CN115261680B - 一种铝合金工件及其制备方法 - Google Patents
一种铝合金工件及其制备方法 Download PDFInfo
- Publication number
- CN115261680B CN115261680B CN202111584797.0A CN202111584797A CN115261680B CN 115261680 B CN115261680 B CN 115261680B CN 202111584797 A CN202111584797 A CN 202111584797A CN 115261680 B CN115261680 B CN 115261680B
- Authority
- CN
- China
- Prior art keywords
- aluminum alloy
- alloy workpiece
- powder
- slm
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/052—Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/34—Process control of powder characteristics, e.g. density, oxidation or flowability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/10—Pre-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/38—Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/80—Data acquisition or data processing
- B22F10/85—Data acquisition or data processing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/10—Auxiliary heating means
- B22F12/13—Auxiliary heating means to preheat the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/003—Articles made for being fractured or separated into parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2200/00—Crystalline structure
- C22C2200/06—Quasicrystalline
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Nanotechnology (AREA)
- Powder Metallurgy (AREA)
- Laser Beam Processing (AREA)
Abstract
本发明还公开了一种铝合金工件及其制备方法,该制备方法通过优化铝合金工件的成分,使得SLM能够制备铝合金工件,形成目标金相。该制备方法克服了基于传统的铸造和锻造工艺设计的耐高温高强铝合金成分与SLM工艺无法匹配的问题,充分的利用了SLM工艺快冷等特点,制备出了目标晶相的铝合金成分,该方法将铝合金成分和SLM工艺结合起来,相互促进,形成了目标工件,使得SLM工艺能够制备出室温‑高温高强韧铝合金,该方法为SLM提供一种室温‑高温高强韧铝合金材料体系,扩展选区激光熔化技术在中温端部件领域的使用范围。
Description
技术领域
本发明属于金属增材制造制备技术领域,具体涉及一种铝合金工件及其制备方法。
背景技术
近些年来航空、航天和汽车工业飞速发展,在中温端部件领域(200-350℃)以更轻质,更强韧为目标的新型材料与结构设计工程将会为低能耗-可持续发展模式提供重要支持。其中,高端装备领域对高强复杂耐高温铝合金构件整体精密成形提出了迫切需求。铝合金复杂构件的激光选区熔化(selective laser melting,SLM)增材制造技术,因其在材料加工和结构设计方面不可代替的优势,已成为金属材料结构-功能一体化制造领域的研究新热点。但因铝合金本身激光反射率高,易氧化等原因,目前仅铸造铝合金ZL104(AlSi10Mg)和空客公司(AIRBUS)研发的Al-Mg-Sc-Zr两种合金可以成熟应用于SLM技术。前期研究成果表明,SLM成形Al-Si系和Al-Mg-Sc-Zr系合金虽然室温性能优异,但在350℃条件下其抗拉强度约仅为70-90MPa和30-40MPa,无法满足中温端部件的应用要求。而传统中温强度良好的Al-Cu系合金(2xxx系)由于其具有较宽的凝固温度区间,易在SLM成形的熔池快速定向凝固过程中出现热裂纹,无法实现精确成形。近年来,美国,日本等国家的研究团队从铸造工艺基础出发,已在Al-Fe,Al-Ce系等增材制造耐高温铝合金方面取得一定进展,但因大量低塑性Al-Fe,Al-Ce金属间化合物的非均匀分布,仍存在工艺性差,室温塑性不足等问题,无法使用SLM技术直接成形复杂构件。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供一种铝合金工件及其制备方法,以解决现有的铝合金体系的金属间化合物分布不均匀,室温塑性不好的问题。
为达到上述目的,本发明采用以下技术方案予以实现:
一种铝合金工件,以质量分数计,包括Fe 1.0~2.5%、Cu 1.5~3.0%、Cr 1.0~2.0%、Ti 0.5~1.1%、Zr 0.4~1.0%,余量为Al。
本发明的进一步改进在于:
优选的,以质量分数计,杂质元素的含量小于0.2%。
优选的,以质量分数计,Fe和Cr含量总和小于3.5%,且大于2.5%
优选的,以质量分数计,Ti和Zr含量总和小于2.0%。
优选的,以质量分数计,氧含量小于0.01%。
优选的,室温抗拉强度≥500MPa。
优选的,室温屈服强度≥400MPa。
优选的,室温延伸率≥8%。
优选的,350℃抗拉强度≥200MPa。
优选的,350℃屈服强度≥160MPa。
优选的,350℃延伸率≥8%。
一种上述任意一项所述的铝合金工件的制备方法,包括以下步骤:
步骤1,绘制待制备工件的三维图,制定打印过程中工艺参数;
步骤2,将配置并烘烤好的铝合金粉末置于SLM打印机中开始打印,制备铝合金工件完成。
优选的,步骤1中,所述工艺参数包括激光功率、扫描速度、扫描线间距、旋转角度、分层厚度、氧含量和基板预热温度。
优选的,步骤2中,所述铝合金粉末的粒度分布为:D10粉末的粒径为10μm~25μm,D50粉末的粒径为30μm~45μm,D90粉末的粒径为50μm~60μm。
优选的,步骤2中,铝合金粉末的烘烤温度为100~120℃,烘烤时间2~4h。
与现有技术相比,本发明具有以下有益效果:
本发明公开了一种铝合金工件,该铝合金工件中通过优化各个元素的含量,使得制备出的铝合金工件最终的金相中具有异构组织,异构组织为柱状晶和等轴晶的组合,同时具有优异的金属间化合物增强相,进而使得铝合金工件优异的拉伸强度高温稳定性和室温强度,使得该合金的室温和高温力学性能较好,具有强度高、不易开裂和塑性良好的特点。
本发明还公开了一种铝合金工件的制备方法,该制备方法通过优化铝合金工件的成分,使得SLM能够制备铝合金工件,形成目标金相。该制备方法克服了基于传统的铸造和锻造工艺设计的耐高温高强铝合金成分与SLM工艺无法匹配的问题,充分的利用了SLM工艺快冷等特点,通过铝合金工件成分体系的设置,结合SLM的快冷特点,制备出了目标晶相的铝合金成分,该方法将铝合金成分和SLM工艺结合起来,相互促进,形成了目标工件,使得SLM工艺能够制备出室温-高温高强韧铝合金,该方法为SLM提供一种室温-高温高强韧铝合金材料体系,扩展选区激光熔化技术在中温端部件领域的使用范围。
进一步的,本发明公开的SLM使用的合金粉末,使得制备过程成本较低。
附图说明
图1为本发明的流程图;
图2为实施例1粉末与粒度状态图;
图3为实施例1制备出的成品微观图;
其中,(a)图为SLM成形零件的光镜图;(b)图为成形零件的腐蚀后显微组织图
图4为实施例1制备出的合金性能侧视图;
其中,(a)图为室温性能图;(b)图为高温性能图;
具体实施方式
下面结合附图对本发明做进一步详细描述:
本发明公开了一种铝合金工件,在其中的一个实施例中,该铝合金工件以质量分数计,化学组成为Fe 1.0~2.5%、Cu 1.5~3.0%、Cr 1.0~2.0%、Ti 0.5~1.1%、Zr 0.4~1.0%,余量为Al。该合金体系中Al元素与Fe元素能够形成Al6Fe金属间化合物增强相,提高其拉伸强度与高温稳定性。Al元素、Cu元素、Cr元素和Fe元素将形成Al-Fe-Cr与Al-Cu-Fe-Cr两种准晶增强相,同时析出θ-Al2Cu等纳米增强相。Ti元素-Al3Ti-将进步提高上述准晶相的高温稳定性,细化准晶相尺寸。Zr元素的添加将和Al元素生成Al3Zr颗粒,其可以作为α-Al晶粒的异质形核核心,细化晶粒,实现其从柱状晶向等轴晶的改变,提高该合金体系的塑性。同时,Al3Zr相也可提高整个体系的高温稳定性。同时,Ti和Zr元素的引入将在SLM成形过程中引入存在与熔池边界的L12型Al3(Zr,Ti)颗粒,尺寸在100-800nm之间,由于其与α-Al晶格错配度小,可以作为异质形核核心,促进柱状晶向等轴晶的转化。最终将形成由熔池内部柱状晶和熔池边界等轴晶组成的异构组织。在背应力强化作用下,进一步同时提高合金的室温强度和韧性。
优选的,Fe、Cr元素合计大于2.5%,不超过3.5%。Ti和Zr元素合计大于0.9%,不超过2.0%。
更为优选的,该实施例中的杂质元素的含量小于0.2%,具体的,杂质元素为杂质合金元素,为制备合金过程中因工艺制备或原材料的带入所不可避免带入的合金杂质;该实施例中,氧含量小于0.01%。限定了杂质元素和氧含量,能够避免产生不必要的脆性金属间化合物或金属氧化物,影响晶粒的成相,进而影响整个铝合金的含量。
本发明的一个实施例为限定了室温抗拉强度≥500MPa、室温屈服强度≥400MPa和室温延伸率≥8%。
本发明的一个实施例为限定了350℃下的铝合金工件的性能,具体的350℃抗拉强度≥200MPa,350℃屈服强度≥160MPa,350℃延伸率≥8%。
本发明这两个实施例中之所能够达到上述的抗拉强度、屈服强度和延伸率,主要因为上述实施例中的成分体系设计,合金体系中形成多种尺度的增强相将复合提高合金的强度与延展性。其中,Al元素与Fe元素将形成Al6Fe及Al13Fe4金属间化合物增强相,提高其拉伸强度与高温稳定性,Al元素、Cu元素、Cr元素和Fe元素将形成Al-Fe-Cr与Al-Cu-Fe-Cr两种准晶增强相。Ti元素将进步提高上述准晶相的高温稳定性,细化准晶相尺寸。Zr元素的添加将和Al元素生成Al3Zr颗粒,其可以作为α-Al晶粒的异质形核核心,细化晶粒,实现其从柱状晶向等轴晶的改变,提高该合金体系的塑性。同时,Al3Zr相也可提高整个体系的高温稳定性。同时,引入的Ti和Zr元素也将带来由熔池边界等轴晶和熔池内部柱状晶组成的异构显微组织,在进一步背应力强化下,实现合金室温下的强韧协同。此性能将进一步拓宽该合金体系同时在室温与高温领域的应用,可以实现在高温油路管道,滤芯和发动机活塞等构件的应用。
本发明还公开了一种铝合金工件的制备方法,该制备方法通过选取激光融化(SLM)对铝合金工件进行制备。针对目标的Al-Fe-Cu-Cr-Ti-Zr合金,通过SLM的快速凝固技术,由于其冷却速度快,同时在单个熔池尺度上的温度梯度和凝固速度将出现明显的非均匀分布特点,这将有利于形成在熔池的不同区域形成以Al-Fe-Cr准晶和亚稳Al-Cu、Al-Fe相和Al3Ti、Al3Zr为增强相的复合增强Al基复合材料。该复合结构主要表现为在100微米尺度上α-Al晶粒的等轴晶与柱状晶双态组织的结构特征,在1-10微米尺度上熔池边缘与中心的Al-Fe-Cr准晶和Al-Fe相的非均匀分布,在纳米尺度上Al3Ti、Al3Zr和Al2Cu相的析出强化行为。因此,综合以上复合增强机制,该合金的在室温和高温条件下的复合强度得到显著提高,适用于更严格的环境。该制备方法具体包括以下步骤:
步骤1,绘制待制备工件的三维图,制定扫描策略;步骤1中,制定的扫描策略具体为选区激光熔化工艺参数,具体的包括激光功率、扫描速度、扫描线间距、旋转角度和分层厚度和氧含量控制,基板预热等重要参数;针对本实施例中的合金成分,工艺参数为:激光功率为325~400W,扫描速度为1000~1400mm/s,扫描线间距为100~140μm、旋转角度为17°~67°,分层厚度为0.025~0.03mm,氧含量小于200ppm|,基板预热温度介于150~195℃,通过加热基板降低零件的残余应力。
步骤2,根据目标成分配置铝合金粉末,将配置好的铝合金粉末进行烘干处理。
优选的,选择合适的铝合金粉末原料元素配比通过气雾化法进行制备。铝合金粉末成分配比如下:
表1铝合金粉末成分
中间合金杂质含量小于0.2%,氧含量低于0.01%。
进一步的,该粉末粒度分布与流动性要求如下
表2粒度分布要求
铝合金粉末的松装密度大于1.36g/cm2,霍尔流速小于80s/50g
作为优选的方案之一,选取粉末粒径为15~53μm的粉末,进行真空干燥烘粉处理,温度为100~120℃,时间2~4h;
步骤3,将配置并烘烤好的铝合金粉末置于SLM打印机中按照设定的工艺参数开始打印,制备准晶增强铝基复合材料,获得高强度铝合金零件。
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
实施例1
步骤1,绘制工艺参数优化实验块的三维图,扫描策略为相邻层之间旋转角度为17°,层厚为0.03mm进行分层切片处理;
步骤2,配置待烘烤的铝合金粉末,铝合金粉末的配比为:Fe 2.0%、Cu 2.0%、Cr1.0%、Ti 1.0%、Zr 1.0%,余量为Al;配置好的铝合金粉末的粒度状态图如图2所示,该粉末表现出良好的球星度,大部分粉末颗粒表面光滑,少部分拥有一定比例的卫星粉。最大尺寸颗粒为70微米以下,小尺寸粉末较少,大部分粒度分布介于10-60微米之间,适用于SLM技术。选取粉末粒径为15~53μm的粉末在110℃下,烘烤3h。
步骤3,将烘好的粉末放入SLM打印机供粉舱内开始打印,所述选区激光熔化的激光功率为375W,扫描速度保持在1400mm/s,扫描线间距选择140微米,基板预热到150℃;
步骤4,打印后的实验块用线切割与基板分离,制备金相样品,测定致密度;成品图如图3所示,(a)图为SLM成形零件的光镜图,可以看出成形试样致密度高,没有观察到明显的缺陷;(b)图为SLM成形零件的腐蚀后显微组织图,可以看出单个熔池的尺寸,宽度100-150微米,深度20-40微米。同时,增强颗粒的在熔池不同区域的非均匀分布。
步骤4,测定优选工艺参数下零件的力学性能,参见图4,本实施例的铝合金粉末通过SLM成型致密度超过99%,从图(a)可以看出沉积态样品的室温抗拉强度≥500MPa,屈服强度≥400MPa,延伸率≥8%;从图(b)中可以看出350℃抗拉强度≥200MPa,屈服强度≥160MPa,延伸率≥8%。
实施例2
步骤1,绘制工艺参数优化实验块的三维图,扫描策略为相邻层之间旋转角度为50°,层厚为0.025mm进行分层切片处理。
步骤2,配置待烘烤的铝合金粉末,铝合金粉末的配比为:Fe 1%、Cu 2.0%、Cr1.8%、Ti 0.8%、Zr 0.6%,余量为Al。选取粉末粒径为15~53微米的粉末在115℃下,烘烤3h。
步骤3,将烘好的粉末放入SLM打印机供粉舱内开始打印,所述选区激光熔化的激光功率为350W,扫描速度保持在1200mm/s,扫描线间距选择120微米,基板预热到155℃。
步骤4,打印后的实验块用线切割与基板分离,制备金相样品,测定致密度和力学性能。
实施例3
步骤1,绘制工艺参数优化实验块的三维图,扫描策略为相邻层之间旋转角度为63°,层厚为0.3mm进行分层切片处理。
步骤2,配置待烘烤的铝合金粉末,铝合金粉末的配比为:Fe 1.8%、Cu 2.5%、Cr1.5%、Ti 1.1%、Zr 0.8%,余量为Al。选取粉末粒径为15~53微米的粉末在120℃下,烘烤2h。
步骤3,将烘好的粉末放入SLM打印机供粉舱内开始打印,所述选区激光熔化的激光功率为400W,扫描速度保持在1300mm/s,扫描线间距选择130微米,基板预热到150℃。
步骤4,打印后的实验块用线切割与基板分离,制备金相样品,测定致密度和力学性能。
实施例4
步骤1,绘制工艺参数优化实验块的三维图,扫描策略为相邻层之间旋转角度为43°,层厚为0.027mm进行分层切片处理。
步骤2,配置待烘烤的铝合金粉末,铝合金粉末的配比为:Fe 2.5%、Cu 1.5%、Cr1.4%、Ti 0.9%、Zr 0.9%,余量为Al。选取粉末粒径为15~53微米的粉末在120℃下,烘烤2h。
步骤3,将烘好的粉末放入SLM打印机供粉舱内开始打印,所述选区激光熔化的激光功率为360W,扫描速度保持在1250mm/s,扫描线间距选择125微米,基板预热到160℃。
步骤4,打印后的实验块用线切割与基板分离,制备金相样品,测定致密度和力学性能。
实施例5
步骤1,绘制工艺参数优化实验块的三维图,扫描策略为相邻层之间旋转角度为37°,层厚为0.03mm进行分层切片处理。
步骤2,配置待烘烤的铝合金粉末,铝合金粉末的配比为:Fe 2.5%、Cu 1.8%、Cr2%、Ti 0.8%、Zr 0.6%,余量为Al。选取粉末粒径为30~45μm的粉末在120℃下,烘烤3.5h。
步骤3,将烘好的粉末放入SLM打印机供粉舱内开始打印,所述选区激光熔化的激光功率为365W,扫描速度保持在1350mm/s,扫描线间距选择135微米,基板预热到170℃。
步骤4,打印后的实验块用线切割与基板分离,制备金相样品,测定致密度和力学性能。
实施例6
步骤1,绘制工艺参数优化实验块的三维图,扫描策略为相邻层之间旋转角度为23°,层厚为0.029mm进行分层切片处理。
步骤2,配置待烘烤的铝合金粉末,铝合金粉末的配比为:Fe 2.3%、Cu 2.2%、Cr1.7%、Ti 0.75%、Zr 0.5%,余量为Al。选取粉末粒径为15~53微米的粉末在115℃下,烘烤2.5h。
步骤3,将烘好的粉末放入SLM打印机供粉舱内开始打印,所述选区激光熔化的激光功率为355W,扫描速度保持在1400mm/s,扫描线间距选择140微米,基板预热到180℃。
步骤4,打印后的实验块用线切割与基板分离,制备金相样品,测定致密度和力学性能。
实施例7
步骤1,绘制工艺参数优化实验块的三维图,扫描策略为相邻层之间旋转角度为67°,层厚为0.03mm进行分层切片处理。
步骤2,配置待烘烤的铝合金粉末,铝合金粉末的配比为:Fe 2.2%、Cu 3%、Cr2%、Ti 0.6%、Zr 0.4%,余量为Al。选取粉末粒径为15~53微米的粉末在120℃下,烘烤4h。
步骤3,将烘好的粉末放入SLM打印机供粉舱内开始打印,所述选区激光熔化的激光功率为340W,扫描速度保持在1000mm/s,扫描线间距选择100微米,基板预热到190℃。
步骤4,打印后的实验块用线切割与基板分离,制备金相样品,测定致密度和力学性能。
实施例8
步骤1,绘制工艺参数优化实验块的三维图,扫描策略为相邻层之间旋转角度为45°,层厚为0.025mm进行分层切片处理。
步骤2,配置待烘烤的铝合金粉末,铝合金粉末的配比为:Fe 2.4%、Cu 2.5%、Cr1.2%、Ti 0.7%、Zr 0.8%,余量为Al。选取粉末粒径为15~53微米的粉末在115℃下,烘烤4h。
步骤3,将烘好的粉末放入SLM打印机供粉舱内开始打印,所述选区激光熔化的激光功率为325W,扫描速度保持在1300mm/s,扫描线间距选择130微米,基板预热到160℃。
步骤4,打印后的实验块用线切割与基板分离,制备金相样品,测定致密度和力学性能。
实施例9
步骤1,绘制工艺参数优化实验块的三维图,扫描策略为相邻层之间旋转角度为55°,层厚为0.03mm进行分层切片处理。
步骤2,配置待烘烤的铝合金粉末,铝合金粉末的配比为:Fe 2.4%、Cu 2.2%、Cr1.3%、Ti 0.5%、Zr 0.9%,余量为Al。选取粉末粒径为15~53微米的粉末在113℃下,烘烤3.5h。
步骤3,将烘好的粉末放入SLM打印机供粉舱内开始打印,所述选区激光熔化的激光功率为330W,扫描速度保持在1150mm/s,扫描线间距选择120微米,基板预热到180℃。
步骤4,打印后的实验块用线切割与基板分离,制备金相样品,测定致密度和力学性能。
实施例10
步骤1,绘制工艺参数优化实验块的三维图,扫描策略为相邻层之间旋转角度为35°,层厚为0.027mm进行分层切片处理。
步骤2,配置待烘烤的铝合金粉末,铝合金粉末的配比为:Fe 2.2%、Cu 1.9%、Cr1.6%、Ti 0.8%、Zr 0.7%,余量为Al。选取粉末粒径为15~53μm的粉末在112℃下,烘烤4h。
步骤3,将烘好的粉末放入SLM打印机供粉舱内开始打印,所述选区激光熔化的激光功率为335W,扫描速度保持在1150mm/s,扫描线间距选择135微米,基板预热到195℃。
步骤4,打印后的实验块用线切割与基板分离,制备金相样品,测定致密度和力学性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (11)
1.一种铝合金工件,其特征在于,以质量分数计,组成成分为:Fe 1.0~2.5%、Cu 1.5~3.0%、Cr 1.0~2.0%、Ti 0.5~1.1%、Zr 0.4~1.0%,余量为Al;
所述铝合金工件通过SLM方法制备;
所述Fe和Cr含量总和小于3.5%,且大于2.5%;
所述Ti和Zr含量总和小于2.0%;
所述铝合金工件的室温延伸率≥8%;
所述铝合金工件的350℃延伸率≥8%。
2.根据权利要求1所述的一种铝合金工件,其特征在于,以质量分数计,杂质元素的含量小于0.2%。
3.根据权利要求1所述的一种铝合金工件,其特征在于,以质量分数计,氧含量小于0.01%。
4.根据权利要求1所述的一种铝合金工件,其特征在于,室温抗拉强度≥500MPa。
5.根据权利要求1所述的一种铝合金工件,其特征在于,室温屈服强度≥400MPa。
6.根据权利要求1所述的一种铝合金工件,其特征在于,350℃抗拉强度≥200MPa。
7.根据权利要求1所述的一种铝合金工件,其特征在于,350℃屈服强度≥160MPa。
8.一种权利要求1-7任意一项所述的铝合金工件的制备方法,其特征在于,包括以下步骤:
步骤1,绘制待制备工件的三维图,制定打印过程中工艺参数;
步骤2,将配置并烘烤好的铝合金粉末置于SLM打印机中开始打印,制备铝合金工件完成。
9.根据权利要求8所述的铝合金工件的制备方法,其特征在于,步骤1中,所述工艺参数包括激光功率、扫描速度、扫描线间距、旋转角度、分层厚度、氧含量和基板预热温度。
10.根据权利要求9所述的铝合金工件的制备方法,其特征在于,步骤2中,所述铝合金粉末的粒度分布为:D10粉末的粒径为10 µm~25 µm,D50粉末的粒径为30 µm ~45 µm,D90粉末的粒径为50 µm ~60 µm。
11.根据权利要求10所述的铝合金工件的制备方法,其特征在于,步骤2中,铝合金粉末的烘烤温度为100~120℃,烘烤时间2~4h。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111584797.0A CN115261680B (zh) | 2021-12-22 | 2021-12-22 | 一种铝合金工件及其制备方法 |
PCT/CN2022/078534 WO2023115699A1 (en) | 2021-12-22 | 2022-03-01 | Aluminum alloy workpiece and preparation method thereof |
FR2212979A FR3130850A1 (fr) | 2021-12-22 | 2022-12-08 | Pièce travaillée en alliage d'aluminium et son procédé de préparation |
US18/078,617 US20230193432A1 (en) | 2021-12-22 | 2022-12-09 | Aluminum alloy workpiece and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111584797.0A CN115261680B (zh) | 2021-12-22 | 2021-12-22 | 一种铝合金工件及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115261680A CN115261680A (zh) | 2022-11-01 |
CN115261680B true CN115261680B (zh) | 2023-05-26 |
Family
ID=83758690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111584797.0A Active CN115261680B (zh) | 2021-12-22 | 2021-12-22 | 一种铝合金工件及其制备方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230193432A1 (zh) |
CN (1) | CN115261680B (zh) |
FR (1) | FR3130850A1 (zh) |
WO (1) | WO2023115699A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4438752A1 (en) * | 2023-03-28 | 2024-10-02 | GF Casting Solutions AG | Aluminium alloy |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB616413A (en) * | 1946-09-05 | 1949-01-20 | Rupert Martin Bradbury | An improved aluminium base alloy |
JPH04176836A (ja) * | 1990-11-08 | 1992-06-24 | Furukawa Alum Co Ltd | 耐摩耗性に優れたアルミニウム合金 |
CN103469017B (zh) * | 2013-09-22 | 2015-04-15 | 苏州华宇精密铸造有限公司 | 一种精密铸造用铝合金及其铸造方法 |
CN103506577B (zh) * | 2013-09-22 | 2015-02-11 | 苏州华宇精密铸造有限公司 | 一种铝合金铸件的精密铸造方法 |
RU2017135217A (ru) * | 2015-03-12 | 2019-04-05 | Арконик Инк. | Продукты из алюминиевых сплавов и способы их получения |
US10697046B2 (en) * | 2016-07-07 | 2020-06-30 | NanoAL LLC | High-performance 5000-series aluminum alloys and methods for making and using them |
US20200199716A1 (en) * | 2018-12-24 | 2020-06-25 | Hrl Laboratories, Llc | Additively manufactured high-temperature aluminum alloys, and feedstocks for making the same |
CN108330344B (zh) * | 2018-03-20 | 2020-08-04 | 中南大学 | 一种3D打印7xxx铝合金及其制备方法 |
JP2020007594A (ja) * | 2018-07-05 | 2020-01-16 | 昭和電工株式会社 | アルミニウム合金材、アルミニウム合金鋳造材の製造方法及びアルミニウム合金粉末押出材の製造方法 |
CN109487126B (zh) * | 2018-12-19 | 2020-06-02 | 中车工业研究院有限公司 | 一种可用于3d打印的铝合金粉末及其制备方法和应用 |
CN111496244B (zh) * | 2020-04-27 | 2023-01-13 | 中南大学 | 一种增材制造高强铝合金粉及其制备方法和应用 |
CN113042748B (zh) * | 2021-03-09 | 2022-10-11 | 中北大学 | 一种SLM制备高强度高延伸率Al-Cu-Mg合金的方法 |
CN113430422B (zh) * | 2021-06-25 | 2022-04-22 | 中南大学 | 一种高强高韧耐热铝铁合金及其3d打印方法 |
-
2021
- 2021-12-22 CN CN202111584797.0A patent/CN115261680B/zh active Active
-
2022
- 2022-03-01 WO PCT/CN2022/078534 patent/WO2023115699A1/en unknown
- 2022-12-08 FR FR2212979A patent/FR3130850A1/fr active Pending
- 2022-12-09 US US18/078,617 patent/US20230193432A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2023115699A1 (en) | 2023-06-29 |
CN115261680A (zh) | 2022-11-01 |
US20230193432A1 (en) | 2023-06-22 |
FR3130850A1 (fr) | 2023-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Development and applications of aluminum alloys for aerospace industry | |
Kothari et al. | Advances in gamma titanium aluminides and their manufacturing techniques | |
US20170120386A1 (en) | Aluminum alloy products, and methods of making the same | |
CN113201667B (zh) | 一种镍基高温合金及其设计方法 | |
WO2019055623A1 (en) | ALUMINUM ALLOY PRODUCTS AND METHODS OF MAKING THE SAME | |
JP2019516010A (ja) | アルミニウム、チタン、及びジルコニウムのhcp材料ならびにそれから作製される製品 | |
EP3911776A1 (en) | Aluminum alloy compositions | |
WO2019055630A1 (en) | ALUMINUM ALLOY PRODUCTS OBTAINED BY ADDITIVE MANUFACTURING AND METHODS OF MAKING THE SAME | |
CN111644619B (zh) | 一种3d打印铝合金的制备方法 | |
CN115261680B (zh) | 一种铝合金工件及其制备方法 | |
WO2019191056A1 (en) | Additively manufactured aluminum alloy products having nanoscale grain refiners | |
CN117418126A (zh) | 一种固溶强化型Al-Mg2Si-Mg系合金材料及其制备方法和应用 | |
CN116652206A (zh) | 一种具有骨架增强结构的钛铝合金零件及其制备方法 | |
WO2019165136A1 (en) | Aluminum alloy products and methods of making the same | |
CN114535602B (zh) | 一种基于激光近净成形技术的镍基高温合金/不锈钢梯度复合材料及其制备方法 | |
Yadav et al. | Fabrication of promising material ‘titanium aluminide’: methods and issues (a status report) | |
CN115261679B (zh) | 铝合金工件及其制备方法 | |
CN115747584B (zh) | 一种无裂纹强化Al-Mg2Si-Si系合金材料及其制备方法和应用 | |
CN116422904B (zh) | 一种铝合金动力电池壳的制备方法 | |
CN114934211B (zh) | 镍基高温合金、镍基高温合金粉末和镍基高温合金构件 | |
CN115319104B (zh) | 一种航空用tc18钛合金止动块组合式快速制造方法 | |
CN114990386A (zh) | γ"相强化镍基多主元合金及设计方法和增材制造方法 | |
CN115138838A (zh) | 一种无裂纹的激光熔化成形Nb-TiAl合金及其制备方法 | |
CN117696880A (zh) | 一种3d打印粉体、3d打印铝合金件及其制备方法 | |
CN117265350A (zh) | 一种航空发动机专用3d打印铝合金粉末、制备方法、其应用和3d打印方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |