CN115245799B - 一种双壳核壳结构粒子bt@ssmwnt@pani的制备方法和应用 - Google Patents

一种双壳核壳结构粒子bt@ssmwnt@pani的制备方法和应用 Download PDF

Info

Publication number
CN115245799B
CN115245799B CN202111570747.7A CN202111570747A CN115245799B CN 115245799 B CN115245799 B CN 115245799B CN 202111570747 A CN202111570747 A CN 202111570747A CN 115245799 B CN115245799 B CN 115245799B
Authority
CN
China
Prior art keywords
ssmwnt
shell
pani
core
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111570747.7A
Other languages
English (en)
Other versions
CN115245799A (zh
Inventor
王海燕
尤彦斌
白霖睿
咸龙帝
王初晗
李澜
魏玉鹏
王伊宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University of Technology
Original Assignee
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University of Technology filed Critical Lanzhou University of Technology
Priority to CN202111570747.7A priority Critical patent/CN115245799B/zh
Publication of CN115245799A publication Critical patent/CN115245799A/zh
Application granted granted Critical
Publication of CN115245799B publication Critical patent/CN115245799B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Abstract

本发明公开了一种双壳核壳结构粒子BT@SSMWNT@PANI的制备方法及该粒子在制备聚合物复合电介质材料中的应用。本发明通过原位聚合法在BT@SSCNT单壳核壳结构粒子的SSCNT壳层表面引入聚苯胺,制备了BT@SSCNT@PANI双壳核壳结构粒子。以该核壳粒子为填料,采用流延法制备了聚偏氟乙烯基高介电复合材料BT@SSCNT@PANI/PVDF。本发明制备的双壳核壳结构粒子的壳层具有由内至外电导率依次递增的特征,所制备的PVDF基柔性介电复合材料,在获得了高的介电常数的同时有效地抑制了介电损耗,特别是填充量为30 wt%时,介电常数高达1805(1 KHz),介电损耗仅为0.42。通过填料微观结构设计,具有梯度导电性双壳核壳结构粒子使聚合物复合电介质材料实现了介电常数和介电损耗协同改善。

Description

一种双壳核壳结构粒子BT@SSMWNT@PANI的制备方法和应用
技术领域
本发明属于新材料开发领域,涉及一种具有梯度电导率双壳核壳结构粒子BT@SSMWNT@PANI的制备方法,同时涉及该双壳核壳结构粒子在制备聚合物复合电介质材料中的应用。
背景技术
随着信息产业的发展,电子产品的小型化和集成化的发展需求强劲,无源器件从表面安装正逐步转变为嵌入式封装,以减少电路体积,提高电子设备可靠性,降低生产成本。这其中,高储能密度的电容器开发已经成为众多科研者们努力的方向。聚合物基高介电材料具有加工工艺简单、加工温度低、击穿场强高、柔韧性好等优点适合用作薄膜电容器的电介质材料。目前,该领域亟需解决的问题之一是如何在低损耗状态获得高储能密度的复合电介质材料。设计制备具有核壳结构特征的复合填料是获得该高性能复合电介质材料的有效途径之一。
核壳结构填料/聚合物复合电介质材料由于界面调控性强,对材料介电性能产生重要影响。而要获得高储能电介质材料,提高介电常数和耐压强度是主要途径。对于介电陶瓷颗粒/聚合物复合材料,在高的填充量下(>50 vol.%)介电常数仍小于100,但击穿场强高。与此相反,导电材料/聚合物复合材料虽然在低的渗流阈值附近可获得高的介电常数(常大于1000),但介电损耗高、击穿电压低。合理的核壳结构粒子填充制备的聚合物复合电介质可以在获得高的介电常数的同时,能有效地抑制介电损耗并改善击穿场强,从而使复合电介质各参数之间达到理想的平衡。
发明内容
本发明的目的是提供一种双壳核壳结构粒子BT@SSMWNT@PANI的制备方法;
本发明的另一个目的是提供该BT@SSMWNT@PANI在制备聚合物复合电介质材料中的应用,该双壳核壳结构粒子显著地改善了聚合物复合介电材料的性能。
一、双壳核壳结构粒子和聚合物复合电介质材料的制备
1、双壳核壳结构粒子的制备
(1)将BT@SSMWNT(钛酸钡@超短碳纳米管)核壳结构粒子加入盐酸溶液中超声分散均匀,再加入苯胺(An),于20~40℃下搅拌2~4h,离心,洗涤,干燥,得到BT@SSMWNT/An+粒子。其中,所述BT@SSMWNT核壳结构粒子在盐酸中的分散液浓度为2.5~3.5 mg/mL;所述盐酸溶液的浓度为1 moL/L;所述BT@SSMWNT与苯胺的质量比为1:0.2~1:0.3。
所述BT@SSMWNT核壳结构粒子的制备方法参见文献:Fabrication of BaTiO3@super short MWCNTs core-shell particles reinforced PVDF composite films withimproved dielectric properties and high thermalconductivity[J]. CompositesScience and Technology, 2020, 200:108405。
(2)将BT@SSMWNT/An+粒子分散于盐酸溶液中,加入苯胺超声分散后,再加入过硫酸铵(APS)的盐酸溶液,于0~5 ℃下反应1~2 h,反应完成后离心,洗涤,干燥,得到双壳核壳结构粒子-钛酸钡@超短碳纳米管@聚苯胺(BT@SSMWNT@PANI)。
其中,所述BT@SSMWNT/An+粒子在盐酸中的分散液浓度为1.5~2.5 mg/mL;所述BT@SSMWNT/An+粒子与苯胺的质量比为1:0.2~1:0.3;所述苯胺与过硫酸铵的质量比为1:1~1:1.2。
2、聚合物复合电介质材料的制备
采用溶液共混法和流延法制备聚合物复合电介质材料的制备。将双壳核壳结构粒子BT@SSMWNT@PANI分散于DMF中得到BT@SSMWNT@PANI分散液,然后加入聚偏氟乙烯(PVDF)的DMF溶液,于50~70 ℃下搅拌2~3 h,冷却至室温后真空除泡,在流延机上流平,于50~70℃下蒸发溶剂成膜,获得高介电低损耗聚合物复合电介质材料-钛酸钡@超短碳纳米管@聚苯胺/聚偏氟乙烯(BT@SSMWNT@PANI/PVDF)。所述BT@SSMWNT@PANI/PVDF中,BT@SSMWNT@PANI粒子的质量分数为10 ~30 %。
二、BT@SSMWNT@PANI及聚合物复合电介质材料的结构及性能表征
图1(a)为BT@SSMWNT粒子的SEM照片,(b)为BT@SSMWNT/PANI粒子的SEM照片。与BT@SSMWNT核壳粒子表面粗糙、颗粒尺寸均匀相比较,图1(b)中BT@SSMWNT@PANI核壳结构粒子表面光滑,尺寸均匀且粒径变大。
图2 中(a)和(b)分别为BT@SSMWNT和BT@SSMWNT@PANI的TEM电镜照片。BT@SSMWNT单壳粒子表面附着物明显,壳层对BT核的包覆完整。图2(b)中,在BT@SSMWNT粒子外表面出现了一层厚度不一且大于100 nm的物质,这是由原位聚合生成的PANI壳层。进一步分析可知,BT@SSMWNT@PANI基本保持了BT颗粒状形貌的特征,且核壳结构特征明显。由于SSMWNT表面丰富的-COOH,质子化的苯胺阳离子通过静电吸附附着到BT表面,从而实现了PANI对BT@SSMWNT粒子的包覆。
图3为SSMWNT、h-BT、BT@SSMWNT、BT@SSMWNT@PANI的红外光谱图。由图可见,对比h-BT 与SSMWNT,BT@SSMWNT粒子的红外谱图中既存在-COOH和C-C的特征峰又存在-OH和Ti-O键的特征峰,因此可以判断复合粒子中SSMWNT和BT的结构保持完整。进一步分析BT@SSMWNT@PANI粒子的红外谱图,可知存在明显的PANI的特征峰。它们分别是1589 cm-1处归属于醌式结构C=C的伸缩振动,1498 cm-1处归属于苯式结构中-C=C-的伸缩振动,1200 cm-1处是醌环上-N=Q=N-的伸缩振动,1302 cm-1处对应于苯环上C-N的伸缩振动,801 cm-1处归属于苯环上-C-H的面外弯曲振动。并且谱图中-COOH和C-C的特征峰和-OH和Ti-O键的特征峰清晰存在,结合图1和图2 的SEM和TEM电镜照片说明在BT@SSMWNT核壳结构粒子表面引入了聚苯胺,成功制备了BT@SSMWNT@PANI一核双壳核壳结构粒子。
图4为压强对BT@SSMWNT和BT@SSMWNT@PANI粒子的体积电导率的影响。由图可知,两者的体积电导率随着压强的增加而增大,但BT@SSMWNT@PANI的增加趋势明显得多。BT@SSMWNT的体积电导率大约在10-4~10-5之间,而由盐酸掺杂的PANI为外层壳的BT@SSMWNT@PANI粒子电导率远高于单壳粒子,平均高出约4个数量级。该双壳粒子在5 MPa时由无压状态下的约0.6激增到了1,是等压力下BT@SSMWNT体积电导率的400多倍。
图5为室温下,不同填充量时BT@SSMWNT@PANI/PVDF复合电介质材料的介电常数与介电损耗。由图可知,随着BT@SSMWNT@PANI填充量的增加,BT@SSMWNT@PANI/PVDF介电常数急剧地增大,且在30 wt%时出现了渗流阈值,介电常数达到极大值,为1805,是BT@SSMWNT/PVDF复合材料的2.5倍,是纯PVDF介电常数的180倍。该复合电介质材料的介电损耗随着填充量的增加先是缓慢增加,阈值之后则急剧增加。但值得注意的是,当填充量小于30wt%时,复合材料始终保持了较低的介电损耗(<0.5),特别是在阈值时,介电损耗仅为0.42,远低于文献报道的介电常数高于1000的复合体系,同时满足应用要求。
图6为频率对BT@SSMWNT@PANI/PVDF复合电介质材料介电常数(a)和介电损耗(b)的影响。从图中可以看出,随着频率的增加,复合电介质材料的介电常数呈现下降趋势,在106Hz后介电常数急剧地降低。此外,随着填充量的增加,介电常数下降幅度增大,且在填充量为30 wt%时,下降幅度达到极值。由图(b,插图为图中图中选中区域的放大图)可以看出随着频率的增大,复合电介质材料的介电损耗有一个先降低后略有上升的变化过程,并且在频率为104~105Hz范围出现了低谷(在0.2左右)。除填充量为40wt%的材料外,其它材料介电损耗值在103~106Hz范围内处于小于0.5的应用范围内。
综上所述,本发明通过原位聚合法在BT@SSMWNT单壳核壳结构粒子的SSMWNT壳层表面引入聚苯胺,制备了BT@SSMWNT@PANI双壳核壳结构粒子。以该核壳粒子为填料,采用流延法制备了聚偏氟乙烯(PVDF)基高介电复合材料。本发明制备的双壳核壳结构粒子的壳层具有由内至外电导率依次递增的特征,由该粒子填充制备的PVDF基介电复合材料不仅获得了高的介电常数,而且有效地抑制了复合材料的介电损耗。实验结果显示,通过填料微观结构设计,具有梯度导电率的双壳层结构的BT@SSMWNT@PANI复合粒子使复合材料在填充量为10~30 wt%时同时获得了高的介电常数和低的介电损耗。特别是填充量为30 wt%时,介电常数大于1800(1 KHz),介电损耗仅略高于0.40,实现了介电常数和介电损耗的协同改善。
附图说明
图1为 BT@SSMWNT(a)和BT@SSMWNT@PANI(b)的SEM照片;
图2 为BT@SSMWNT(a)和BT@SSMWNT@PANI(b)的TEM照片;
图3为 h-BT、SSMWNT、BT@SSMWNT和BT@SSMWNT@PANI的FTIR谱图;
图4为压强对BT@SSMWNT和BT@SSMWNT@PANI粒子的体积电导率的影响;
图5为不同填充量时BT@SSMWNT@PANI/PVDF复合电介质材料的介电常数与介电损耗;
图6为频率对BT@SSMWNT@PANI/PVDF复合电介质材料介电常数(a)和介电损耗(b)
的影响。
具体实施方式
下面通过具体实施例对本发明双壳核壳结构粒子的制备方法,以及其聚偏氟乙烯复合电介质材料的制备及性能作进一步说明。
本发明所用实验原料备如下表所示:
本发明所使用的主要仪器如下表所示:
实施例1 双壳核壳粒子BT@SSMWNT@PANI的制备
(1)羟基化BT的制备
将3 g 平均粒径约300 nm BT和70 mL过氧化氢溶液(35%)加入到250 mL三口烧瓶中,强力搅拌20 min后,在机械搅拌条件下控制反应温度106℃,反应时间6 h,待反应完毕后将反应体系冷却至室温,用蒸馏水抽滤洗涤三次,之后产物在60℃真空烘箱中干燥24 h后研磨,获得羟基化BT粒子h-BT。
(2)酸化超短多壁碳纳米管的制备
称取碳纳米管S-MWNT-1020 1g加入100 mL去离子水中,超声60 min后,在12000r/min下高速离心, 取上层清液备用,所得离心物按上述步骤重复一次,并取上层清液备用,最后将两次离心所得上清液在60 ℃烘箱中干燥24 h后获得超短碳纳米管。将1 g经上述断裂处理的碳纳米管加入到30 mL浓H2SO4(98%)和10 mL浓HNO3(68%)的混合溶液中,先超声使其分散,之后在106℃高温下回流6 h,减压抽滤后用蒸馏水清洗至pH=7,干燥之后获得酸化超短多壁碳纳米管SSMWNT。
(3)BT@SSMWNT核壳结构粒子的制备
称取0.1 g h-BT粒子加入到盛有12 mL蒸馏水的西林瓶中,称取0.04 g SSMWNT加入盛有40 mL DMF的西林瓶中,超声分散30 min后,将h-BT的蒸馏水分散液滴加到SSMWNT的DMF分散液中,控制在50~60 min内滴加完毕,之后在磁力搅拌的条件下反应4 h,反应温度为40 ℃,待反应结束后,将混合液体以2000 r/min离心5min,去除上层液体得到离心产物,之后再用蒸馏水以1000r/min离心洗涤3~5次,将离心产物在60 ℃的烘箱内干燥12 h,得到BT@SSMWNT核壳结构粒子。
(4)双壳核壳粒子BT@SSMWNT@PANI的制备
取0.1 g BT@SSMWNT核壳结构粒子,加入盛有35 mL盐酸溶液(1 moL/L)的烧杯中超声30 min。加入0.025g An,在30℃下磁力搅拌3h。将混合液离心10 min后去除上层液体得到离心产物,将离心产物再用去离子水离心洗涤3~5次,洗涤后的产物于60℃下干燥24h,得到 BT@SSMWNT/An+粒子。
取0.1 g BT@SSMWNT/An+粒子,分散于50 mL盐酸溶液(1 moL/L),称取0.025 g An加入到上述分散液,超声10 min得到均匀的混合液。称取0.0275 g APS溶解在10 mL的盐酸溶液中,然后缓慢滴加到混合液中,在0~5℃下反应2 h。之后,将反应液以8000 r/min在离心机中离心10 min,去除上层清液并用去离子水离心洗涤2~3次。最后在60 ℃下干燥24 h获得BT@SSMWNT@PANI粒子。
实施例2 BT@SSMWNT@PANI/PVDF复合介电质材料的制备
将1.5 g PVDF的分散于15 mL DMF溶液中得到PVDF的DMF溶液,将实施例1制备的0.643 gBT@SSMWNT@PANI分散于8 mL DMF中得到BT@SSMWNT@PANI分散液。将PVDF的DMF溶液和BT@SSMWNT@PANI分散液在60 ℃条件下混合,将混合液置于磁力搅拌器上充分搅拌2 h,然后冷却至室温后真空除泡30 min,在流延机上流平,放入60℃烘箱中蒸发溶剂成膜,其平均厚度为30 μm。BT@SSMWNT@PANI/PVDF复合介电质材料中BT@SSMWNT@PANI的质量分数分为30wt%,介电常数高达1805(1 KHz),介电损耗为0.42。
实施例3 BT@SSMWNT@PANI/PVDF复合介电质材料的制备
将1.5 g PVDF的分散于15 mL DMF溶液中得到PVDF的DMF溶液,将实施例1制备的0.167 gBT@SSMWNT@PANI分散于8 mL DMF中得到BT@SSMWNT@PANI分散液。将PVDF的DMF溶液和BT@SSMWNT@PANI分散液在60 ℃条件下混合,将混合液置于磁力搅拌器上充分搅拌2 h,然后冷却至室温后真空除泡30 min,在流延机上流平,放入60℃烘箱中蒸发溶剂成膜,其平均厚度为30 μm。复合材料中BT@SSMWNT@PANI的质量分数分别为10 wt%,介电常数为628(1KHz),介电损耗为0.1。
实施例4 BT@SSMWNT@PANI/PVDF复合介电质材料的制备
将1.5 g PVDF的分散于15 mL DMF溶液中得到PVDF的DMF溶液,将实施例1制备的0.375 gBT@SSMWNT@PANI分散于8 mL DMF中得到BT@SSMWNT@PANI分散液。将PVDF的DMF溶液和BT@SSMWNT@PANI分散液在60 ℃条件下混合,将混合液置于磁力搅拌器上充分搅拌2 h,然后冷却至室温后真空除泡30 min,在流延机上流平,放入60℃烘箱中蒸发溶剂成膜,其平均厚度为30 μm。复合材料中BT@SSMWNT@PANI的质量分数分别为20 wt%,介电常数为1064(1KHz),介电损耗为0.25。

Claims (8)

1.一种双壳核壳结构粒子BT@SSMWNT@PANI的制备方法,包括以下步骤:
(1)将BT@SSMWNT核壳结构粒子加入盐酸溶液中超声分散均匀,再加入苯胺,于20~40℃下搅拌2~4h,离心,洗涤,干燥,获得BT@SSMWNT/An+粒子;
(2)将BT@SSMWNT/An+粒子分散于盐酸溶液中,加入苯胺超声分散后,再加入过硫酸铵的盐酸溶液,于0~5 ℃下反应2~3 h,反应完成后离心,洗涤,干燥,得到双壳核壳结构粒子BT@SSMWNT@PANI。
2.如权利要求1所述双壳核壳结构粒子BT@SSMWNT@PANI的制备方法,其特征在于:步骤(1)中,所述BT@SSMWNT核壳结构粒子在盐酸中的分散液浓度为2.5~3.5 mg/mL;所述盐酸溶液的浓度为1 moL/L。
3.如权利要求1所述双壳核壳结构粒子BT@SSMWNT@PANI的制备方法,其特征在于:步骤(1)中,所述BT@SSMWNT核壳结构粒子与苯胺的质量比为1:0.2~1:0.3。
4.如权利要求1所述双壳核壳结构粒子BT@SSMWNT@PANI的制备方法,其特征在于:步骤(2)中,所述BT@SSMWNT/An+粒子在盐酸中的分散液浓度为1.5~2.5 mg/mL;所述盐酸溶液的浓度为1 moL/L。
5.如权利要求1所述双壳核壳结构粒子BT@SSMWNT@PANI的制备方法,其特征在于:步骤(2)中,所述BT@SSMWNT/An+粒子与苯胺的质量比为1:0.2~1:0.3。
6.如权利要求1所述双壳核壳结构粒子BT@SSMWNT@PANI的制备方法,其特征在于:步骤(2)中,所述苯胺与过硫酸铵的质量比为1:1~1:1.2。
7.如权利要求1所述方法制备的双壳核壳结构粒子BT@SSMWNT@PANI在制备聚合物复合电介质材料中的应用,其特征在于:将BT@SSMWNT@PANI粒子分散于DMF中得到BT@SSMWNT@PANI分散液,再加入聚偏氟乙烯的DMF溶液混合均匀,于50~70℃下搅拌1~2 h,冷却至室温后真空除泡,在流延机上流平,于50~70℃下蒸发溶剂成膜,得到聚合物复合电介质材料BT@SSMWNT@PANI/PVDF。
8.如权利要求7所述该双壳核壳结构粒子BT@SSMWNT@PANI在制备聚合物复合电介质材料领域中的应用,其特征在于:所述聚合物复合电介质材料BT@SSMWNT@PANI/PVDF中, BT@SSMWNT@PANI粒子的质量分数为10~30 %。
CN202111570747.7A 2021-12-21 2021-12-21 一种双壳核壳结构粒子bt@ssmwnt@pani的制备方法和应用 Active CN115245799B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111570747.7A CN115245799B (zh) 2021-12-21 2021-12-21 一种双壳核壳结构粒子bt@ssmwnt@pani的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111570747.7A CN115245799B (zh) 2021-12-21 2021-12-21 一种双壳核壳结构粒子bt@ssmwnt@pani的制备方法和应用

Publications (2)

Publication Number Publication Date
CN115245799A CN115245799A (zh) 2022-10-28
CN115245799B true CN115245799B (zh) 2023-09-19

Family

ID=83698384

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111570747.7A Active CN115245799B (zh) 2021-12-21 2021-12-21 一种双壳核壳结构粒子bt@ssmwnt@pani的制备方法和应用

Country Status (1)

Country Link
CN (1) CN115245799B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381464A (zh) * 2008-10-27 2009-03-11 天津大学 磺化聚苯胺接枝多壁碳纳米管复合材料的制备方法
CN102931409A (zh) * 2012-10-25 2013-02-13 中国计量学院 一种核壳结构的锂离子电池负极用聚苯胺/硅复合材料制备方法
CN107429124A (zh) * 2015-02-20 2017-12-01 学校法人常翔学园 核壳粒子混合物、粘合剂、反应物的制造方法以及层叠体的制造方法
CN108314865A (zh) * 2018-01-22 2018-07-24 西安理工大学 一种镶嵌纳米银的一核双壳介电复合材料及其制备方法
CN108484980A (zh) * 2018-06-26 2018-09-04 兰州理工大学 一种新型核壳结构复合材料制备方法
CN109207123A (zh) * 2018-09-10 2019-01-15 中南大学 一种双壳层结构羰基铁粉复合吸波材料及制备方法
CN110010861A (zh) * 2019-03-07 2019-07-12 南方科技大学 硅基复合材料及其制备方法、锂离子电池
WO2019173549A1 (en) * 2018-03-08 2019-09-12 Sabic Global Technologies B.V. Double-shell encapsulated sulfur composites for lithium-sulfur cathode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828015B2 (en) * 2002-02-08 2004-12-07 Mitsubishi Gas Chemical Company, Inc. Composite containing thin-film particles having carbon skeleton, method of reducing the thin-film particles, and process for the production of the composite
US9050605B2 (en) * 2011-11-17 2015-06-09 Lamar University, A Component Of The Texas State University System, An Agency Of The State Of Texas Graphene nanocomposites
WO2020082074A1 (en) * 2018-10-19 2020-04-23 Ram Manoj Kumar Conductive paste based on nano-hybrid materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381464A (zh) * 2008-10-27 2009-03-11 天津大学 磺化聚苯胺接枝多壁碳纳米管复合材料的制备方法
CN102931409A (zh) * 2012-10-25 2013-02-13 中国计量学院 一种核壳结构的锂离子电池负极用聚苯胺/硅复合材料制备方法
CN107429124A (zh) * 2015-02-20 2017-12-01 学校法人常翔学园 核壳粒子混合物、粘合剂、反应物的制造方法以及层叠体的制造方法
CN108314865A (zh) * 2018-01-22 2018-07-24 西安理工大学 一种镶嵌纳米银的一核双壳介电复合材料及其制备方法
WO2019173549A1 (en) * 2018-03-08 2019-09-12 Sabic Global Technologies B.V. Double-shell encapsulated sulfur composites for lithium-sulfur cathode
CN108484980A (zh) * 2018-06-26 2018-09-04 兰州理工大学 一种新型核壳结构复合材料制备方法
CN109207123A (zh) * 2018-09-10 2019-01-15 中南大学 一种双壳层结构羰基铁粉复合吸波材料及制备方法
CN110010861A (zh) * 2019-03-07 2019-07-12 南方科技大学 硅基复合材料及其制备方法、锂离子电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fabrication of BaTiO3@super short MWCNTs core-shell particles reinforced PVDF composite films with improved dielectric properties and high thermal conductivity;Hai-Yan Wang et al.;Composites ScienceandTechnology;第2020卷(第200期);1-8 *
Significantly enhanced dielectric properties of P(VDF-HFP) composite films filled with core-shell BaTiO3@PANI nanoparticles;Qilong Zhang et al.;Surface & Coatings Technology;第2019卷(第358期);第293-298 *
一步法制备PANI@Ag纳米纤维及其PVDF基复合膜介电性能研究;王海燕等;高电压技术;第43卷(第7期);第2216-2220页 *

Also Published As

Publication number Publication date
CN115245799A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
Chen et al. Polymer-based dielectric nanocomposites with high energy density via using natural sepiolite nanofibers
Wang et al. Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine
CN105315587B (zh) 核‑壳结构纳米粒子填充介电储能复合材料及制备方法
Li et al. Dielectric properties of binary polyvinylidene fluoride/barium titanate nanocomposites and their nanographite doped hybrids.
Zhou et al. Towards suppressing loss tangent: Effect of SiO2 coating layer on dielectric properties of core-shell structure flaky Cu reinforced PVDF composites
Wang et al. Bio-inspired polydopamine coating as a facile approach to constructing polymer nanocomposites for energy storage
Liu et al. Poly (vinylidene fluoride) nanocomposite capacitors with a significantly enhanced dielectric constant and energy density by filling with surface-fluorinated Ba 0.6 Sr 0.4 TiO 3 nanofibers
Usman et al. Ti 3 C 2 T x MXene: from dispersions to multifunctional architectures for diverse applications
Li et al. Tuning dielectric properties and energy density of poly (vinylidene fluoride) nanocomposites by quasi core–shell structured BaTiO 3@ graphene oxide hybrids
Banerjee et al. An investigation into the influence of electrically conductive particle size on electromechanical coupling and effective dielectric strain coefficients in three phase composite piezoelectric polymers
CN110885473B (zh) 一种纳米颗粒、复合薄膜及其制备方法和应用
Dai et al. Improved dielectric properties and energy density of PVDF composites using PVP engineered BaTiO 3 nanoparticles
Zhang et al. Significantly enhanced dielectric properties of P (VDF-HFP) composite films filled with core-shell BaTiO3@ PANI nanoparticles
CN106653359B (zh) 高介电常数二氧化钛/石墨烯复合材料的制备方法
Su et al. Polyvinyl butyral composites containing halloysite nanotubes/reduced graphene oxide with high dielectric constant and low loss
Tao et al. High dielectric thin films based on barium titanate and cellulose nanofibrils
Wei et al. Preparation and dielectric properties of PATP-coated nano-BaTiO3/epoxy resin composites
CN112063085A (zh) 复合柔性高介电薄膜及其制备方法和应用
Moharana et al. Enhanced dielectric and ferroelectric properties of surface hydroxylated Na 0. 5 Bi 0. 5 TiO3 (NBT)-poly (vinylidene fluoride)(PVDF) composites
Wang et al. Structural modification of carbon black for improving the dielectric performance of epoxy based composites
CN115245799B (zh) 一种双壳核壳结构粒子bt@ssmwnt@pani的制备方法和应用
Zhan et al. Thermally stable and dielectric nanocomposite based on poly (arylene ether nitrile) and BaTiO 3 functionalized by modified mussel-inspired route
Caruntu et al. Dielectric properties of solution-processed BaTiO 3–styrene butadiene styrene nanocomposite films
Wen et al. Low loss and high permittivity composites based on poly (vinylidene fluoride-chlorotrifluoroethylene) and lead lanthanum zirconate titanate
Riaz et al. Influence of conducting polymer as filler and matrix on the spectral, morphological and fluorescent properties of sonochemically intercalated poly (o-phenylenediamine)/montmorillonite nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant