CN115246744A - 一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法 - Google Patents

一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法 Download PDF

Info

Publication number
CN115246744A
CN115246744A CN202111639507.8A CN202111639507A CN115246744A CN 115246744 A CN115246744 A CN 115246744A CN 202111639507 A CN202111639507 A CN 202111639507A CN 115246744 A CN115246744 A CN 115246744A
Authority
CN
China
Prior art keywords
montmorillonite
nanofiber
sic
silicon carbide
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111639507.8A
Other languages
English (en)
Inventor
陈建军
陶吉雨
李浩林
郑旭鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202111639507.8A priority Critical patent/CN115246744A/zh
Publication of CN115246744A publication Critical patent/CN115246744A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/36Reinforced clay-wares
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明公开了一种耐火隔热碳化硅纳米纤维‑蒙脱土陶瓷无纺布的制备方法。将SiC纳米纤维和蒙脱土放入分散液中搅拌分散均匀后得到SiC纳米纤维‑蒙脱土悬浮液浆料;采用手抄纸工艺将悬浮液浆料过滤,并烘干得到干的SiC纳米纤维‑蒙脱土薄膜;表面刷涂一层蒙脱土浆料,再烘干,得到烘干素坯;将烘干素坯从平板上揭去,并转移置于石墨纸上,在高温气氛烧结炉中,经高温烧结,获得碳化硅纳米纤维‑蒙脱土陶瓷无纺布。本发明将蒙脱土纳米片状晶体引入SiC纳米纤维构筑的三维交织膜中,实现交织SiC纳米纤维间的粘结,封闭了纳米纤维的三维通孔,构筑了大量封闭孔,提升了隔热效果,耐火、耐高温、柔性,应用广泛。

Description

一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备 方法
技术领域
本发明属于特种无纺布及隔热材料制备技术领域的一种纤维无纺布制备方法,具体涉及一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法。
背景技术
陶瓷纤维隔热材料具有耐高温、低密度、低导热率、高强度等性能特点,是高性能热防护材料,能够有效阻隔热结构件表面或超高温部件的热量的传输,在先进飞行器如火箭、飞机、飞船等发动机的组件,汽车发动机组件,化工热交换器组件等高温领域有着广泛的应用前景。
因此,耐火隔热陶瓷纤维的研究受到研究人员的广泛关注。专利“一种陶瓷纤维隔热材料及其制备方法”(申请号:CN201210185038.1)将陶瓷纤维浸渍在硝酸铁、柠檬酸、乙二醇配成的溶胶中,取出烘干后再经热处理得到了一种包覆有高近红外反射颜料层的陶瓷隔热材料。专利“一种高强度陶瓷纤维隔热材料及其制备方法与流程”(申请号:ZLCN201811612217.2)通过往陶瓷纤维浆料中添加醋酸盐,并使用金属夹板固定塑形、烘箱烘干获得了一种陶瓷纤维隔热材料。专利“一种高红外反射率陶瓷纤维隔热材料及其制备方法”(申请号:CN201510348149.3)首先把陶瓷纤维置于含钛化合物溶液中进行预处理,再和含有钾、钛原料和结合剂的混合溶液一并混合制成浆料,脱水烘干制成了高红外反射率陶瓷纤维隔热材料。专利“一种含陶瓷纤维的复合隔热材料及其制备方法”(申请号:CN202010750317.2)采用陶瓷纤维棉、纳米二氧化钛、硅树脂、无机结合剂、絮凝剂、分散剂等原料制备出了一种含陶瓷纤维复合隔热材料。专利“一种掺杂改性的陶瓷纤维的隔热材料及其制备方法”(申请号:CN201510998084.7)发明了一种通过往Al2O3纤维中掺杂ZrO2纤维和六钛酸钾晶须并和粘合剂一同烧结得到一种掺杂改性的陶瓷纤维的隔热材料的方法。专利“一种陶瓷纤维复合气凝胶隔热材料以及制备方法”(专利号:CN202110131600.1)先将至少三种陶瓷纤维与硅源、硼源、去离子水混合得到陶瓷纤维浆料厚脱水制得陶瓷基体,再与气凝胶材料通过五步复合法得到了一种陶瓷纤维复合气凝胶隔热材料。
但上述陶瓷纤维存在力学性能较差,在外力的作用下非常容易碎裂,而且裂纹的出现会严重影响隔热效果。为了克服其力学性能差的问题,目前主要通过加入一定量的胶黏剂,纤维在搭接处形成较强的粘结,增加陶瓷纤维的力学强度和隔热性能。
发明内容
为了解决背景技术中的问题,本发明提出了一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法。本发明先将SiC纳米纤维和蒙脱土在分散液中机械搅拌分散均匀,获得SiC纳米纤维-蒙脱土悬浮液浆料,采用手抄纸纸帘过滤浆料,然后在过滤的湿膜上盖上一块平板,并倒转,让纸帘置于上层,揭去纸帘,烘干得到干的SiC纳米纤维-蒙脱土薄膜,然后在薄膜的表面刷涂一层蒙脱土浆料,再烘干,得到素坯。素坯置于石墨纸上,在高温气氛烧结炉中,素坯经高温烧结,获得碳化硅纳米纤维-蒙脱土陶瓷无纺布。
本发明采用的技术方案如下:
步骤(1)SiC纳米纤维和蒙脱土分散:将一定量的SiC纳米纤维和蒙脱土放入分散液中【形成纤维分散液悬浮体系】搅拌分散均匀后得到SiC纳米纤维-蒙脱土悬浮液浆料,分散液可以是水、乙酸乙酯、乙醇或正己烷等;
步骤(2)手抄纸过滤、烘干:【如图2所示,】采用手抄纸工艺将步骤(1)得到的悬浮液浆料过滤,并烘干得到干的SiC纳米纤维-蒙脱土薄膜;
步骤(3)SiC纳米纤维-蒙脱土膜素坯制备:在步骤(2)得到的已烘干的SiC纳米纤维-蒙脱土薄膜的表面刷涂一层蒙脱土浆料,再烘干,得到烘干素坯;
步骤(4)烧结:将步骤(3)得到的烘干素坯从【手抄纸过滤、烘干的】平板上揭去,并转移置于石墨纸上,在高温气氛烧结炉中,经高温烧结,获得碳化硅纳米纤维-蒙脱土陶瓷无纺布。
所述步骤(1)中,SiC纳米纤维和蒙脱土的质量比为1:0.1-1,SiC纳米纤维和蒙脱土的总质量与分散液之间的质量比为1:(2000-20000)。【进行机械搅拌使SiC纳米纤维和蒙脱土在分散液中分散均匀,形成悬浮液。】
所述的步骤(2)中,具体是将悬浮液浆料经过【抄纸框中的】抄纸帘过滤,在抄纸帘上表面获得一层SiC纳米纤维-蒙脱土膜,然后在抄纸帘上表面盖上一块陶瓷平板,【使用重物将平板压平,】再将抄纸帘、SiC纳米纤维-蒙脱土膜和板的整体进行颠倒,使得抄纸帘位于SiC纳米纤维-蒙脱土膜上面,揭去抄纸帘烘干得到位于平板上的干的SiC纳米纤维-蒙脱土薄膜。
所述步骤(2)中,盖上平板后,通过在平板上放置重物施加重量压平薄膜。
所述步骤(3)中,蒙脱土浆料为质量百分比为1-5%的蒙脱土水悬浮液。
所述步骤(4)中,高温烧结的温度为800-1200℃。
所述步骤(4)中,烧结气氛为氮气、氩气。
本发明将蒙脱土纳米片状晶体引入SiC纳米纤维构筑的三维交织膜中,蒙脱土在高温下形成的液相实现交织SiC纳米纤维间的粘结,同时片状蒙脱土封闭了纳米纤维的三维通孔,构筑了大量封闭孔,提升了隔热效果。该无纺布不仅隔热、耐火、耐高温,而且具有一定的柔性,在新型高温隔热耐火服装领域具有重要的应用前景。
本发明的有益效果:
本发明使用分散液作为分散剂,蒙脱土作为粘结剂,设备简洁,原料获取方便,工艺流程简单,操作方便,易实现规模产业化制备。制备过程中将蒙脱土纳米片状晶体引入SiC纳米纤维构筑的三维交织膜中,蒙脱土在高温下形成的液相实现交织SiC纳米纤维间的粘结,同时片状蒙脱土封闭了纳米纤维的三维通孔,构筑了大量封闭孔,提升了隔热效果。
本发明制备的SiC纳米纤维-蒙脱土陶瓷无纺布实现了SiC纳米纤维之间的粘结,又构筑了大量封闭孔,使得该无纺布不仅隔热、耐火、耐高温,而且具有一定的柔性,而且可以根据需求调整所制作的无纺布的面积、形状、厚度等,在新型高温隔热耐火服装领域具有重要的应用前景。
附图说明
图1为实施例1中耐火隔热SiC纳米纤维无纺布的制备工艺流程图。
图2为实施例1中手抄纸过滤工艺示意图。
图3为实施例2中无纺布的宏观形貌数码照片图。
图4为实施例3中无纺布扫描电镜图。
图5为实施例4中无纺布在加热台上的红外热成像图。
图6为实施例5中无纺布在酒精灯火焰下的隔热实验数码图。
图7为实施例6中无纺布在酒精灯火焰下的耐火实验数码图。
具体实施方式
下面结合附图和实施例对本发明作进一步阐述。
实施例1
a.以SiC纳米纤维和蒙脱土为原料,以水为分散载体,以SiC:蒙脱土:水=1:0.1:2000的质量比配制SiC纳米纤维-蒙脱土浆料,按照图1的工艺流程图,称取8g碳化硅纳米纤维放入水桶中,加入水并进行机械搅拌,使其在水中均匀分散,获得SiC纳米纤维-蒙脱土悬浮液浆料;
b.将步骤a制得的SiC纳米纤维-蒙脱土悬浮液浆料进行过滤,得到SiC纳米纤维-蒙脱土薄膜,盖上一块陶瓷平板并倒转,揭去上层纸帘滤网;
c.使用重物将平板压平,将薄膜烘干得到干的SiC纳米纤维-蒙脱土薄膜;
d.在步骤c得到的SiC纳米纤维-蒙脱土薄膜的表面刷涂一层质量百分比为1%的蒙脱土浆料,再烘干,得到素坯;
e.采用刮刀将步骤d中烘干的素坯从陶瓷平板上揭去,转移到石墨纸上,放入高温气氛烧结炉中,在氮气氛围下800℃高温烧结后得到碳化硅纳米纤维-蒙脱土陶瓷无纺布。
实施例2
a.以SiC纳米纤维和蒙脱土为原料,以水为分散载体,以SiC:蒙脱土:水=1:0.2:3000的质量比配制SiC纳米纤维-蒙脱土浆料,按照图1的工艺流程图,称取8g碳化硅纳米纤维放入水桶中,加入水并进行机械搅拌,使其在水中均匀分散,获得SiC纳米纤维-蒙脱土悬浮液浆料;
b.将步骤a制得的SiC纳米纤维-蒙脱土悬浮液浆料进行过滤,得到SiC纳米纤维-蒙脱土薄膜,盖上一块铁板并倒转,揭去上层纸帘滤网;
c.使用重物将平板压平,将薄膜烘干得到干的SiC纳米纤维-蒙脱土薄膜;
d.在步骤c得到的SiC纳米纤维-蒙脱土薄膜的表面刷涂一层质量百分比为2%的蒙脱土浆料,再烘干,得到素坯;
e.采用刮刀将步骤d中烘干的素坯从陶瓷平板上揭去,转移到石墨纸上,放入高温气氛烧结炉中,在氮气氛围下900℃高温烧结后得到碳化硅纳米纤维-蒙脱土陶瓷无纺布。
本实施例制备的SiC纳米纤维-蒙脱土陶瓷无纺布的宏观形貌数码照片如图3所示,由图3a可知本实施例所制备的无纺布经过修剪之后边缘十分整齐,平铺面积大,表面平整;由图3b、图3c和图3d可以看到所制备的无纺布具有一定柔性,弯曲不会破坏形状,整体性好,可折叠;由图3e可以看到所制备的无纺布在经过烧结使得蒙脱土与纤维粘结之后,具有一定的力学强度。
实施例3
a.以SiC纳米纤维和蒙脱土为原料,以水为分散载体,以SiC:蒙脱土:水=1:0.3:4000的质量比配制SiC纳米纤维-蒙脱土浆料,按照图1的工艺流程图,称取10g碳化硅纳米纤维放入水桶中,加入水并进行机械搅拌,使其在水中均匀分散,获得SiC纳米纤维-蒙脱土悬浮液浆料;
b.将步骤a制得的SiC纳米纤维-蒙脱土悬浮液浆料进行过滤,得到SiC纳米纤维-蒙脱土薄膜,盖上一块铁板并倒转,揭去上层纸帘滤网;
c.使用重物将平板压平,将薄膜烘干得到干的SiC纳米纤维-蒙脱土薄膜;
d.在步骤c得到的SiC纳米纤维-蒙脱土薄膜的表面刷涂一层质量百分比为3%的蒙脱土浆料,再烘干,得到素坯;
e.采用刮刀将步骤d中烘干的素坯从陶瓷平板上揭去,转移到石墨纸上,放入高温气氛烧结炉中,在氩气氛围下850℃高温烧结后得到碳化硅纳米纤维-蒙脱土陶瓷无纺布。
本实施例制备的SiC纳米纤维-蒙脱土陶瓷无纺布的微观形貌和物相组成如图4所示,由图4的SEM图可知本实施例所制备的无纺布纤维之间粘接性好,纤维直径在50-100nm左右,蒙脱土在经过高温煅烧后与纤维形成粘结,片状晶体封闭了纤维之间的孔洞。
实施例4
a.以SiC纳米纤维和蒙脱土为原料,以水为分散载体,以SiC:蒙脱土:水=1:0.4:6000的质量比配制SiC纳米纤维-蒙脱土浆料,按照图1的工艺流程图,称12g碳化硅纳米纤维放入水桶中,加入水并进行机械搅拌,使其在水中均匀分散,获得SiC纳米纤维-蒙脱土悬浮液浆料;
b.将步骤a制得的SiC纳米纤维-蒙脱土悬浮液浆料进行过滤,得到SiC纳米纤维-蒙脱土薄膜,盖上一块陶瓷平板并倒转,揭去上层纸帘滤网;
c.使用重物将平板压平,将薄膜烘干得到干的SiC纳米纤维-蒙脱土薄膜;
d.在步骤c得到的SiC纳米纤维-蒙脱土薄膜的表面刷涂一层质量百分比为5%的蒙脱土浆料,再烘干,得到素坯;
e.采用刮刀将步骤d中烘干的素坯从陶瓷平板上揭去,转移到石墨纸上,放入高温气氛烧结炉中,在氩气氛围下900℃高温烧结后得到碳化硅纳米纤维-蒙脱土陶瓷无纺布。
本实施例制备的SiC纳米纤维-蒙脱土陶瓷无纺布的耐火隔热性能如图5所示,由图5的红外热成像图可知所制备的无纺布具有较好的隔热性能。
实施例5
a.以SiC纳米纤维和蒙脱土为原料,以正己烷为分散载体,以SiC:蒙脱土:正己烷=1:0.1:2000的质量比配制SiC纳米纤维-蒙脱土浆料,按照图1的工艺流程图,称取8g碳化硅纳米纤维放入水桶中,加入正己烷并进行机械搅拌,使其在正己烷中均匀分散,获得SiC纳米纤维-蒙脱土悬浮液浆料;
b.将步骤a制得的SiC纳米纤维-蒙脱土悬浮液浆料进行过滤,得到SiC纳米纤维-蒙脱土薄膜,盖上一块陶瓷平板并倒转,揭去上层纸帘滤网;
c.使用重物将平板压平,将薄膜自然烘干得到干的SiC纳米纤维-蒙脱土薄膜;
d.在步骤c得到的SiC纳米纤维-蒙脱土薄膜的表面刷涂一层质量百分比为2%的蒙脱土浆料,再烘干,得到素坯;
e.采用刮刀将步骤d中烘干的素坯从陶瓷平板上揭去,转移到石墨纸上,放入高温气氛烧结炉中,在氮气氛围下850℃高温烧结后得到碳化硅纳米纤维-蒙脱土陶瓷无纺布。
本实施例制备的SiC纳米纤维-蒙脱土陶瓷无纺布的耐火性能如图6所示,图6中将无纺布缠绕在手指上靠近火源,隔热良好。
实施例6
a.以SiC纳米纤维和蒙脱土为原料,以乙酸乙酯为分散载体,以SiC:蒙脱土:乙酸乙酯=1:0.2:3000的质量比配制SiC纳米纤维-蒙脱土浆料,按照图1的工艺流程图,称取8g碳化硅纳米纤维放入水桶中,加入乙酸乙酯并进行机械搅拌,使其在乙酸乙酯中均匀分散,获得SiC纳米纤维-蒙脱土悬浮液浆料;
b.将步骤a制得的SiC纳米纤维-蒙脱土悬浮液浆料进行过滤,得到SiC纳米纤维-蒙脱土薄膜,盖上一块陶瓷平板并倒转,揭去上层纸帘滤网;
c.使用重物将平板压平,将薄膜自然烘干得到干的SiC纳米纤维-蒙脱土薄膜;
d.在步骤c得到的SiC纳米纤维-蒙脱土薄膜的表面刷涂一层质量百分比为3%的蒙脱土浆料,再烘干,得到素坯;
e.采用刮刀将步骤d中烘干的素坯从陶瓷平板上揭去,转移到石墨纸上,放入高温气氛烧结炉中,在氩气氛围下900℃高温烧结后得到碳化硅纳米纤维-蒙脱土陶瓷无纺布。
本实施例制备的SiC纳米纤维-蒙脱土陶瓷无纺布的耐火性能如图7所示,在图7a和图7b中,将无纺布置于酒精灯火焰上,在灼烧过后仍维持原有外观和结构,可知无纺布具有优异的耐火性能。
由以上实施可见,本发明将蒙脱土纳米片状晶体引入SiC纳米纤维构筑的三维交织膜中,实现交织SiC纳米纤维间的粘结,封闭了纳米纤维的三维通孔,构筑了大量封闭孔,提升了隔热效果,耐火、耐高温、柔性,应用广泛。

Claims (7)

1.一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法,其特征在于:方法包括以下步骤:
步骤(1)SiC纳米纤维和蒙脱土分散:将一定量的SiC纳米纤维和蒙脱土放入分散液中搅拌分散均匀后得到SiC纳米纤维-蒙脱土悬浮液浆料;
步骤(2)手抄纸过滤、烘干:采用手抄纸工艺将步骤(1)得到的悬浮液浆料过滤,并烘干得到干的SiC纳米纤维-蒙脱土薄膜;
步骤(3)SiC纳米纤维-蒙脱土膜素坯制备:在步骤(2)得到的已烘干的SiC纳米纤维-蒙脱土薄膜的表面刷涂一层蒙脱土浆料,再烘干,得到烘干素坯;
步骤(4)烧结:将步骤(3)得到的烘干素坯从平板上揭去,并转移置于石墨纸上,在高温气氛烧结炉中,经高温烧结,获得碳化硅纳米纤维-蒙脱土陶瓷无纺布。
2.根据权利要求1所述的一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法,其特征在于,所述步骤(1)中,分散液是水、乙酸乙酯、乙醇和正己烷其中之一,SiC纳米纤维和蒙脱土的质量比为1:0.1-1,SiC纳米纤维和蒙脱土的总质量与分散液之间的质量比为1:(2000-20000)。
3.根据权利要求1所述的一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法,其特征在于,所述的步骤(2)中,具体是将悬浮液浆料经过抄纸帘过滤,在抄纸帘上表面获得一层SiC纳米纤维-蒙脱土膜,然后在抄纸帘上表面盖上一块陶瓷平板,再将抄纸帘、SiC纳米纤维-蒙脱土膜和板的整体进行颠倒,使得抄纸帘位于SiC纳米纤维-蒙脱土膜上面,揭去抄纸帘烘干得到位于平板上的干的SiC纳米纤维-蒙脱土薄膜。
4.根据权利要求1所述的一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法,其特征在于,所述步骤(2)中,盖上平板后,通过在平板上放置重物施加重量压平薄膜。
5.根据权利要求1所述的一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法,其特征在于,所述步骤(3)中,蒙脱土浆料为质量百分比为1-5%的蒙脱土水悬浮液。
6.根据权利要求1所述的一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法,其特征在于,所述步骤(4)中,高温烧结的温度为800-1200℃。
7.根据权利要求1所述的一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法,其特征在于,所述步骤(4)中,烧结气氛为氮气、氩气。
CN202111639507.8A 2021-12-29 2021-12-29 一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法 Pending CN115246744A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111639507.8A CN115246744A (zh) 2021-12-29 2021-12-29 一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111639507.8A CN115246744A (zh) 2021-12-29 2021-12-29 一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法

Publications (1)

Publication Number Publication Date
CN115246744A true CN115246744A (zh) 2022-10-28

Family

ID=83697976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111639507.8A Pending CN115246744A (zh) 2021-12-29 2021-12-29 一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法

Country Status (1)

Country Link
CN (1) CN115246744A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849937A (zh) * 2022-12-22 2023-03-28 中国科学技术大学 层状纳米孔隙结构的轻质高强隔热陶瓷及其制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936383A (en) * 1973-05-14 1976-02-03 Nobutoshi Daimon Sol of ultra-fine particles of synthetic hectorite
JPS6381264A (ja) * 1986-09-25 1988-04-12 Japan Vilene Co Ltd 溶融金属浸漬用保護管
JPH0365567A (ja) * 1989-07-31 1991-03-20 Matsushita Electric Ind Co Ltd 熱処理用台板
US20040132607A1 (en) * 2003-01-08 2004-07-08 3M Innovative Properties Company Ceramic fiber composite and method for making the same
GB0420245D0 (en) * 2004-09-13 2004-10-13 Johnson Matthey Plc Improvements in catalyst coatings
US20100115899A1 (en) * 2006-03-31 2010-05-13 Lg Chem, Ltd Ceramic Filter Comprising Clay and Process for Preparing Thereof
CN101845711A (zh) * 2010-06-21 2010-09-29 哈尔滨工业大学 一种碳化硅纳米无纺布及其制备方法
US20110281034A1 (en) * 2010-05-12 2011-11-17 Lee James L Layer-by-layer fabrication method of sprayed nanopaper
JP2012193750A (ja) * 2011-03-14 2012-10-11 Japan Matekkusu Kk 無機繊維粘土複合材及びその製造方法、並びにこの複合材からなるガスケット又はパッキン
CN103835181A (zh) * 2014-03-03 2014-06-04 浙江理工大学 一种SiC纳米纤维纸的制备方法
CN108998989A (zh) * 2018-08-31 2018-12-14 福建冠泓工业有限公司 一种高阻隔性能的抑菌无纺布及其制备方法
CN109811590A (zh) * 2019-04-16 2019-05-28 葛成钢 一种防油耐高温的食品包装纸的制备方法
WO2020222013A1 (en) * 2019-05-01 2020-11-05 Adelan Limited Ceramic composite
US20210062500A1 (en) * 2018-07-09 2021-03-04 Imae Industry Co., Ltd High temperature-heat insulator and method for manufacturing three-dimensionally shaped insulator thereof
WO2021073527A1 (zh) * 2019-10-16 2021-04-22 深圳市裕同包装科技股份有限公司 一种纤维素基无氟防热油包装纸及其制备方法
CN113308935A (zh) * 2021-04-27 2021-08-27 浙江理工大学 一种碳化硅纳米纤维耐火纸的制备方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936383A (en) * 1973-05-14 1976-02-03 Nobutoshi Daimon Sol of ultra-fine particles of synthetic hectorite
JPS6381264A (ja) * 1986-09-25 1988-04-12 Japan Vilene Co Ltd 溶融金属浸漬用保護管
JPH0365567A (ja) * 1989-07-31 1991-03-20 Matsushita Electric Ind Co Ltd 熱処理用台板
US20040132607A1 (en) * 2003-01-08 2004-07-08 3M Innovative Properties Company Ceramic fiber composite and method for making the same
GB0420245D0 (en) * 2004-09-13 2004-10-13 Johnson Matthey Plc Improvements in catalyst coatings
US20100115899A1 (en) * 2006-03-31 2010-05-13 Lg Chem, Ltd Ceramic Filter Comprising Clay and Process for Preparing Thereof
US20110281034A1 (en) * 2010-05-12 2011-11-17 Lee James L Layer-by-layer fabrication method of sprayed nanopaper
CN101845711A (zh) * 2010-06-21 2010-09-29 哈尔滨工业大学 一种碳化硅纳米无纺布及其制备方法
JP2012193750A (ja) * 2011-03-14 2012-10-11 Japan Matekkusu Kk 無機繊維粘土複合材及びその製造方法、並びにこの複合材からなるガスケット又はパッキン
CN103835181A (zh) * 2014-03-03 2014-06-04 浙江理工大学 一种SiC纳米纤维纸的制备方法
US20210062500A1 (en) * 2018-07-09 2021-03-04 Imae Industry Co., Ltd High temperature-heat insulator and method for manufacturing three-dimensionally shaped insulator thereof
CN108998989A (zh) * 2018-08-31 2018-12-14 福建冠泓工业有限公司 一种高阻隔性能的抑菌无纺布及其制备方法
CN109811590A (zh) * 2019-04-16 2019-05-28 葛成钢 一种防油耐高温的食品包装纸的制备方法
WO2020222013A1 (en) * 2019-05-01 2020-11-05 Adelan Limited Ceramic composite
WO2021073527A1 (zh) * 2019-10-16 2021-04-22 深圳市裕同包装科技股份有限公司 一种纤维素基无氟防热油包装纸及其制备方法
CN113308935A (zh) * 2021-04-27 2021-08-27 浙江理工大学 一种碳化硅纳米纤维耐火纸的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
纪玉珍: "无机纤维纸的开发", 《天津造纸》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849937A (zh) * 2022-12-22 2023-03-28 中国科学技术大学 层状纳米孔隙结构的轻质高强隔热陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN110789191B (zh) 一种柔性气凝胶隔热材料及其制备方法
CN106626581B (zh) 一种改进耐高温夹层结构隔热材料的应变性能的方法及由该方法制得的材料
CN108249944B (zh) 一种SiO2基复合材料的制备方法
CN105272322A (zh) 一种轻质耐高温陶瓷纤维刚性隔热瓦及其制造方法
CN115246744A (zh) 一种耐火隔热碳化硅纳米纤维-蒙脱土陶瓷无纺布的制备方法
US20140206525A1 (en) POROUS SiC CERAMIC AND METHOD FOR THE FABRICATION THEREOF
US10662117B2 (en) Method of fabricating a part out of ceramic matrix composite material
CN102199042A (zh) 一种轻质刚性陶瓷隔热瓦及其制备方法
CN109437816A (zh) 一种铝硅气凝胶复合板的制备方法
CN115124363B (zh) 一种耐高温超轻质陶瓷纤维多孔弹性体材料及其制备方法和应用
Yalamaç et al. Ceramic fibers
CN110611965A (zh) 一种远红外辐射发热织物及其制备方法
CN203628151U (zh) 一种耐高温一体化刚性隔热构件
CN110424078A (zh) 一种吸光发热混纺纱线
CN107986744B (zh) 一种耐高温气凝胶复合绝热毡及其制备方法
CN113308935B (zh) 一种碳化硅纳米纤维耐火纸的制备方法
CN114381936B (zh) 一种隔热保温气凝胶复合材料、制备方法及应用
CN108774072A (zh) 一种刚性隔热瓦及其制备方法
CN112250450A (zh) 一种可耐2000℃高温的隔热瓦坯体的制备方法
Li et al. Fabrication of SiC nanofiber aerogel felt with high-temperature thermal insulation performance
CN109320273A (zh) 一种改进的氧化铝纤维板及其制备方法
CN110423376B (zh) 一种可压缩回弹的纤维基复合多孔材料的制备方法
CN112301550A (zh) 一种环保自清洁复合纳米纤维过滤膜及其制备方法
CN115819017A (zh) 一种表面带遮光剂涂层的气凝胶隔热材料及其制备方法
Yue et al. Fabrication of flexible ceramic membranes derived from hard Si3N4 and soft MnO2 nanowires

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221028

RJ01 Rejection of invention patent application after publication