CN115312630A - 一种具有双漂移区的雪崩光电探测器的制备方法 - Google Patents

一种具有双漂移区的雪崩光电探测器的制备方法 Download PDF

Info

Publication number
CN115312630A
CN115312630A CN202211223859.XA CN202211223859A CN115312630A CN 115312630 A CN115312630 A CN 115312630A CN 202211223859 A CN202211223859 A CN 202211223859A CN 115312630 A CN115312630 A CN 115312630A
Authority
CN
China
Prior art keywords
diffusion
layer
type
inp
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211223859.XA
Other languages
English (en)
Other versions
CN115312630B (zh
Inventor
弭伟
杨志茂
王斌
罗丽园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Ef Semiconductor Technology Co ltd
Original Assignee
Tianjin Ef Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Ef Semiconductor Technology Co ltd filed Critical Tianjin Ef Semiconductor Technology Co ltd
Priority to CN202211223859.XA priority Critical patent/CN115312630B/zh
Publication of CN115312630A publication Critical patent/CN115312630A/zh
Application granted granted Critical
Publication of CN115312630B publication Critical patent/CN115312630B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种具有双漂移区的雪崩光电探测器的制备方法,获得的雪崩光电探测器外延结构从下至上依次包括:n型InP衬底、n型InP缓冲层、n型DBR反射区域、n型InP漂移层、n型InGaAsP带宽过渡层一、本征型In0.53Ga0.47As吸收层、n型InGaAsP带宽过渡层二、n型InP电荷层和本征型InP盖层。相比于传统的只有InGaAs吸收层一个漂移区域的APD,本发明通过引入n型InP漂移层第二个漂移区域及n型DBR反射区域,减少了光生载流子的堆积,极大的提高了入射光被吸收的几率,从而提高了探测器的响应度。

Description

一种具有双漂移区的雪崩光电探测器的制备方法
技术领域
本发明涉及光电探测器技术领域,具体来说涉及一种具有双漂移区的雪崩光电探测器的制备方法。
背景技术
随着人们对信息传递日益增长的需要,对光通讯的传输速度和传输距离有了更高的要求。半导体光电探测器作为光通讯中重要的接收器件,起着举足轻重的作用。雪崩光电探测器,又称APD探测器,是工作在反向偏压下,通过光电转化将光信号变成电信号,通过碰撞电离将光电流倍增放大的一种光电探测器。其工作原理是利用p-i-n结在较高的反偏电场下,光子入射至i区使电子从价带跃迁到导带,形成电子-空穴对,在强电场的作用下电子-空穴对得到加速,碰撞其他原子,产生额外的电子-空穴对并持续发生。由于较少光子甚至单个光子的入射都能触发雪崩倍增过程,引起宏观上电流的变化,因此雪崩光电探测器具有极高的灵敏度和探测效率,在弱光探测甚至单光子探测领域有非常高的应用前景。
传统的InP SACM (separate-absorption-charge-multiplication) APD只有InGaAs吸收层一个漂移区域,容易引起光生载流子的堆积,影响入射光被吸收的几率,从而降低了探测器的响应度。
发明内容
为了解决上述技术方案的不足,本发明的目的在于提供一种具有双漂移区的雪崩光电探测器的制备方法。
本发明的目的是通过下述技术方案予以实现的。
一种具有双漂移区的雪崩光电探测器的制备方法,包括以下步骤:
步骤一,利用MOCVD或者MBE的沉积方式在n型InP衬底上依次生长n型InP缓冲层、n型DBR反射区域、n型InP漂移层、n型InGaAsP带宽过渡层一、本征型In0.53Ga0.47As吸收层、n型InGaAsP带宽过渡层二、n型InP电荷层和本征型InP盖层;
步骤二,使用PECVD的沉积方式在所述本征型InP盖层上表面淀积SiN薄膜一,其厚度大于等于100nm;
步骤三,利用光刻胶在SiN薄膜一的表面形成圆形扩散图形一和围绕所述圆形扩散图形一的一个或多个环形扩散图形,利用刻蚀工艺去除所述圆形扩散图形一和环形扩散图形内的SiN薄膜一,使所述SiN薄膜一下方的本征型InP盖层露出,刻蚀完成后去除光刻胶,形成Zn扩散窗口一;
步骤四,利用MOCVD或者炉管法在所述Zn扩散窗口一区域进行第一次Zn扩散,在Zn扩散窗口一的下方形成中央扩散区域一和围绕所述中央扩散区域一的环形扩散区域,中央扩散区域一和环形扩散区域中扩散深度为100nm~2μm,位于所述本征型InP盖层内;
步骤五,使用PECVD的沉积方式在所有暴露在外的上表面沉积SiN薄膜二,其厚度大于等于100nm;
步骤六,利用光刻胶在步骤四所述的中央扩散区域一上方的SiN薄膜二的表面形成圆形扩散图形二,利用刻蚀工艺去除所述圆形扩散图形二内的SiN薄膜二,使下方的中央扩散区域一暴露出,刻蚀完成后去除光刻胶,形成Zn扩散窗口二;
步骤七,利用MOCVD或者炉管法在所述Zn扩散窗口二区域进行第二次Zn扩散,在Zn扩散窗口二的下方形成中央扩散区域二,其中,中央扩散区域二和中央扩散区域一的上表面为同心圆,且中央扩散区域二的直径小于中央扩散区域一的直径,二者半径相差为1~20μm,中央扩散区域二的深度大于中央扩散区域一,二者深度相差为100nm~2μm;
步骤八,利用光刻胶在中央扩散区域二的上方的一侧形成P金属电极图形,利用电子束蒸镀或者磁控溅射蒸镀金属并进行金属剥离,退火形成欧姆接触,形成P金属电极;
步骤九,利用PECVD的沉积方式在所有暴露在外的上表面沉积SiN减反膜,所述SiN减反膜于1310~1700nm波长光线的反射率大于等于70%;
步骤十,利用光刻胶在P金属电极的上方的SiN减反膜上形成VIA孔洞图形,利用刻蚀的方法去除VIA孔洞图形内的SiN减反膜,形成VIA孔洞,使下方的P金属电极暴露出来,所述VIA孔洞的上表面的面积小于P金属电极上表面的面积,刻蚀完成后去除光刻胶;
步骤十一,在n型InP衬底的背面进行减薄和抛光,减薄和抛光后的n型InP衬底厚度为50~200μm;
步骤十二,利用电子束蒸镀或者磁控溅射的方法,在抛光后的n型InP衬底的背面形成N金属电极,并退火形成欧姆接触。
在上述技术方案中,所述n型DBR反射区域由多对InP和InGaAsP组成,每对中包含一层InP和一层InGaAsP,每对中InP和InGaAsP的厚度均为1550nm波长光线在n型DBR反射区域内有效波长的1/4,所述InP和InGaAsP的对数大于等于10,n型DBR反射区域对于1300~1700nm波长光线的反射率大于等于70%。
在上述技术方案中,所述n型InP漂移层的厚度为0.1~1μm,其掺杂浓度为1×1015/cm3~2×1017/cm3
在上述技术方案中,所述本征型InP盖层的厚度大于等于2μm。
在上述技术方案中,所述中央扩散区域一和环形扩散区域的厚度均为从本征型InP盖层的厚度减去1000nm到本征型InP盖层的厚度减去500nm,所述中央扩散区域二的厚度为从本征型InP盖层的厚度减去600nm到本征型InP盖层的厚度减去100nm。
在上述技术方案中,每个所述环形扩散区域之间的间隔为2~10μm,最内侧环形扩散区域与所述中央扩散区域一之间的间隔距离为2~10μm。
本发明的优点和有益效果为:
1.本发明的雪崩光电探测器外延结构从下至上依次包括:n型InP衬底、n型InP缓冲层、n型DBR反射区域、n型InP漂移层、n型InGaAsP带宽过渡层一、本征型In0.53Ga0.47As吸收层、n型InGaAsP带宽过渡层二、n型InP电荷层和本征型InP盖层。
2.相比于传统的InP SACM (separate-absorption-charge-multiplication)APD,本发明的雪崩光电探测器具有2个漂移区域,其中,本征型In0.53Ga0.47As吸收层为第一个漂移区域,n型InP漂移层为第二个漂移区域,2个漂移区域通过InGaAsP带宽过渡层连接,避免载流子在界面处堆积,传统的InP APD只有InGaAs吸收层一个漂移区域。
3.第二个漂移区域采用弱掺杂,通过优化掺杂浓度,使其在工作电压下完全耗尽,使电子在该层中通过漂移的方式进行输运。通过优化该层的厚度,可以使电子整体的漂移时间匹配慢速空穴向上漂移产生的时间,从而不额外增加载流子的整体输运时间。
4.由于额外增加了雪崩光电探测器外延层(即,n型InP漂移层、n型InGaAsP带宽过渡层一、本征型In0.53Ga0.47As吸收层、n型InGaAsP带宽过渡层二)整体的耗尽层厚度,使雪崩光电探测器的结电容降低,反而提高了雪崩光电探测器的运行速度和带宽。
5.在高速APD探测器中,由于需要降低载流子(尤其是空穴)在InGaAs吸收层中的漂移时间,因此需要将InGaAs吸收层做的很薄,这就降低了光在InGaAs吸收层中被吸收的概率,降低了探测器的响应度。本发明中的雪崩光电探测器,在第二漂移区的下方设置DBR反射区域,可以将入射但未吸收的光反射回本征型In0.53Ga0.47As吸收层,从而可以二次吸收,这样将极大的提高了入射光被吸收的几率,从而提高雪崩光电探测器的响应度。
附图说明
图1为本发明经过步骤一至步骤四得到的结构示意图。
图2为本发明经过步骤五至步骤七得到的结构示意图。
图3为本发明经过步骤八得到的结构示意图。
图4为本发明经过步骤九得到的结构示意图。
图5为本发明经过步骤十得到的结构示意图。
图6为本发明经过步骤十一至步骤十二得到的结构示意图。
其中,
1:n型InP衬底,
2:n型InP缓冲层,
3:n型DBR反射区域,
4:n型InP漂移层,
5:n型InGaAsP带宽过渡层一,
6:本征型In0.53Ga0.47As吸收层,
7:n型InGaAsP带宽过渡层二,
8:n型InP电荷层,
9:本征型InP盖层,
10:SiN薄膜一,
11:Zn扩散窗口一,
12:中央扩散区域一,
13:环形扩散区域,
14:SiN薄膜二,
15:Zn扩散窗口二,
16:中央扩散区域二,
17:P金属电极,
18:SiN减反膜,
19:VIA孔洞,
20:N金属电极。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
实施例1
如图1~6所示,一种具有双漂移区的雪崩光电探测器的制备方法,包括以下步骤:
步骤一,利用MOCVD或者MBE的沉积方式在n型InP衬底1上依次生长n型InP缓冲层2、n型DBR反射区域3、n型InP漂移层4、n型InGaAsP带宽过渡层一5、本征型In0.53Ga0.47As吸收层6、n型InGaAsP带宽过渡层二7、n型InP电荷层8和本征型InP盖层9,其中,所述n型DBR反射区域3由多对InP和InGaAsP组成,每对中包含一层InP和一层InGaAsP,每对中InP和InGaAsP的厚度均为1550nm波长光线在n型DBR反射区域有效波长的1/4,所述InP和InGaAsP的对数大于等于10,InAlGaAs的发光波长为1190nm,厚度为93nm,n型DBR反射区域3对于1550nm波长光线的反射率大于80%,未经吸收的入射光通过n型DBR反射区域3反射回本征型In0.53Ga0.47As吸收层6进行二次吸收,从而提高了雪崩光电探测器的响应度;所述n型InP漂移层4的厚度为1μm,其掺杂浓度为5×1015/cm3,该层的厚度在工作电压下优化,且在工作电压下完全耗尽,电子在该层中采用漂移的方式进行传输,其传输时间等于空穴传输至器件上部P型材料时比电子额外消耗的时间,因此,电子在n型InP漂移层4中传输所额外产生的时间不会增加整个雪崩光电探测器的响应时间,但反过来,n型InP漂移层4的存在产生雪崩光电探测器外延层整体厚度的增加会降低雪崩光电探测器的电容,从而起到了提高雪崩光电探测器响应速度的作用;n型InP缓冲层2的厚度为0.5μm,掺杂浓度为5×1017/cm3,其作用是为了更好的匹配n型InP衬底1和n型InP缓冲层2上面的外延层材料之间因为生长条件不同所造成的晶格常数的差异,确保外延层的生长质量;n型InGaAsP带宽过渡层一5和n型InGaAsP带宽过渡层二7均包括三层,其中各层的带宽自下而上分别为1.05eV、0.95eV和0.85eV,三层带宽渐变层从本征型In0.53Ga0.47As吸收层6的带宽逐步渐变到n型InP漂移层4的带宽,能够有效降低光生载流子在界面处的堆积;所述本征型In0.53Ga0.47As吸收层6的厚度为2μm,背景掺杂浓度小于1×1015/cm3;n型InP电荷层8的厚度为200nm,掺杂浓度为2×1017/cm3,该层的厚度和掺杂浓度决定了雪崩光电探测器开启电压和击穿电压;本征型InP盖层9的厚度为4μm,用于Zn扩散形成P型阵列区域。
步骤二,使用PECVD的沉积方式在所述本征型InP盖层9上表面淀积SiN薄膜一10,其厚度为100nm。
步骤三,利用光刻胶在SiN薄膜一10的表面的中心位置形成圆形扩散图形一和环绕所述圆形扩散图形一的一个或多个环形扩散图形,利用刻蚀工艺去除所述圆形扩散图形一和环形扩散图形内的SiN薄膜一10,使所述SiN薄膜一10下方的本征型InP盖层9露出,刻蚀完成后去除光刻胶,形成Zn扩散窗口一11,每个所述环形扩散区域13之间的间隔为5μm,最内侧环形扩散区域13与所述中央扩散区域一12之间的间隔距离为5μm。
步骤四,利用MOCVD或者炉管法在所述Zn扩散窗口一11区域进行第一次Zn扩散,在Zn扩散窗口一11的下方形成中央扩散区域一12和围绕所述中央扩散区域一12的环形扩散区域13,中央扩散区域一12和环形扩散区域13中扩散深度为1.5μm,位于所述本征型InP盖层9内,所述中央扩散区域的上表面为圆形,直径为40μm,环形扩散区域13的上表面为环形其内径为50μm,宽度为5μm。
步骤五,使用PECVD的沉积方式在所有暴露在外的上表面沉积SiN薄膜二14,其厚度为100nm。
步骤六,利用光刻胶在步骤四所述的中央扩散区域一12上方的SiN薄膜二14的表面形成圆形扩散图形二,利用刻蚀工艺去除所述圆形扩散图形二内的SiN薄膜二14,使下方的中央扩散区域一12暴露出,刻蚀完成后去除光刻胶,形成Zn扩散窗口二15。
步骤七,利用MOCVD或者炉管法在所述Zn扩散窗口二15区域进行第二次Zn扩散,在Zn扩散窗口二15的下方形成中央扩散区域二16,其中,中央扩散区域二16和中央扩散区域一12的上表面为同心圆,中央扩散区域二16的直径为30μm,中央扩散区域二16的深度3.8μm,经过第二次Zn扩散,由于高温的作用,中央扩散区域一12和环形扩散区域13中扩散深度加深至2.3μm。
步骤八,利用光刻胶在中央扩散区域二16的上方的一侧形成P金属电极图形,利用电子束蒸镀或者磁控溅射蒸镀金属并进行金属剥离,退火形成欧姆接触,形成P金属电极17。
步骤九,利用PECVD的沉积方式在所有暴露在外的上表面沉积SiN减反膜18,所述SiN减反膜18的厚度195nm,SiN减反膜18对于1550nm波长光线的反射率大于90%。
步骤十,利用光刻胶在P金属电极17的上方的SiN减反膜18上形成VIA孔洞图形,利用刻蚀的方法去除VIA孔洞图形内的SiN减反膜18,形成VIA孔洞19,使下方的P金属电极17暴露出来,所述VIA孔洞19的上表面的面积小于P金属电极17上表面的面积,刻蚀完成后去除光刻胶。
步骤十一,在n型InP衬底1的背面进行减薄和抛光,减薄和抛光后的n型InP衬底1厚度为150μm。
步骤十二,利用电子束蒸镀或者磁控溅射的方法,在所述抛光后的n型InP衬底1的背面形成N金属电极20,并退火形成欧姆接触。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.一种具有双漂移区的雪崩光电探测器的制备方法,其特征在于,包括以下步骤:
步骤一,利用MOCVD或者MBE的方法在n型InP衬底上依次生长n型InP缓冲层、n型DBR反射区域、n型InP漂移层、n型InGaAsP带宽过渡层一、本征型In0.53Ga0.47As吸收层、n型InGaAsP带宽过渡层二、n型InP电荷层和本征型InP盖层;
步骤二,使用PECVD的沉积方式在所述本征型InP盖层上表面淀积SiN薄膜一;
步骤三,利用光刻胶在SiN薄膜一的表面形成圆形扩散图形一和围绕所述圆形扩散图形一的一个或多个环形扩散图形,利用刻蚀工艺去除所述圆形扩散图形一和环形扩散图形内的SiN薄膜一,使所述SiN薄膜一下方的本征型InP盖层露出,刻蚀完成后去除光刻胶,形成Zn扩散窗口一;
步骤四,利用MOCVD或者炉管法在所述Zn扩散窗口一区域进行第一次Zn扩散,在Zn扩散窗口一的下方形成中央扩散区域一和围绕所述中央扩散区域一的一个或多个环形扩散区域,中央扩散区域一和环形扩散区域中扩散深度为100nm-2μm,位于所述本征型InP盖层内;
步骤五,使用PECVD的沉积方式在所有暴露在外的上表面沉积SiN薄膜二;
步骤六,利用光刻胶在步骤四所述的中央扩散区域一上方的SiN薄膜二的表面形成圆形扩散图形二,利用刻蚀工艺去除所述圆形扩散图形二内的SiN薄膜二,使下方的中央扩散区域一暴露出,刻蚀完成后去除光刻胶,形成Zn扩散窗口二;
步骤七,利用MOCVD或者炉管法在所述Zn扩散窗口二区域进行第二次Zn扩散,在Zn扩散窗口二的下方形成中央扩散区域二,其中,中央扩散区域二和中央扩散区域一的上表面为同心圆,且中央扩散区域二的直径小于中央扩散区域一的直径,二者半径相差为1~20μm,中央扩散区域二的深度大于中央扩散区域一,二者深度相差为100nm~2μm;
步骤八,利用光刻胶在中央扩散区域二的上方的一侧形成P金属电极图形,利用电子束蒸镀或者磁控溅射蒸镀金属并进行金属剥离,退火形成欧姆接触,形成P金属电极;
步骤九,利用PECVD的沉积方式在所有暴露在外的上表面沉积SiN减反膜;
步骤十,利用光刻胶在P金属电极的上方的SiN减反膜上形成VIA孔洞图形,利用刻蚀的方法去除VIA孔洞图形内的SiN减反膜,形成VIA孔洞,使下方的P金属电极暴露出来,所述VIA孔洞的上表面的面积小于P金属电极上表面的面积,刻蚀完成后去除光刻胶;
步骤十一,在n型InP衬底的背面进行减薄和抛光;
步骤十二,利用电子束蒸镀或者磁控溅射的方法,在抛光后的n型InP衬底的背面形成N金属电极,并退火形成欧姆接触。
2.根据权利要求1所述的制备方法,其特征在于,所述n型DBR反射区域由多对InP和InGaAsP组成,每对中包含一层InP和一层InGaAsP,每对中InP和InGaAsP的厚度均为1550nm波长光线在n型DBR反射区域内有效波长的1/4,所述InP和InGaAsP的对数大于等于10,n型DBR反射区域对于1300~1700nm波长光线的反射率大于等于70%。
3.根据权利要求1所述的制备方法,其特征在于,在所述步骤二中,所述SiN薄膜一的厚度大于等于100nm。
4.根据权利要求1所述的制备方法,其特征在于,所述n型InP漂移层的厚度为0.1~1μm,其掺杂浓度为1×1015/cm3~2×1017/cm3
5.根据权利要求1所述的制备方法,其特征在于,所述本征型InP盖层的厚度大于等于2μm。
6.根据权利要求1所述的制备方法,其特征在于,所述中央扩散区域一和环形扩散区域的厚度均为从本征型InP盖层的厚度减去1000nm到本征型InP盖层的厚度减去500nm,所述中央扩散区域二的厚度为从本征型InP盖层的厚度减去600nm到本征型InP盖层的厚度减去100nm。
7.根据权利要求1所述的制备方法,其特征在于,每个所述环形扩散区域之间的间隔为2 ~10μm,最内侧环形扩散区域与所述中央扩散区域一之间的间隔距离为2~10μm。
8.根据权利要求1所述的制备方法,其特征在于,在所述步骤九中,所述SiN减反膜对于1310nm~1700nm波长光线的反射率大于等于70%。
9.根据权利要求1所述的制备方法,其特征在于,在所述步骤十一中,减薄和抛光后的n型InP衬底厚度为50~200μm。
10.根据权利要求1所述的制备方法,其特征在于,在所述步骤五中,所述SiN薄膜二的厚度大于等于100nm。
CN202211223859.XA 2022-10-09 2022-10-09 一种具有双漂移区的雪崩光电探测器的制备方法 Active CN115312630B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211223859.XA CN115312630B (zh) 2022-10-09 2022-10-09 一种具有双漂移区的雪崩光电探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211223859.XA CN115312630B (zh) 2022-10-09 2022-10-09 一种具有双漂移区的雪崩光电探测器的制备方法

Publications (2)

Publication Number Publication Date
CN115312630A true CN115312630A (zh) 2022-11-08
CN115312630B CN115312630B (zh) 2022-12-09

Family

ID=83867135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211223859.XA Active CN115312630B (zh) 2022-10-09 2022-10-09 一种具有双漂移区的雪崩光电探测器的制备方法

Country Status (1)

Country Link
CN (1) CN115312630B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030609A (zh) * 2007-04-04 2007-09-05 厦门大学 一种δ掺杂4H-SiC雪崩紫外光电探测器及其制备方法
CN103077996A (zh) * 2013-02-08 2013-05-01 中国科学院半导体研究所 一种雪崩光电探测器和提高雪崩光电探测器高频特性的方法
CN103268898A (zh) * 2013-04-18 2013-08-28 中国科学院半导体研究所 一种雪崩光电探测器及其高频特性提高方法
US20160300973A1 (en) * 2013-05-24 2016-10-13 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Variable range photodetector with enhanced high photon energy response and method thereof
CN106449770A (zh) * 2016-12-07 2017-02-22 天津大学 防止边缘击穿的环形栅单光子雪崩二极管及其制备方法
CN106898638A (zh) * 2017-01-16 2017-06-27 中国电子科技集团公司第五十五研究所 一种提高浪涌能力的碳化硅肖特基二极管结构及制备方法
CN106960852A (zh) * 2017-03-06 2017-07-18 北京世纪金光半导体有限公司 具有漂移沟道的紫外雪崩光电二极管探测器及其探测方法
CN107342338A (zh) * 2017-08-22 2017-11-10 北京世纪金光半导体有限公司 一种多漂移环结构的紫外雪崩漂移探测器及探测方法
CN110571300A (zh) * 2019-08-01 2019-12-13 武汉电信器件有限公司 一种外延片、平面型光电二极管及其制备方法
CN113540273A (zh) * 2021-07-16 2021-10-22 中国科学院半导体研究所 一种高速高增益的雪崩光电探测器及制备方法
US20220165888A1 (en) * 2018-10-09 2022-05-26 National Technology & Engineering Solutions Of Sandia, Llc High Voltage Gallium Nitride Vertical PN Diode
US20220216245A1 (en) * 2019-04-02 2022-07-07 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Avalanche photodiode array

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030609A (zh) * 2007-04-04 2007-09-05 厦门大学 一种δ掺杂4H-SiC雪崩紫外光电探测器及其制备方法
CN103077996A (zh) * 2013-02-08 2013-05-01 中国科学院半导体研究所 一种雪崩光电探测器和提高雪崩光电探测器高频特性的方法
CN103268898A (zh) * 2013-04-18 2013-08-28 中国科学院半导体研究所 一种雪崩光电探测器及其高频特性提高方法
US20160300973A1 (en) * 2013-05-24 2016-10-13 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Variable range photodetector with enhanced high photon energy response and method thereof
CN106449770A (zh) * 2016-12-07 2017-02-22 天津大学 防止边缘击穿的环形栅单光子雪崩二极管及其制备方法
CN106898638A (zh) * 2017-01-16 2017-06-27 中国电子科技集团公司第五十五研究所 一种提高浪涌能力的碳化硅肖特基二极管结构及制备方法
CN106960852A (zh) * 2017-03-06 2017-07-18 北京世纪金光半导体有限公司 具有漂移沟道的紫外雪崩光电二极管探测器及其探测方法
CN107342338A (zh) * 2017-08-22 2017-11-10 北京世纪金光半导体有限公司 一种多漂移环结构的紫外雪崩漂移探测器及探测方法
US20220165888A1 (en) * 2018-10-09 2022-05-26 National Technology & Engineering Solutions Of Sandia, Llc High Voltage Gallium Nitride Vertical PN Diode
US20220216245A1 (en) * 2019-04-02 2022-07-07 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Avalanche photodiode array
CN110571300A (zh) * 2019-08-01 2019-12-13 武汉电信器件有限公司 一种外延片、平面型光电二极管及其制备方法
CN113540273A (zh) * 2021-07-16 2021-10-22 中国科学院半导体研究所 一种高速高增益的雪崩光电探测器及制备方法

Also Published As

Publication number Publication date
CN115312630B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN105720130B (zh) 基于量子阱带间跃迁的光电探测器
US7728366B2 (en) Photodiode and method for fabricating same
US5055894A (en) Monolithic interleaved LED/PIN photodetector array
US5780916A (en) Asymmetric contacted metal-semiconductor-metal photodetectors
JPH022691A (ja) 半導体受光素子
CN109461778A (zh) 一种提高背照式光电二极管响应度的结构及制作方法
CN213212172U (zh) 一种850nm波段高响应度探测器
CN115295683B (zh) 一种单载流子输运的平衡探测器及其制备方法
WO2000019544A9 (en) Highly-doped p-type contact for high-speed, front-side illuminated photodiode
CN112768550A (zh) 一种用于提高背照式光电二极管响应度的结构及制作方法
CN115312630B (zh) 一种具有双漂移区的雪崩光电探测器的制备方法
CN113964238B (zh) 一种雪崩光电探测器的制备方法
CN217740536U (zh) 一种半导体器件及其封装结构
CN114122191A (zh) 一种雪崩光电探测器的制备方法
CN112259625B (zh) 一种基于共振腔增强的位置敏感传感器
CN111933722B (zh) 一种光电探测器以及制备方法
CN218299812U (zh) 一种雪崩光电探测器结构
WO2022099747A1 (zh) 一种850nm波段高响应度探测器
CN110350045B (zh) PbS量子点Si-APD红外探测器及其制备方法
US4990989A (en) Restricted contact planar photodiode
JPH07118548B2 (ja) ▲iii▼−v族多元化合物半導体pinフオトダイオ−ド
CN115249755B (zh) 一种雪崩光电探测器的制备方法
CN216488097U (zh) 一种雪崩光电探测器
CN216488098U (zh) 一种InAlAs雪崩光电探测器结构
CN218730973U (zh) 一种单载流子探测器结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant