输出电压,ω1为逆变器输出方波电压基波角频率,ω3为 三次谐波角频率,ω3=3ω1,Δ为负载RL上的输出电压的最大允许波动,VR为负载RL的额 定电压,
Figure BDA00037086732200000518
分别为原边发射线圈L1、副边接收线圈L2和副边接收线圈L3的自感 值,
Figure BDA00037086732200000519
为原边补偿电容Cx与原边补偿电感Lx在ω3下的并联等效电容C0的值,a为斜率系数,b为轴截距常数。
本发明以BP线圈作为耦合机构副边为例,所述BP型线圈由两个相同的Q型线圈部分 重叠而成,除互感M12、M13以外的互感M23为零,其他符合条件的耦合机构同样适用。
本发明的工作原理如下:
设定系统中各参数数值直流电压源E的输出电压
Figure BDA0003708673220000061
逆变器工作角频率ω1、输出电压 最大允许波动Δ,原边发射线圈L1的电感值
Figure BDA0003708673220000062
原边补偿电感L0的电感值
Figure BDA0003708673220000063
原边补偿电容Cx的电容值
Figure BDA0003708673220000064
原边补偿电感Lx的电感值
Figure BDA0003708673220000065
原边补偿电容C0的电容值
Figure BDA0003708673220000066
副边接收 线圈L2的自感值
Figure BDA0003708673220000067
副边补偿电容C2的电容值
Figure BDA0003708673220000068
副边补偿电容C4的电容值
Figure BDA0003708673220000069
副边补 偿电感L4的电感值
Figure BDA00037086732200000610
副边接收线圈L3的自感值
Figure BDA00037086732200000611
副边补偿电容C3的电容值
Figure BDA00037086732200000612
设基 波通路的等效负载为负载Req1,三次谐波通路的等效负载为Req2
系统如图1所示,设定基波通道回路满足如下谐振条件:
Figure BDA00037086732200000613
三次谐波通道回路满谐振条件如下:
Figure BDA00037086732200000614
结合公式(30)对图2的等效电路利用基尔霍夫定理进行分析,可得回路电压方程如下:
Figure BDA00037086732200000615
方程组(32)中,
Figure BDA00037086732200000616
分别表示各回路电流的基波分量,
Figure BDA00037086732200000617
为输入电压基波分 量,上标(1)表示基波分量,Z11,1、Z22,1、Z33,1分别表示各回路的自阻抗,Z12,1、Z21,1、Z23,1、Z32,1分别表示各回路对应的互阻抗,其计算表达式如下:
Figure BDA0003708673220000071
将表达式(34)代入回路电压方程组(35)后,可计算出流入整流模块(Da)的电流
Figure BDA0003708673220000072
电 流
Figure BDA0003708673220000073
的表达式如下:
Figure BDA0003708673220000074
由式(37)可得出等效电阻Req1上的电压如下:
Figure BDA0003708673220000075
结合公式(39)对图3的等效电路利用基尔霍夫定理进行分析,可得回路电压方程如下:
Figure BDA0003708673220000076
方程组(41)中,
Figure BDA0003708673220000077
分别表示各回路电流的三次谐波分量,上标(3)表示三次 谐波分量,
Figure BDA0003708673220000078
为输入电压三次谐波分量,Z11,3、Z22,3、Z33,3分别表示各回路的自阻抗,Z12,3、 Z21,3、Z23,3、Z32,3分别表示各回路对应的互阻抗,其计算表达式如下:
Figure BDA0003708673220000079
将表达式(43)代入回路电压方程组(44)后,可计算出流入整流模块(Db)的电流
Figure BDA00037086732200000710
电 流
Figure BDA00037086732200000711
的表达式如下:
Figure BDA0003708673220000081
由式(46)可得出等效电阻Req2上的电压,将式中互感M13用aM12+b代替后如下:
Figure BDA0003708673220000082
输出到等效负载Req1、Req2上的电压Uo1、Uo2与整流模块Da、Db输出电压V1、V2之 间的关系为:
Figure BDA0003708673220000083
由此可以得出系统输出到负载RL上的电压为:
Figure BDA0003708673220000084
从式(50)中可知,当系统耦合机构发生偏移时,互感M12减小,输出到负载上的电压呈 现出先减小后增加的趋势,由此可以通过合理设计电感L4的值使负载电压在一定偏移范围 内保持在设定的波动范围内。
结合式(51)与式(52)可以得出各补偿元件的参数值如下:
Figure BDA0003708673220000085
设系统在偏移过程中互感M12变化为M12_D时负载上电压达到最小值时,此时对式(39) 进行求导可求得M12_D的值为:
Figure BDA0003708673220000086
当负载电压取设定波动范围的最小值VR(1-Δ)时,将式(41)带入式(39)中,可得副边补 偿电感L4的值为:
Figure BDA0003708673220000091
结合式(56)与式(57)可以得出补偿电容C2、C4的值:
Figure BDA0003708673220000092
综上所述,系统可以在偏移情况下输出与负载无关的电压。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原 则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于复合式双频拓扑的恒压抗偏移无线电能传输系统,其特征在于,包括直流电压源E、高频逆变模块H,原边补偿电感L0、原边补偿电容C1、原边补偿电感Lx、原边补偿电容Cx、原边发射线圈L1、副边接收线圈L2、副边接收线圈L3、副边线圈补偿电容C2、副边线圈补偿电容C3、副边线圈补偿电容C4、副边接收线圈L4、整流模块Da、整流模块Db、滤波电容Co1、滤波电容Co2和负载RL,所述高频逆变模块H包括:开关管Q1、开关管Q2、开关管Q3和开关管Q4,所述整流模块Da包括:二极管D1、二极管D2、二极管D3和二极管D4,所述整流模块Db包括:二极管D5、二极管D6、二极管D7和二极管D8
所述直流电压源E与高频逆变模块H输入端相连,高频逆变模块H中开关管Q1和Q2的连接点与原边补偿电感L0首端相连,开关管Q3和Q4的连接点与原边补偿电容Cx、原边补偿电感Lx、原边发射线圈L1尾端相连,原边补偿电感L0尾端与原边补偿电容Cx、原边补偿电感Lx、原边补偿电容C1的首端相连,原边补偿电容C1尾端与原边发射线圈L1首端相连;副边接收线圈L2与副边补偿电容C2串联后与副边补偿电容C4并联连接并与副边补偿电感L4串联连接后接入整流模块Db的输入端;副边接收线圈L3串联副边线圈补偿电容C3后与整流模块Db输入端相连,整流模块Da与整流模块Db输出端分别并联滤波电容Co1和滤波电容Co2后串接并与负载RL连接。
2.根据权利要求1所述的一种基于复合式双频拓扑的恒压抗偏移无线电能传输系统,其特征在于,所述原边发射线圈L1与副边接收线圈L2之间的互感M12和原边发射线圈L1与副边接收线圈L3之间的互感M13函数关系为M13=aM12+b,其中a为斜率系数,b为轴截距常数。
3.根据权利要求1所述的一种基于复合式双频拓扑的恒压抗偏移无线电能传输系统,其特征在于,副边接收线圈L2与副边接收线圈L3之间的交叉耦合为零。
4.根据权利要求1-3任一所述的一种基于复合式双频拓扑的恒压抗偏移无线电能传输系统,其特征在于,原边元件参数关系为:
Figure FDA0003708673210000011
所述原边补偿电感L0的电感值
Figure FDA0003708673210000012
为:
Figure FDA0003708673210000013
所述原边补偿电感Lx的电感值
Figure FDA0003708673210000014
为:
Figure FDA0003708673210000015
所述原边补偿电容Cx的电容值
Figure FDA0003708673210000021
为:
Figure FDA0003708673210000022
所述原边补偿电容C1的电容值
Figure FDA0003708673210000023
为:
Figure FDA0003708673210000024
所述副边补偿电容C3的电容值
Figure FDA0003708673210000025
为:
Figure FDA0003708673210000026
所述副边补偿电感L4的电感值
Figure FDA0003708673210000027
为:
Figure FDA0003708673210000028
所述副边补偿电容C4的电容值
Figure FDA0003708673210000029
为:
Figure FDA00037086732100000210
所述副边补偿电容C2的电容值
Figure FDA00037086732100000211
为:
Figure FDA00037086732100000212
上述式中,
Figure FDA00037086732100000213
为直流电压源E的输出电压,ω1为逆变器输出方波电压基波角频率,ω3为三次谐波角频率,ω3=3ω1,Δ为负载RL上的输出电压的最大允许波动,VR为负载RL的额定电压,
Figure FDA00037086732100000214
分别为原边发射线圈L1、副边接收线圈L2和副边接收线圈L3的自感值,
Figure FDA00037086732100000215
为原边补偿电容Cx与原边补偿电感Lx在ω3下的并联等效电容C0的值,a为斜率系数,b为轴截距常数。
CN202210712815.7A 2022-06-22 2022-06-22 基于复合式双频拓扑的恒压抗偏移无线电能传输系统 Pending CN115313675A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210712815.7A CN115313675A (zh) 2022-06-22 2022-06-22 基于复合式双频拓扑的恒压抗偏移无线电能传输系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210712815.7A CN115313675A (zh) 2022-06-22 2022-06-22 基于复合式双频拓扑的恒压抗偏移无线电能传输系统

Publications (1)

Publication Number Publication Date
CN115313675A true CN115313675A (zh) 2022-11-08

Family

ID=83855803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210712815.7A Pending CN115313675A (zh) 2022-06-22 2022-06-22 基于复合式双频拓扑的恒压抗偏移无线电能传输系统

Country Status (1)

Country Link
CN (1) CN115313675A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429691A (zh) * 2019-08-30 2019-11-08 西南交通大学 一种基于半桥切换的恒流-恒压充电无线电能传输系统
CN110994812A (zh) * 2019-12-30 2020-04-10 华南理工大学 抗偏移的lcc-s型无线电能传输系统及其参数设计方法
CN111049278A (zh) * 2019-12-30 2020-04-21 华南理工大学 抗偏移的llc-s型无线电能传输系统及其参数设计方法
CN113794287A (zh) * 2021-09-15 2021-12-14 西南交通大学 基于双通道t型电路的恒流-恒压充电无线电能传输系统
CN114421644A (zh) * 2022-01-20 2022-04-29 西南交通大学 基于复合耦合的抗偏移无线电能传输系统及参数设计方法
WO2022116413A1 (zh) * 2020-12-01 2022-06-09 浙江大学 一种可切换无线电能传输线圈与补偿电容的可变电路拓扑

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429691A (zh) * 2019-08-30 2019-11-08 西南交通大学 一种基于半桥切换的恒流-恒压充电无线电能传输系统
CN110994812A (zh) * 2019-12-30 2020-04-10 华南理工大学 抗偏移的lcc-s型无线电能传输系统及其参数设计方法
CN111049278A (zh) * 2019-12-30 2020-04-21 华南理工大学 抗偏移的llc-s型无线电能传输系统及其参数设计方法
WO2022116413A1 (zh) * 2020-12-01 2022-06-09 浙江大学 一种可切换无线电能传输线圈与补偿电容的可变电路拓扑
CN113794287A (zh) * 2021-09-15 2021-12-14 西南交通大学 基于双通道t型电路的恒流-恒压充电无线电能传输系统
CN114421644A (zh) * 2022-01-20 2022-04-29 西南交通大学 基于复合耦合的抗偏移无线电能传输系统及参数设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钟文琦;刘达;管斌;付宇;: "基于双LCCL拓扑的无人机无线充电参数设计", 计算机应用, no. 1, 10 July 2020 (2020-07-10) *

Similar Documents

Publication Publication Date Title
CN109617250B (zh) 一种基于组合型拓扑的抗偏移无线电能传输系统
EP3787169A1 (en) Dcdc converter, vehicle-mounted charger and electric vehicle
EP3787170A1 (en) Dcdc converter, vehicle-mounted charger and electric vehicle
JP6817221B2 (ja) Dc電圧源間のワイヤレス電力伝送のための装置および方法
CN111342668B (zh) 一种利用可变电感拓展ss结构wpt系统的软开关范围的方法
CN113659684A (zh) 副边cl/s恒流恒压ipt充电系统及其参数设计方法
CN108199494B (zh) 一种增益可调的有源负载无线充电装置及其调节方法
US20170324281A1 (en) Wireless power trnsfer device
Shen et al. Research on optimization of compensation topology parameters for a wireless power transmission system with wide coupling coefficient fluctuation
Wang et al. Widening the operating range of a wireless charging system using tapped transmitter winding and bifrequency pulse train control
CN112467891B (zh) 一种基于全桥半桥切换的ipt系统效率优化方法
CN113162167A (zh) 一种恒流恒压自主切换的无线充电系统
CN116345717A (zh) 自适应谐振型无线电能传输系统
CN115313675A (zh) 基于复合式双频拓扑的恒压抗偏移无线电能传输系统
CN113794287B (zh) 基于双通道t型电路的恒流-恒压充电无线电能传输系统
CN113794288A (zh) 一种双并联电感的无线电能传输补偿拓扑结构
CN112290696A (zh) 一种能够抑制频率分裂现象的无线电能传输系统及方法
Gong et al. Research on Parameter Configuration of CC and CV of WPT System Based on LCL-LCC Compensation Network
CN210806860U (zh) 一种具有恒压输出特性的无线电能传输系统
CN219801986U (zh) 基于重构整流器的抗偏移失谐lcl-s型补偿无线电能传输系统
CN110649718B (zh) 一种具有恒压输出特性的无线电能传输系统
Liu et al. Investigation of PT-Symmetric Frequency and Compensation for IPT Coupling-Independent CC/CV and Efficiency in Wide Load Range
CN113300481B (zh) 一种自适应电池充电曲线的三线圈电池无线充电系统
CN216134292U (zh) 副边cl/s恒流恒压ipt充电系统
US11855546B2 (en) Output stabilization circuit and DC/DC converter circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20231102

Address after: 518000 Room A205, Virtual University Park Building, Yuehai Street, Nanshan District, Shenzhen, Guangdong Province

Applicant after: Southwest Jiaotong University Shenzhen Research Institute

Address before: 610031 No. two, section 111, ring road, Chengdu, Sichuan, China

Applicant before: SOUTHWEST JIAOTONG University

TA01 Transfer of patent application right