CN115301269B - 一种钌单原子催化剂的制备方法及其应用 - Google Patents

一种钌单原子催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN115301269B
CN115301269B CN202210808847.7A CN202210808847A CN115301269B CN 115301269 B CN115301269 B CN 115301269B CN 202210808847 A CN202210808847 A CN 202210808847A CN 115301269 B CN115301269 B CN 115301269B
Authority
CN
China
Prior art keywords
catalyst
solution
methanol
use according
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210808847.7A
Other languages
English (en)
Other versions
CN115301269A (zh
Inventor
胡尊富
唐巍纳
张慧敏
杨欣怡
戴志超
孙运强
甘自保
郑秀文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linyi University
Original Assignee
Linyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linyi University filed Critical Linyi University
Priority to CN202210808847.7A priority Critical patent/CN115301269B/zh
Publication of CN115301269A publication Critical patent/CN115301269A/zh
Application granted granted Critical
Publication of CN115301269B publication Critical patent/CN115301269B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化剂制备技术领域,具体涉及一种钌单原子催化剂的制备方法及其应用。该方法通过以下步骤实现:首先将骨架材料ZIF‑8热解得到N‑C,然后将N‑C、Ru(acac)3和双氰胺加入到水和异丙醇的混合物中,超声搅拌后,真空干燥,退火,最后得到RuAC‑N‑C。本发明制备得到的RuSA‑N‑C,能够用于有机污染物的降解,在极短时间内降解率可达100%。此外,制备的RuSA‑N‑C催化剂的双反应位点大大缩短了活性物质与有机污染物分子之间的迁移距离,显著提高了RuSA‑N‑C的催化性能,有利于在无二次金属污染的情况下降解有机污染物。为RuSA‑N‑C/PMS系统的高效污水处理提供了一种潜在的方法。

Description

一种钌单原子催化剂的制备方法及其应用
技术领域
本发明属于催化剂制备技术领域,具体涉及一种钌单原子催化剂的制备方法及其应用。
背景技术
近几十年来,随着社会的快速发展,环境污染已经成为一个严重的问题。特别是水中许多毒性强、耐生物降解的难降解有机化合物是天然水和工程水中的主要污染物,传统的吸附、絮凝和生物方法无法完全消除这些污染物。纺织、印染、皮革加工等行业的废水中通常含有高浓度的各种染料,这些染料不可生物降解,具有毒性,具有潜在的致癌性和诱变性,对生态环境造成不利影响。对于这些难降解有机物,在进入环境前对含有该类物质的废水进行有效处理是有必要的。
一般来说,处理水体中有机污染物的技术主要包括(1)物理法:利用物理方法将有机污染物通过沉降、吸附、萃取等技术从水相中分离出来,以达到净化水体的目的。但该方法不能彻底根除污染物,且还有可能对环境造成二次污染。(2)生物法:利用微生物的生化作用,将有害物质分解转化为无害物质,从而达到净化水体的目的。生物处理方法设备简单,运行费用低,但其处理周期长且设备占用面积大。(3)化学法:在废水中加入氧化剂或者利用其它手段产生具有氧化性的物质,使其与废水中的还原性有机污染物发生化学反应,将有害物质转化为无害物质来达到净水目的。化学法包括还原法、电化学法以及氧化法。还原法主要是利用机械加工中产生的铁屑来处理废水,处理方法存在特异性。电化学法是指利用直流电在电解槽中的电解作用,把印染废水中的有害物质去除或者转化为低毒的物质。该方法成本高、能耗大。氧化法就是在氧化剂的作用下,助剂和染料有机分子被氧化成有机小分子或无机物。但传统的氧化技术存在反应设备复杂、选择性大、反应速率慢、氧化降解能力弱等特点。基于此,能够有效处理难降解有机废水且对环境影响较小的类Fenton技术应运而生,该技术是处理难降解有机污染物最有发展前途且对环境没有二次污染的方法。在类Fenton反应过程中,过氧单硫酸酯(PMS)作为一种高效氧化剂,在催化剂的作用下产生大量的活性自由基来分解各种有机化合物。然而,催化剂活性金属浸出后存在二次金属污染、PMS利用率低、催化剂催化活性低、稳定性差等明显的关键缺陷,极大地阻碍了其实际应用。因此,研发一种具有超高的原子效率、可调谐的电子结构、易识别的结构和优越的单原子催化剂成为了亟待解决的问题。
发明内容
针对现有技术中存在的问题,本发明提供了一种钌单原子催化剂的制备方法。
本发明还提供了一种钌单原子催化剂在水污染处理中的应用。
本发明为了实现上述目的所采用的技术方案为:
一种钌单原子催化剂的制备方法,包括以下步骤:
(1)将Zn (NO3)2·6H2O溶于甲醇中,超声至完全溶解,加入含2-甲基咪唑甲醇溶液,将混合溶液在室温下剧烈搅拌后转移到反应釜中,加热反应,冷却至室温后,收集得到的沉淀,离心洗涤,最后真空干燥得ZIF-8;
(2)将ZIF-8粉末置于管式炉中,热解得到N-C;
(3)将N-C、Ru(acac)3和双氰胺加入到水和异丙醇的混合物中,然后在室温下剧烈超声,搅拌;然后,获得的样品在真空下干燥一夜,退火,最后得到RuAC-N-C。
进一步的,步骤(1)中,所述Zn (NO3)2·6H2O在甲醇中的浓度为0.08-0.18 mmol/L;所述2-甲基咪唑甲醇溶液的浓度为0.5-0.8mmol/L;所述Zn (NO3)2·6H2O和2-甲基咪唑的摩尔比为1:4~8.
进一步的,步骤(1)中,所述搅拌的时间为30min;所述加热反应为120℃下反应2~6h;所述真空干燥的温度为60℃。
进一步的,步骤(2)中,所述热解为在流动氩气气氛下,以2~5 C min -1的升温速率升温至800~1000℃,热解2~4h。
进一步的,步骤(3)中,所述N-C、Ru(acac)3和双氰胺的质量比为2~3:1:8~12;所述混合物为水和异丙醇按照体积比1:1组成;所述N-C和混合物的比例为3~5mg:3~5mL。
进一步的,步骤(3)中,所述超声的时间为2~3h,搅拌的时间为2~4h;所述真空干燥的温度为80℃;所述退火为在氩气气氛、温度为600℃下退火2h。
本发明还提供了一种利用上述制备方法得到的钌单原子催化剂在污水处理中的应用。本发明利用钌单原子催化剂所处理的污水为苯酚、双酚A等有机污染物。
进一步的,包括以下步骤:将污染物溶液中加入催化剂,溶液搅拌30 min,加入PMS即可。
进一步的,所述催化剂在污染物溶液中的浓度为0.01-0.2 g/L;所述PMS在污染物溶液中的浓度为0.1-1.0g/L。
通过自由基清除实验和密度泛函理论计算表明,本发明制备的钌单原子催化剂中,Ru-N4活性位点产生的单线态氧(1O2)是降解水中有机污染物的主要活性物质。RuSA-N-C催化剂具有丰富的RuN4位点,可以有效地激活PMS生成活性物质。同时,相邻的吡啶N位点作为有机污染物分子的吸附位点,结合键能适中,作为功能位点锚定目标污染物进行氧化。RuSA-N-C的超高催化活性主要来源于其独特的双反应位点,显著缩短活性物质(1O2)向吸附的目标污染物分子的迁移距离。
RuSA-N-C降解有机污染物的催化性能研究:本发明选用Orange Ⅱ 来验证RuSA-N-C的催化性能。Orange Ⅱ 的降解反应在水相中进行,该染料具有较强的可见光吸收,且它们的特征吸收峰受其他物质的干扰较小,故催化降解过程中Orange Ⅱ 溶液的浓度可采用紫外-可见吸收光谱法分析。
本发明的有益效果为:
(1)本发明提供的方法简单,可操作性强,合成的催化剂高效稳定;
(2)本发明制备得到的钌单原子催化剂(RuSA-N-C),能够用于有机污染物的降解,经PMS活化后,RuSA-N-C对有机污染物的降解表现出明显的类Fenton催化活性。合成的RuSA-N-C催化剂在极短时间内降解率可达100%,远远高于RuNP-N-C催化剂的降解效率。此外,制备的RuSA-N-C催化剂的双反应位点大大缩短了活性物质与有机污染物分子之间的迁移距离,显著提高了RuSA-N-C的催化性能,有利于在无二次金属污染的情况下降解有机污染物。为RuSA-N-C/PMS系统的高效污水处理提供了一种潜在的方法。
附图说明
图1为本发明提供的RuSA-N-C的制备流程图。
图2为实施例1制备的RuSA-N-C的TEM 图。
图3为实施例1制备的RuSA-N-C的SEM 图
图4为实施例1制备的RuSA-N-C 的XRD 图。
图5为实施例1制备的RuSA-N-C的HAADF-STEM 图。
图6为RuSA-N-C/PMS体系降解Orange Ⅱ 的紫外-可见光谱图。
图7为Orange Ⅱ 的可能降解路径。
图8为RuSA-N-C降解Orange Ⅱ 的循环稳定性。
图9为RuSA-N-C/PMS体系的金属离子浸出。
图10为RuSA-N-C和有益效果中提到的RuNP-N-C的降解对比图。
图11为对比例2制备的RuSA-N-C的有机物降解图。
具体实施方式
下面通过具体的实施例对本发明的技术方案作进一步的解释和说明。
实施例1
RuSA-N-C 的制备:将Zn (NO3)2·6H2O (1.7849 g, 6 mmol)溶于50 ml甲醇中,超声至完全溶解。加入含2-甲基咪唑(2.9556 g, 36 mmol)的50 ml甲醇,将混合溶液在室温下剧烈搅拌30 min后转移到200 ml特氟龙内衬不锈钢高压釜中,120℃加热4 h,冷却至室温后,收集得到的沉淀,离心,甲醇洗涤三次,最后在60℃真空干燥过夜(得到的粉末标记为ZIF-8)。然后将ZIF-8粉末置于管式炉中,900℃下热解2 h,升温速率5 C min -1,流动氩气下热解得到N-C。将N-C (50 mg)、Ru(acac)3 (20 mg)和双氰胺(100 mg)加入到水(15 ml)和异丙醇(15 ml)的混合物中,然后在室温下剧烈超声3 h,搅拌4 h。然后,获得的样品在80℃真空下干燥一夜,在600℃氩气中退火2小时。最后得到RuAC-N-C(如图1所示)。
采用TEM、SEM、XRD、HAADF-STEM手段对催化剂进行了一系列表征,充分证明了RuSA-N-C的合成。从图2、图3、图4、图5中可以看出,所合成的RuSA-N-C 具有典型的菱形十二面体结构,尺寸在200 nm 左右。 XRD 图谱中有两个位于2ɵ=25° 和44° 的宽峰,分别属于碳的(002)和(100)衍射,不存在金属、金属氧化物的峰。采用HAADF-STEM来进一步确定RuSA-N-C的结构。HAADF-STEM图像中可以清晰地观察到没有团聚的Ru 团簇存在,而是均匀分散的单个Ru 原子。
实施例2
催化降解实验:在200 mL圆底烧瓶中进行降解实验。在此过程中,使用恒温水浴来维持反应容器的温度。用H2SO4 (1M)和NaOH (0.5M)调节溶液的初始pH。在典型的运行中,将不同初始浓度(0.03-0.09 g/L)的Orange Ⅱ 溶液(100mL)转移到圆底烧瓶中,然后在污染物溶液中加入一定量的催化剂(0.01-0.2 g/L)。溶液搅拌30 min,达到吸附-解吸平衡。加入PMS (0.1-1.0g/L)启动试验。在特定的时间点,用注射器收集得到的溶液2.0 ml,立即用过量的甲醇猝灭,通过0.22 um的特氟龙过滤器过滤。用紫外可见分光光度计测定其在484nm处的紫外吸收。
图6为RuSA-N-C/PMS体系降解Orange Ⅱ 的紫外-可见光谱图。从Orange Ⅱ 的分子式可知,该物质存在三种共轭结构,分别为苯环、萘环和偶氮(-N=N-), 共轭体系越大其对应的吸收波长越大。484 nm 处所对应的吸收峰是以偶氮键为中心,同时连接萘环和苯环的大共轭体系。在228-255nm处一般认为是苯环的特征吸收峰,萘环的吸收峰在310nm处。从紫外-可见光谱图(图6)中可以观察到,随着反应的进行,484 nm 处的吸收峰下降的较为明显,说明共轭体系-N=N-发生断裂,在反应6 min 后基本消失。此现象说明Orange Ⅱ 降解过程是从偶氮键断裂开始的。310 nm 处吸收峰强度的下降归因于萘环结构被破坏,发生了氧化开环。228-255nm处 吸收峰强度下降表明在降解过程中苯环结构遭到破坏。因此,RuSA-N-C/PMS 体系能够高效降解Orange Ⅱ。
本发明制备的RuSA-N-C对Orange Ⅱ 进行降解,表现出明显的类Fenton催化活性。合成的RuSA-N-C催化剂在6 min内对Orange Ⅱ 的降解率为100%,降解速率常数为0.5189min-1,是RuNP-N-C (0.0577 min-1)的9倍。实验结果和DFT计算表明,RuSA-N-C催化剂具有丰富的RuN4位点,可以有效地激活PMS生成ROS(主要是1O2)。
为了充分验证Orange Ⅱ 被有效降解,本发明通过高效液相色谱-质谱联用检测Orange Ⅱ 降解过程中产生的可能中间体,如图7 所示,Orange Ⅱ 被充分降解,最终被氧化为无毒物质二氧化碳和水。
图8验证了RuSA-N-C降解Orange Ⅱ 的循环稳定性,结果表明合成的催化剂具有极高的稳定性,在循环6次后催化效率几乎没有变化。图9为通过ICP测得的RuSA-N-C/PMS体系的金属离子浸出,该结果充分说明本发明制备的RuSA-N-C能够在无二次金属污染的情况下降解有机污染物。
对比例1
RuNP-N-C 的制备:将Zn (NO3)2·6H2O (1.7849 g, 6 mmol)溶于50 ml甲醇中,超声至完全溶解。加入含2-甲基咪唑(2.9556 g, 36 mmol)的50 ml甲醇,将混合溶液在室温下剧烈搅拌30 min后转移到200 ml特氟龙内衬不锈钢高压釜中,120℃加热4 h,冷却至室温后,收集得到的沉淀,离心,甲醇洗涤三次,最后在60℃真空干燥过夜(得到的粉末标记为ZIF-8)。然后将ZIF-8粉末置于管式炉中,900℃下热解2 h,升温速率5 C min -1,流动氩气下热解得到N-C。将N-C (50 mg)、Ru(acac)3 (200 mg)和双氰胺(100 mg)加入到水(15 ml)和异丙醇(15 ml)的混合物中,然后在室温下剧烈超声3 h,搅拌4 h。然后,获得的样品在80℃真空下干燥一夜,在600℃氩气中退火2小时。最后得到RuNP-N-C。
所制备的RuNP-N-C材料在30 min的降解效率为50%左右,动力学一级速率常数为0.0577 min-1,明显低于RuAC-N-C(0.05189 min-1),充分说明本发明制备的RuAC-N-C材料具有优异的污染物降解能力(图10)。
对比例2
一步法合成RuSA-N-C: 将Zn (NO3)2·6H2O (1.7849 g, 6 mmol)和20mg Ru(acac)3溶于50 ml甲醇中,超声至完全溶解。加入含2-甲基咪唑(2.9556 g, 36 mmol)的50ml甲醇,将混合溶液在室温下剧烈搅拌30 min后转移到200 ml特氟龙内衬不锈钢高压釜中,120℃加热4 h,冷却至室温后,收集得到的沉淀,离心,甲醇洗涤三次,最后在60℃真空干燥过夜(得到的粉末标记为Ru@ZIF-8)。然后将Ru@ZIF-8粉末置于管式炉中,900℃下热解2 h,升温速率5 C min -1,流动氩气下热解得到RuSA-N-C。如图11所示,通过一步法合成的RuAC-N-C在30 min 内的降解效率为24%,显著低于通过本发明合成的RuAC-N-C (100%,6min), 更进一步说明本发明制备的RuAC-N-C材料具有优异的污染物降解能力。

Claims (6)

1.一种钌单原子催化剂在污水处理中的应用,其特征在于,所述钌单原子催化剂通过以下步骤制备:
(1)将Zn (NO3)2·6H2O溶于甲醇中,超声至完全溶解,加入含2-甲基咪唑甲醇溶液,将混合溶液在室温下剧烈搅拌后转移到反应釜中,加热反应,冷却至室温后,收集得到的沉淀,离心洗涤,最后真空干燥得ZIF-8;
(2)将ZIF-8粉末置于管式炉中,热解得到N-C;
(3)将N-C、Ru(acac)3和双氰胺加入到水和异丙醇的混合物中,然后在室温下剧烈超声,搅拌;然后,获得的样品在真空下干燥一夜,退火,最后得到RuAC-N-C;
步骤(3)中,所述N-C、Ru(acac)3和双氰胺的质量比为2~3:1:8~12;所述混合物为水和异丙醇按照体积比1:1组成;所述N-C和混合物的比例为3~5mg:3~5mL;
步骤(3)中,所述超声的时间为2~3h,搅拌的时间为2~4h;所述真空干燥的温度为80℃;所述退火为在氩气气氛、温度为600℃下退火2h。
2. 根据权利要求1所述的应用,其特征在于,步骤(1)中,所述Zn (NO3)2·6H2O在甲醇中的浓度为0.08-0.18 mmol/L;所述2-甲基咪唑甲醇溶液的浓度为0.5-0.8mmol/L;所述Zn(NO3)2·6H2O和2-甲基咪唑的摩尔比为1:4~8。
3.根据权利要求1或2所述的应用,其特征在于,步骤(1)中,所述搅拌的时间为30min;所述加热反应为120℃下反应2~6h;所述真空干燥的温度为60℃。
4. 根据权利要求1所述的应用,其特征在于,步骤(2)中,所述热解为在流动氩气气氛下,以2~5℃/min 的升温速率升温至800~1000℃,热解2~4h。
5. 根据权利要求1所述的应用,其特征在于,包括以下步骤:将污染物溶液中加入钌单原子催化剂,溶液搅拌30 min,加入PMS即可。
6. 根据权利要求5所述的应用,其特征在于,所述钌单原子催化剂在污染物溶液中的浓度为0.01-0.2 g/L;所述PMS在污染物溶液中的浓度为0.1-1.0g/L。
CN202210808847.7A 2022-07-11 2022-07-11 一种钌单原子催化剂的制备方法及其应用 Active CN115301269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210808847.7A CN115301269B (zh) 2022-07-11 2022-07-11 一种钌单原子催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210808847.7A CN115301269B (zh) 2022-07-11 2022-07-11 一种钌单原子催化剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN115301269A CN115301269A (zh) 2022-11-08
CN115301269B true CN115301269B (zh) 2023-07-21

Family

ID=83856443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210808847.7A Active CN115301269B (zh) 2022-07-11 2022-07-11 一种钌单原子催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN115301269B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116351452B (zh) * 2023-03-27 2024-02-27 临沂大学 一种原子间距可控的Fe-Co异核双金属单原子催化剂的制备方法及所得产品、应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114618545B (zh) * 2020-12-08 2023-06-20 中国科学院大连化学物理研究所 单原子Ru催化剂及其制备和在醛酮还原胺化中的应用
CN114618550A (zh) * 2022-03-01 2022-06-14 西北工业大学 一种贵金属单原子催化剂及制备方法

Also Published As

Publication number Publication date
CN115301269A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
Zhong et al. Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar
Zhou et al. Single atom Mn anchored on N-doped porous carbon derived from spirulina for catalyzed peroxymonosulfate to degradation of emerging organic pollutants
Liu et al. Oxygen vacancies-enriched Cu/Co bimetallic oxides catalysts for high-efficiency peroxymonosulfate activation to degrade TC: Insight into the increase of Cu+ triggered by Co doping
Wang et al. Degradation of bisphenol a using peroxymonosulfate activated by single-atomic cobalt catalysts: different reactive species at acidic and alkaline pH
Wang et al. Peroxymonosulfate enhanced photoelectrocatalytic degradation of ofloxacin using an easily coated cathode
Li et al. Thermal activation of persulfates for organic wastewater purification: Heating modes, mechanism and influencing factors
Fan et al. Multi-targeted removal of coexisted antibiotics in water by the synergies of radical and non-radical pathways in PMS activation
Xie et al. Enhanced redox activity and oxygen vacancies of perovskite triggered by copper incorporation for the improvement of electro-Fenton activity
Liu et al. Oxidative polymerization of bisphenol A (BPA) via H-abstraction by Bi2. 15WO6 and persulfate: Importance of the surface complexes
CN113877581B (zh) 一种铁酸铜尖晶石材料及其制备方法与应用
CN108191039B (zh) 一种高效复合型芬顿试剂及其制备方法
Liu et al. Co/Fe co-doped porous graphite carbon derived from metal organic framework for microelectrolysis-Fenton catalytic degradation of Rhodamine B
CN113929197B (zh) 一种可见光辅助活化过一硫酸盐处理有机废水的方法
CN112827497B (zh) 一种臭氧催化材料的制备方法
CN111589465A (zh) 一种高分散性三维多孔碳基金属催化剂的制备方法及应用
CN115301269B (zh) 一种钌单原子催化剂的制备方法及其应用
Yu et al. Switching the primary mechanism from a radical to a nonradical pathway in electrocatalytic ozonation by onsite alternating anode and cathode
Song et al. Sodium hypochlorite and Cu–O–Mn/columnar activated carbon catalytic oxidation for treatment of ultra-high concentration polyvinyl alcohol wastewater
Ma et al. Iron pyrophosphate doped carbon nanocomposite for tetracycline degradation by activation of peroxymonosulfate
Wu et al. Coordination-driven boron and copper on carbon nitride for peroxymonosulfate activation to efficiently degrade organic contaminants
Wu et al. Synergetic effect of photocatalytic oxidation plus catalytic oxidation on the performance of coconut shell fiber biochar decorated α-MnO2 under visible light towards BPA degradation
Cai et al. Atomically dispersed copper sites on titanium zirconium oxide accelerate the simultaneous oxidative removal of organic carbon and ammonia from landfill leachate
CN112299547A (zh) 一种单一铜盐催化过氧化氢降解垃圾渗滤液膜浓缩液的方法
CN111450870A (zh) 氮化碳负载型催化剂及其制备方法和应用
CN114768808B (zh) 碳量子点掺杂铁基氧化物光芬顿催化剂的制备方法及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant