CN115246634A - 一种调控c3n4纳米花结晶度的方法及其应用 - Google Patents

一种调控c3n4纳米花结晶度的方法及其应用 Download PDF

Info

Publication number
CN115246634A
CN115246634A CN202210822370.8A CN202210822370A CN115246634A CN 115246634 A CN115246634 A CN 115246634A CN 202210822370 A CN202210822370 A CN 202210822370A CN 115246634 A CN115246634 A CN 115246634A
Authority
CN
China
Prior art keywords
nanoflower
crystallinity
regulation
melamine
cyanuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210822370.8A
Other languages
English (en)
Inventor
张玉微
赵博霖
牛利
张保华
梁家辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202210822370.8A priority Critical patent/CN115246634A/zh
Publication of CN115246634A publication Critical patent/CN115246634A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明属于电化学发光材料领域,公开了一种调控C3N4纳米花结晶度的方法及其应用,该方法包括以下步骤:(1)制备纳米花超分子前驱体;(2)将所述前驱体升温至并煅烧温度并保温,所述煅烧温度在400‑550℃,通过改变煅烧温度调控C3N4纳米花结晶度。本发明采用简单的两步法合成了一种具有纳米花形貌的C3N4聚合物,在材料制备的过程中,通过简单地改变煅烧前驱体的温度从而实现对C3N4纳米花的结晶度的调控,结晶度的提高也优化了其电化学发光性能。

Description

一种调控C3N4纳米花结晶度的方法及其应用
技术领域
本发明涉及电化学发光材料领域,具体涉及一种调控C3N4纳米花结晶度的方法及其在电化学发光中的应用。
背景技术
电化学发光(又称电致化学发光,Electrochemiluminescence,ECL)是发光基团通过高能电子转移反应在电极表面形成激发态物质,然后经过能量弛豫跃迁回基态时发射出光子的过程。由于电化学发光结合了化学发光与电化学两种分析技术,其具有背景信号低、灵敏度高、线性响应范围宽、操作简单、响应速度快等优势,正成为临床诊断、生物分析、食品分析、环境监测等众多应用领域的典型分析方法。当前经典的ECL传感材料发光基团主要包括鲁米诺(luminol)、联吡啶钌(Ru(bpy)3 2+)及其衍生物和量子点(CdS、CdSe、CdTe)等纳米材料。这些材料在使用的过程中往往具有一定的缺陷,如鲁米诺虽具有较高的ECL量子产率,但其电化学不稳定,在应用中受到限制;Ru基配合物虽然在电化学中非常稳定,且在商业上具有良好的应用,但其价格昂贵,成本较高;量子点材料具有较好的ECL性能和生物相容性,但其重金属中的毒性也会极大地限制其发展。因此,当前的研究重点是开发成本低廉和具有优异的ECL性能的发光基团。
C3N4纳米材料作为一种常见的光催化半导体材料,具有合成方法简单、成本低廉、不含金属元素、无毒等优势,在电化学发光领域具有广阔的应用前景。在电化学发光中,g-C3N4纳米材料通常作为电化学发光中的发光体,在共反应剂K2S2O8的共同作用下,在进行电化学反应的过程中伴随着光的发射。但在ECL过程中,C3N4纳米材料存在发光信号较弱和发光信号不稳定的缺陷,这极大地限制了其在实际检测分析中地应用;通常这种现象被认为是由于C3N4作为一种半导体材料,其导电性相对较差,在电化学测试的过程中容易造成电荷在导带中过量累积,从而使得电极钝化,抑制光信号的发射,致使其发光稳定性急剧降低,导致光信号不断下降;为了优化C3N4纳米材料的ECL性能,人们开发出一些方法,如与贵金属纳米粒子复合(Au NPs/g-C3N4)、杂原子掺杂(P-g-C3N4)、引入缺陷(N空位等),这些方法能够较好地改善C3N4的电化学发光强度和光信号稳定性,但其材料制备方法较为复杂,难以实现大批量生产。
发明内容
针对上述问题,本发明提供一种通过简单的温度变化的方法来对C3N4纳米花材料结晶度进行调控的方法,以及对C3N4纳米花的电化学发光性能改善的应用。
本发明的目的采用以下技术方案来实现:
一种调控C3N4纳米花结晶度的方法,包括以下步骤:
(1)制备纳米花超分子前驱体;
(2)将所述前驱体升温至并煅烧温度并保温,所述煅烧温度在400-550℃,通过改变煅烧温度调控C3N4纳米花结晶度。
优选的,所述保温的时长为4h。
优选的,所述纳米花超分子前驱体的制备方法包括以下步骤:
将等摩尔比的三聚氰胺和三聚氰酸分别分散溶解在二甲亚砜中,得到澄清的三聚氰胺溶液和三聚氰酸溶液,在搅拌条件下,将所述三聚氰酸溶液滴加到所述三聚氰胺溶液中,得到白色乳浊液,离心洗涤分离沉淀,干燥后制得。
优选的,所述三聚氰胺和三聚氰酸通过超声处理分散溶解在二甲亚砜中。
优选的,所述三聚氰胺溶液和三聚氰酸溶液的体积比为2:1。
本发明的另一目的在于提供一种调控C3N4纳米花电化学发光性能的方法,具体是通过调控所述C3N4纳米花的结晶度实现。
一种C3N4纳米花的结晶度,由前述的方法调控。
一种通过提高所述煅烧温度、提高所述C3N4纳米花电化学发光强度和/或电化学发光稳定性的应用。
本发明的有益效果为:
(1)本发明采用简单的两步法合成了一种具有纳米花形貌的C3N4聚合物,在材料制备的过程中,通过简单地改变煅烧前驱体的温度从而实现对C3N4纳米花的结晶度的调控;同时,发明人发现,随着对C3N4纳米花前驱体煅烧温度的不断上升,其结晶度不断提高,形成的C3N4结构越发完美,能很好地改善电荷传输速率,极大地提高电荷利用率,从而使得其电化学发光强度不断提高。此外,结晶度的提高也会使得过量的高能电子能够更好的从材料中转移到溶液中,避免了过量电荷在材料中的积累对材料造成的破坏,从而能极大地改善其稳定性。其超强的电化学发光强度和优异的电化学发光稳定性为其在实际应用中提供了充足的保障,因此,这种高结晶度的C3N4纳米材料在实际的电化学发光分析检测研究领域具有很好的应用前景。
(2)相比于其它的改善ECL性能的方法,本发明公开的调控方法操作简单,易于合成,同时能够大批量生产,这为实际应用提供了可能性。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明所述C3N4纳米花的制备流程示意图;
图2是本发明实施例1所述前驱体的SEM图;
图3是本发明实施例1所述550℃煅烧下C3N4纳米花的SEM图;
图4是本发明实施例1所述550℃煅烧下C3N4纳米花的TEM图;
图5是本发明实施例1不同煅烧温度下制备的C3N4纳米花的XRD图谱;
图6是本发明实施例1不同煅烧温度下制备的C3N4纳米花的电化学发光强度(a为C3N4-400;b为C3N4-450;c为C3N4-500;d为C3N4-550);
图7是本发明实施例1不同煅烧温度下制备的C3N4纳米花的电化学发光稳定性;
图8是以C3N4纳米花/K2S2O8阴极电化学发光体系电化学发光原理示意图;
图9是普通方法制备的C3N4纳米块SEM图;
图10是普通方法制备的C3N4纳米块的电化学发光稳定性图。
具体实施方式
以下结合附图及实施例对本发明作进一步描述。
实施例1
参见附图1-10,本实施例提供的调控C3N4纳米花结晶度的方法,即一种合成不同结晶度C3N4纳米花聚合物的方法,先以三聚氰胺和三聚氰酸为原料,通过分子自组装的方法合成具有纳米花形貌的超分子前驱体,进行简单的煅烧处理制得,具体包括以下步骤:
(1)合成纳米花超分子前驱体
将相同摩尔量的三聚氰胺(0.5g)和三聚氰酸(0.51g)分别分散在20mL和10mL的二甲基亚砜(DMSO)溶液中,随后将其进行超声处理10min,待其充分溶解形成澄清溶液后,将所述三聚氰酸溶液以一定的速率滴加到所述三聚氰胺溶液中,在这个过程中保持不断搅拌使其充分混合在一起,在滴加过程中可以观察到有白色沉淀物逐渐形成,最后整个溶液会变成白色的乳浊液,滴加完成后继续搅拌10min,使其充分反应完成;随后将得到的白色乳浊液转移到离心管中,在1000rpm转速下用乙醇先后离心洗涤3次,最后将得到的白色沉淀放入烘箱中,在60℃下干燥12h,制得纳米花形貌的超分子前驱体;
(2)合成不同结晶度C3N4纳米花
将所述前驱体放入坩埚中,随后将其放入马弗炉中以2℃/min的速率上升到一定温度(400℃、450℃、500℃、550℃),并在该温度下保温4h,当反应结束系统自然冷却到室温后,得到浅棕色的固体,然后将其放入研钵中研磨成粉末,得到不同结晶度的C3N4纳米花样品。
结构表征:
采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射仪(XRD)对所制备的样品(前驱体或煅烧产物)进行形貌和晶体结构分析,具体如下:
前驱体样品的SEM图参见附图2,可以看出得到的前驱体为均匀分散的纳米花形貌,纳米花粒子的尺寸约为3μm,且每一个纳米花粒子由无数的纳米片堆叠而成,这大大增加了其表面积。
煅烧产物的SEM图和TEM图参见附图3-4,由SEM图可以看出,煅烧后的样品基本保持了前驱体的纳米花形貌,深入观察发现,组成纳米花的纳米片厚度变的更薄,而且其上面出现了大量的孔,这些孔可能是由于煅烧过程中气体的释放形成的;由TEM图可以看出,制备的纳米花粒子变成了空心结构,这可能是由于在煅烧的过程中存在奥斯特瓦尔德熟化现象造成的。这些薄的纳米片、大量的孔结构和空心结构的存在大大增加了其表面积,在测试过程中有助于增加与溶液的接触面积,促进电化学反应的进行。
不同温度下煅烧产物的XRD图参见附图5,由XRD图可以看出,所有的C3N4纳米花均具有两个特征峰位于13°和27°附近,其分别代表了C3N4结构平面内的三嗪环结构和平面间的芳香环堆叠;进一步深入观察可以发现,随着煅烧温度的提高,两个峰的强度在逐渐提高,表明其结晶度逐渐增强;而且,随着温度的升高,在13°处的峰向低角度偏移,表明平面间的三嗪环结构变得逐渐松弛;而27°处的峰向高角度偏移,表面C3N4的层间距变得更加致密;这些都证明了随着煅烧温度的提高,C3N4纳米花的结晶度在逐渐提高。
实施例2
本发明实施例制备C3N4纳米花修饰的电化学发光测试电极并分析其电化学发光性能,采用经典的三电极工作体系,以C3N4纳米花修饰的玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂丝电极为对电极,在支持电解质溶液(PBS溶液)和共反应剂(K2S2O8)作用下采集不同结晶度下的C3N4纳米花的电化学发光强度和稳定性曲线,从而实现对C3N4纳米花电化学发光性能的评估。其包括如下步骤:
(1)C3N4纳米花分散液的制备,分别称取5mg实施例1所制备的不同结晶度的C3N4纳米花样品材料,将其分散在10mL去离子水中,超声分散处理15min,使其充分分散溶解,形成均匀分散的C3N4纳米花分散液,备用,分散液浓度为0.5mg/mL;
(2)玻碳电极预处理,将玻碳电极依次用0.3μm和0.05μm氧化铝粉末打磨处理,再依次用超纯水、乙醇、超纯水进行超声清洗,氮气吹干电极表面备用;
(3)C3N4纳米花修饰的玻碳电极的制备,通过移液枪吸取10μL的C3N4纳米花分散液滴于处理好的玻碳电极表面,随后将其置于红外灯下烘干,待其干燥成膜后即得到C3N4纳米花修饰的工作电极,作为电化学发光测试电极;
(4)测试所述C3N4纳米花修饰的电化学发光电极的电化学发光强度和稳定性;
(4-1)首先称取特定量的K2S2O8固体并将其溶于0.1M的PBS溶液中,得到K2S2O8浓度为100mM的PBS电解液,其中K2S2O8作为C3N4纳米花电化学发光的共反应剂,PBS溶液作为电解质溶液;
(4-2)采用三电极工作体系将所制备的C3N4纳米花修饰的玻碳电极作为工作电极,Ag/AgCl电极作为参比电极,铂丝电极为对电极,将三电极体系浸入到4mL的含有100mM的K2S2O8的PBS溶液中,通过循环伏安电化学方式测试C3N4纳米花/K2S2O8体系的电化学发光强度,扫描电位范围为0~-1.3V,扫描速率为0.5V/s,得到如附图6所示的曲线,从图中可以看出,随着结晶度的提高,其电化学发光强度急剧上升。随后进一步测试得到其稳定性曲线如附图7所示,同样,随着结晶度的上升,其电化学发光稳定性也得到了极大地改善。因此这充分表明了C3N4材料结晶度的提高对电化学发光性能的影响。
在本发明实施例中的C3N4纳米花/K2S2O8体系电化学发光体系中,C3N4纳米花作为反应过程的发光体,K2S2O8作为反应的共反应剂,促进发光强度,机理图如图7所示,具体的发光机理如下:
S2O8 2-+e-→SO4 2-+SO4 ·- (1);
C3N4+e-→C3N4 ·- (2);
C3N4 ·-+SO4 ·-→C3N4 *+SO4 2- (3);
C3N4 *→C3N4+hv (4);
在较低的还原电位下,S2O8 2-离子首先被还原生成SO4 2-和氧化性的SO4 ·-中间体,随后在电位继续增加的过程中,C3N4纳米花进一步被还原成强还原性的C3N4 ·-,接下来强氧化性的SO4 ·-和强还原性的C3N4 ·-结合,形成激发态的C3N4 *,最后,C3N4 *退激发回到基态的过程中发射出光。
对比例
以普通的C3N4材料为对比,普通的非纳米花形式的氮化碳材料无需制备前驱体,采用直接在550℃下煅烧三聚氰胺,得到C3N4材料,其制得的形貌为无规则的纳米块形貌(参见附图9),难以对形貌进行调控,电化学发光性能也较差(参见附图10)。
本发明采用简单的两步法合成了一种具有纳米花形貌的C3N4聚合物,在材料制备的过程中,通过简单地改变煅烧前驱体的温度从而实现对C3N4纳米花的结晶度的调控,结晶度的提高也优化了其电化学发光性能。
在本发明记载的范围内,选择其他的组分、配比及制备工艺参数的技术方案,均能实现本发明的技术效果,故不再将其一一列出。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (8)

1.一种调控C3N4纳米花结晶度的方法,其特征在于,包括以下步骤:
(1)制备纳米花超分子前驱体;
(2)将所述前驱体升温至并煅烧温度并保温,所述煅烧温度在400-550℃,通过改变煅烧温度调控C3N4纳米花结晶度。
2.根据权利要求1所述的调控C3N4纳米花结晶度的方法,其特征在于,所述保温的时长为4h。
3.根据权利要求1所述的调控C3N4纳米花结晶度的方法,其特征在于,所述纳米花超分子前驱体的制备方法包括以下步骤:
将等摩尔比的三聚氰胺和三聚氰酸分别分散溶解在二甲亚砜中,得到澄清的三聚氰胺溶液和三聚氰酸溶液,在搅拌条件下,将所述三聚氰酸溶液滴加到所述三聚氰胺溶液中,得到白色乳浊液,离心洗涤分离沉淀,干燥后制得。
4.根据权利要求1所述的调控C3N4纳米花结晶度的方法,其特征在于,所述三聚氰胺和三聚氰酸通过超声处理分散溶解在二甲亚砜中。
5.根据权利要求1所述的调控C3N4纳米花结晶度的方法,其特征在于,所述三聚氰胺溶液和三聚氰酸溶液的体积比为2:1。
6.一种调控C3N4纳米花电化学发光性能的方法,其特征在于,通过调控所述C3N4纳米花的结晶度实现。
7.根据权利要求6所述的调控C3N4纳米花电化学发光性能的方法,其特征在于,由权利要求1-5之一所述的方法调控C3N4纳米花的结晶度。
8.根据权利要求7所述的调控C3N4纳米花电化学发光性能的方法,其特征在于,通过提高所述煅烧温度,提高所述C3N4纳米花电化学发光强度和/或电化学发光稳定性的应用。
CN202210822370.8A 2022-07-13 2022-07-13 一种调控c3n4纳米花结晶度的方法及其应用 Pending CN115246634A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210822370.8A CN115246634A (zh) 2022-07-13 2022-07-13 一种调控c3n4纳米花结晶度的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210822370.8A CN115246634A (zh) 2022-07-13 2022-07-13 一种调控c3n4纳米花结晶度的方法及其应用

Publications (1)

Publication Number Publication Date
CN115246634A true CN115246634A (zh) 2022-10-28

Family

ID=83699261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210822370.8A Pending CN115246634A (zh) 2022-07-13 2022-07-13 一种调控c3n4纳米花结晶度的方法及其应用

Country Status (1)

Country Link
CN (1) CN115246634A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117945365A (zh) * 2024-01-19 2024-04-30 阜阳师范大学 一种氮化碳纳米花电极修饰材料及其制备方法与在食品褪黑素检测中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791129A (zh) * 2021-08-23 2021-12-14 广州大学 铜离子电化学发光检测电极、检测器及其制备方法与应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791129A (zh) * 2021-08-23 2021-12-14 广州大学 铜离子电化学发光检测电极、检测器及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOUNG-SI JUN ET. AL.: ""From Melamine-Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres"" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117945365A (zh) * 2024-01-19 2024-04-30 阜阳师范大学 一种氮化碳纳米花电极修饰材料及其制备方法与在食品褪黑素检测中的应用

Similar Documents

Publication Publication Date Title
Xiong Photoluminescent ZnO nanoparticles modified by polymers
Gavrilović et al. Synthesis of multifunctional inorganic materials: from micrometer to nanometer dimensions
Pol et al. Sonochemical synthesis and optical properties of europium oxide nanolayer coated on titania
Li et al. Influence of the TGA modification on upconversion luminescence of hexagonal-phase NaYF4: Yb3+, Er3+ nanoparticles
Patil et al. Single step hydrothermal synthesis of hierarchical TiO 2 microflowers with radially assembled nanorods for enhanced photovoltaic performance
CN108611653B (zh) 一种负载磁性纳米粒子的钒酸铋复合材料及其制备和应用
CN106493381A (zh) 一种银/氧化亚铜微纳结构复合材料的制备方法及其应用
Rismaningsih et al. Photoluminescence properties of quinary Ag–(In, Ga)–(S, Se) quantum dots with a gradient alloy structure for in vivo bioimaging
CN114591741B (zh) 一种镧系离子掺杂的双钙钛矿纳米晶体、其制备方法及应用
Zhang et al. Uniform hollow TiO2: Sm3+ spheres: Solvothermal synthesis and luminescence properties
CN115246634A (zh) 一种调控c3n4纳米花结晶度的方法及其应用
Nunes et al. Room temperature synthesis of Cu2O nanospheres: optical properties and thermal behavior
Ouyang et al. Shape controlled synthesis and optical properties of Cu2O micro-spheres and octahedrons
TW201016596A (en) Method of manufacturing zinc oxide nanoparticles and zinc oxide nanoparticles
Sadeghzadeh‐Attar et al. UV‐visible absorption and photoluminescence characteristics of SnO2 nano‐tube/wire arrays fabricated by LPD method
Guzmán-Carrillo et al. Facile control of ZnO nanostructures by varying molar concentration of zinc acetate
CN105602566B (zh) 一种稀土掺杂NaGdF4上转换纳米晶及其制备方法
Priyanka et al. Synthesis of yttrium doped zinc oxide nanorods for display, forensic and supercapacitor applications
CN102765743A (zh) 在锌片基底上制备玉米状多级结构氧化锌纳米棒阵列薄膜
CN109100405A (zh) 一种氧空位浓度可调的氮掺杂多孔C@CeO2-x纳米复合材料的制备方法及应用
Rusu et al. Characterization of TiO 2 nanoparticles and ZnO/TiO 2 composite obtained by hydrothermal method
JP2019195033A (ja) 量子ドット製造装置及び量子ドットの製造方法
Vedi et al. Growth optimization of single-phase novel colloidal perovskite Cs 3 Bi 2 I 9 nanocrystals and Cs 3 Bi 2 I 9@ SiO 2 core–shell nanocomposites for bio-medical application
Shelar et al. Biological synthesis of Cu2O nanoshells and its optical properties
CN109158121A (zh) 具有优异催化双氧水性能的哑铃状纳米金的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221028