CN115245795A - 一种超疏水壳聚糖基气凝胶的制备方法 - Google Patents

一种超疏水壳聚糖基气凝胶的制备方法 Download PDF

Info

Publication number
CN115245795A
CN115245795A CN202210166200.9A CN202210166200A CN115245795A CN 115245795 A CN115245795 A CN 115245795A CN 202210166200 A CN202210166200 A CN 202210166200A CN 115245795 A CN115245795 A CN 115245795A
Authority
CN
China
Prior art keywords
chitosan
aerogel
carbon nano
nano tube
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210166200.9A
Other languages
English (en)
Other versions
CN115245795B (zh
Inventor
汪济奎
黄一成
刘洪园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202210166200.9A priority Critical patent/CN115245795B/zh
Publication of CN115245795A publication Critical patent/CN115245795A/zh
Application granted granted Critical
Publication of CN115245795B publication Critical patent/CN115245795B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0482Elimination of a frozen liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种超疏水壳聚糖基气凝胶的制备方法,所述方法步骤如下:(1)壳聚糖改性碳纳米管的制备,得到表面包覆壳聚糖的改性碳纳米管;(2)壳聚糖基气凝胶的制备:冰模板法控制气凝胶微观形貌,冷冻干燥得到改性碳纳米管填充的壳聚糖基气凝胶;(3)气凝胶烷基化疏水改性。本发明制备的气凝胶,原材料来源丰富,绿色环保,具有高效选择性吸附、循环可利用率高,可简便有效、绿色经济的应用于油水分离等领域。

Description

一种超疏水壳聚糖基气凝胶的制备方法
技术领域
本发明涉及一种超疏水壳聚糖基气凝胶的制备方法。
背景技术
近年来,人口数量快速增长,人民生活水平持续提高,发达国家和发展中国家的工业化和现代化程度不断加强,随之产生的废渣、废气、污水、雾霾、白色污染等问题日益严重,不断威胁生态环境和人类健康,受到了人们和社会的广泛关注。随着海洋油气资源开发力度的不断加大,海洋石油开采中的井喷事故、路上石油管道爆炸或破裂引起的石油泄漏事故频繁发生,石油中有毒有害化合物的存在,严重威胁到海洋生物链中的各个物种,从低等级的藻类植物到高等级的哺乳动物,海洋生态安全正在遭受着巨大的考验。因此,石油泄漏和海水污染问题亟待解决。
传统的油水分离方法包括重力法、过滤法、离心法、浮选法、电化学法、燃烧法等,但是,这些分离方法大多数耗时长、操作繁琐、分离效率低、价格昂贵,且并不适用于油水乳液的分离。具有特殊润湿性表面的油水分离材料,尤其是具有超疏水超亲油表面或超亲水超疏油表面的油水分离材料可实现快速高效的、自动的、可循环的油水分离。气凝胶由于具有轻的密度和大的比表面积等优点近几年被广泛的关注,疏水吸油气凝胶或许能为油水分离问题提供新的方向。
在绿色化学的思路指导下,保证产物功能高效的同时,原材料生态友好是不可缺少的重要条件。壳聚糖是虾、蟹和昆虫壳骨架中提取物甲壳素的脱乙酰产物,是自然界中唯一的碱性多糖。它来源丰富,是一种可再生的天然高分子材料。同时碳纳米管具有高度多孔和中空的结构、大比表面积、低质量密度等优点,近年来已经在解决环境污染问题受到了广泛关注。大量理论和实验证明,碳纳米管可以成功用于重金属离子,有机污染物吸附。
发明内容
本发明的目的是提供一种具有高效选择性吸附、循环可利用率高,可简便有效、绿色经济的应用于油水分离等领域的超疏水壳聚糖基气凝胶的制备方法。
本发明的技术方案如下:
(1)壳聚糖改性碳纳米管的制备:将碳纳米管和壳聚糖超声分散溶解在乙酸溶液中,得到碳纳米管乙酸溶液;在搅拌的同时,用稀氨水调整碳纳米管乙酸溶液至弱碱性,得到表面吸附壳聚糖的碳纳米管悬浮液;向悬浮液中滴入一定量的戊二醛溶液,室温下搅拌反应,随后产物用蒸馏水洗至中性,烘干后得到壳聚糖改性的碳纳米管,备用;
进一步的,步骤(1)中所述的乙酸溶液pH为2~4,碳纳米管、壳聚糖和乙酸溶液的质量比为2~4:1:100。
进一步的,步骤(1)中所述的稀氨水pH为9~12,溶液弱碱性为8~9。
进一步的,步骤(1)中所述的戊二醛溶液的质量分数为10~50%,用量为前述壳聚糖质量的2~5%,反应时间为5~10h。
(2)壳聚糖基气凝胶的制备:将壳聚糖和上述制备的壳聚糖表面包覆的碳纳米管溶解在乙酸溶液中,室温下搅拌分散,得到均匀壳聚糖溶液;向壳聚糖溶液中一定速度缓慢滴加戊二醛溶液,室温下静置反应成胶,随后放置在低温下冷冻成形,采用冰模板法控制气凝胶微观形貌;将冷冻后的壳聚糖用冷冻干燥机冷冻干燥,得到改性碳纳米管填充的壳聚糖基气凝胶,备用;
进一步的,步骤(2)中所述的乙酸溶液pH为9~12,壳聚糖、壳聚糖表面包覆的碳纳米管和乙酸的质量比为2~7:0.6:100。
进一步的,步骤(2)中所述的一定速度为20~30min/mL,戊二醛溶液的质量分数为5~30%,用量为前述壳聚糖质量的3~7%,冷冻温度为-20~-80℃,冷冻时间为4~10h。
进一步的,步骤(2)中所述的冷冻干燥冷阱温度为-60℃,压力为8Pa,冷冻干燥时间为24~48h。
(3)气凝胶的超疏水改性:将上述制备的气凝胶、甲基三甲基硅氧烷和去离子水放置在密闭环境中,一定温度下进行化学气相沉积,得到超疏水壳聚糖基气凝胶;
进一步的,步骤(3)中所述的气凝胶、甲基三甲基硅氧烷和去离子水的质量比为3:1:1,一定温度为70~90℃,化学气相沉积时间为5~10h。
本发明以壳聚糖为基体,表面包覆壳聚糖的改性碳纳米管为增强填料,通过冷冻干燥法、硅烷化疏水改性,制得具有超疏水亲油的壳聚糖基气凝胶材料,其具有以下特点和益处:
1、碳纳米管具有多孔中空、大比表面积和高效的吸附特性,但与基体相容性差,通过简单易行的实验设计实现壳聚糖表面包覆改性,解决了碳纳米管在基体中的分散性问题,发挥其选择吸附特性的同时增强了材料的力学强度。
2、复合气凝胶材料内部具有高孔隙率和碳纳米管中空结构特性,通过表面烷基化疏水改性,实现对于油性液体的高效选择性吸收,吸收量大,循环利用性强。
3、所用原材料为绿色材料,来源丰富,无毒无害,环境友好,可生物降解,属于绿色环保型吸附剂材料。
具体实施方式
下文将对本发明的实施例进行进一步的描述,其中,各实施例仅为本发明示例性的实施方式,并不意图构成对本发明范围的限定。本领域技术人员可以根据上文的说明以及下文对实施例的描述作出多种不同的改进和变形,其均不会背离本发明的精神和实质。据此,本发明的范围仅意图通过各项权利要求所要求保护的范围来进行限定。
实施1:
按照如下步骤制造超疏水壳聚糖基气凝胶:
(1)壳聚糖改性碳纳米管的制备:称取2质量份碳纳米管和1质量份壳聚糖超声分散溶解在100质量份pH=2的乙酸溶液中,在搅拌的同时,滴加pH=11的稀氨水调整碳纳米管乙酸溶液至弱碱性pH=8,随后向悬浮液中加入0.03质量份的5%戊二醛溶液,室温下搅拌反应7h,随后产物用蒸馏水洗至中性,烘干后得到壳聚糖改性的碳纳米管,备用;
(2)壳聚糖基气凝胶的制备:称取3质量份的壳聚糖和0.6质量份上述制备的壳聚糖表面包覆的碳纳米管溶解在pH=2的100质量份的乙酸溶液中,室温下搅拌分散至均匀,随后向溶液中以20min/mL的速度缓慢滴加0.09质量份的10%戊二醛溶液,室温下静置反应成胶,随后放置在-20℃低温下冷冻10h成形。然后将冷冻后的壳聚糖溶胶在-60℃,8Pa的条件下冷冻干燥48h,得到改性碳纳米管填充的壳聚糖基气凝胶,备用;
(3)气凝胶的超疏水改性:将上述制备的3质量份气凝胶、1质量份甲基三甲基硅氧烷和1质量份去离子水放置在密闭环境中,70℃下进行化学气相沉积5h,得到超疏水壳聚糖基气凝胶。
由此获得的超疏水壳聚糖基气凝胶的三维孔径为5~100μm,对各类液体的吸附效率如表1。
有机试剂 硅油 正己烷 甲苯 石油醚 正己烷
吸附含量 30 18 23 21 19
注:吸附含量=(吸附平衡后气凝胶质量-吸附前气凝胶质量)/吸附前气凝胶质量x100%。

Claims (2)

1.一种超疏水壳聚糖基气凝胶的制备方法,其特征在于,包括如下步骤:
(1)壳聚糖改性碳纳米管的制备:将碳纳米管和壳聚糖超声分散溶解在乙酸溶液中,得到碳纳米管乙酸溶液;在搅拌的同时,用稀氨水调整碳纳米管乙酸溶液至弱碱性,得到表面吸附壳聚糖的碳纳米管悬浮液;向悬浮液中滴入一定量的戊二醛溶液,室温下搅拌反应,随后产物用蒸馏水洗至中性,烘干后得到壳聚糖改性的碳纳米管,备用;
(2)壳聚糖基气凝胶的制备:将壳聚糖和上述制备的壳聚糖表面包覆的碳纳米管溶解在乙酸溶液中,室温下搅拌分散,得到均匀壳聚糖溶液;向壳聚糖溶液中一定速度缓慢滴加戊二醛溶液,室温下静置反应成胶,随后放置在低温下冷冻成形,采用冰模板法控制气凝胶微观形貌;将冷冻后的壳聚糖用冷冻干燥机冷冻干燥,得到改性碳纳米管填充的壳聚糖基气凝胶,备用;
(3)气凝胶的超疏水改性:将上述制备的气凝胶、甲基三甲基硅氧烷和去离子水放置在密闭环境中,一定温度下进行化学气相沉积,得到超疏水壳聚糖基气凝胶。
2.根据权利要求1所述的一种超疏水壳聚糖基气凝胶的制备方法,其特征在于,步骤(1)中所述的乙酸溶液pH为2~4,碳纳米管、壳聚糖和乙酸溶液的质量比为2~4:1:100;稀氨水pH为9~12,溶液弱碱性为8~9;戊二醛溶液的质量分数为10~50%,用量为前述壳聚糖质量的2~5%,反应时间为5~10h;步骤(2)中所述的乙酸溶液pH为9~12,壳聚糖、壳聚糖表面包覆的碳纳米管和乙酸的质量比为2~7:0.6:100。
CN202210166200.9A 2022-02-23 2022-02-23 一种超疏水壳聚糖基气凝胶的制备方法 Active CN115245795B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210166200.9A CN115245795B (zh) 2022-02-23 2022-02-23 一种超疏水壳聚糖基气凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210166200.9A CN115245795B (zh) 2022-02-23 2022-02-23 一种超疏水壳聚糖基气凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN115245795A true CN115245795A (zh) 2022-10-28
CN115245795B CN115245795B (zh) 2024-02-02

Family

ID=83697779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210166200.9A Active CN115245795B (zh) 2022-02-23 2022-02-23 一种超疏水壳聚糖基气凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN115245795B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150141533A1 (en) * 2013-11-14 2015-05-21 Nanyang Technological University Silica aerogel composite
CN105709695A (zh) * 2016-02-07 2016-06-29 刘志勇 一种超疏水纤维素/壳聚糖复合气凝胶油水分离材料的制备方法
CN106750577A (zh) * 2016-12-08 2017-05-31 陕西品达石化有限公司 改性碳纳米管‑壳聚糖复合材料的制备方法
CN108440772A (zh) * 2018-03-06 2018-08-24 长春工业大学 一种自修复导电双网络结构水凝胶及其制备方法
CN110201652A (zh) * 2019-06-17 2019-09-06 甘肃农业大学 一种具有三维网络结构的碳纳米管/壳聚糖水凝胶的制备方法
CN110763377A (zh) * 2019-10-21 2020-02-07 华南理工大学 一种超疏水压阻式压力传感器及其制备方法和应用
CN111672480A (zh) * 2020-06-18 2020-09-18 威海海洋职业学院 一种交联壳聚糖-多碳纳米管复合材料及其应用
CN111748109A (zh) * 2019-03-29 2020-10-09 武汉大学 一种利用pH值在6~8的壳聚糖溶液制备的壳聚糖微球及其制备方法
CN112870153A (zh) * 2021-01-12 2021-06-01 无锡东恒新能源科技有限公司 一种含碳纳米管的温敏凝胶的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150141533A1 (en) * 2013-11-14 2015-05-21 Nanyang Technological University Silica aerogel composite
CN105709695A (zh) * 2016-02-07 2016-06-29 刘志勇 一种超疏水纤维素/壳聚糖复合气凝胶油水分离材料的制备方法
CN106750577A (zh) * 2016-12-08 2017-05-31 陕西品达石化有限公司 改性碳纳米管‑壳聚糖复合材料的制备方法
CN108440772A (zh) * 2018-03-06 2018-08-24 长春工业大学 一种自修复导电双网络结构水凝胶及其制备方法
CN111748109A (zh) * 2019-03-29 2020-10-09 武汉大学 一种利用pH值在6~8的壳聚糖溶液制备的壳聚糖微球及其制备方法
CN110201652A (zh) * 2019-06-17 2019-09-06 甘肃农业大学 一种具有三维网络结构的碳纳米管/壳聚糖水凝胶的制备方法
CN110763377A (zh) * 2019-10-21 2020-02-07 华南理工大学 一种超疏水压阻式压力传感器及其制备方法和应用
CN111672480A (zh) * 2020-06-18 2020-09-18 威海海洋职业学院 一种交联壳聚糖-多碳纳米管复合材料及其应用
CN112870153A (zh) * 2021-01-12 2021-06-01 无锡东恒新能源科技有限公司 一种含碳纳米管的温敏凝胶的制备方法

Also Published As

Publication number Publication date
CN115245795B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
Jiang et al. Application of biodegradable cellulose-based biomass materials in wastewater treatment
Zhou et al. Silk fibroin-graphene oxide functionalized melamine sponge for efficient oil absorption and oil/water separation
Dong et al. Biomass poplar catkin fiber-based superhydrophobic aerogel with tubular-lamellar interweaved neurons-like structure
Aksu et al. A comparative study of copper (II) biosorption on Ca-alginate, agarose and immobilized C. vulgaris in a packed-bed column
CN110813244B (zh) 一种吸附铅离子的改性锆基有机金属框架吸附剂及其制备方法与应用
CN108031447B (zh) 一种纤维素/氧化硅复合气凝胶弹性体、制备方法及其在油水分离领域中的应用
CN110756179A (zh) 超疏水超亲油改性海绵材料的制备方法
Zhang et al. Cost-effective one-pot surface modified method to engineer a green superhydrophobic sponge for efficient oil/water mixtures as well as emulsions separation
CN107020071B (zh) 一种超疏水复合碳气凝胶吸油材料及其制备方法
CN104629079B (zh) 具有弹性的超疏水壳聚糖吸油海绵及其制备方法和应用
CN109402105B (zh) 一种可漂浮易降解的微生物载体及制备方法与应用
CN113083238B (zh) 一种氨基硫脲功能化氧化石墨烯/壳聚糖复合吸附剂及其制备方法与应用
Vega-Negron et al. Simultaneous adsorption of cationic and anionic dyes by chitosan/cellulose beads for wastewaters treatment
CN106700121A (zh) 一种高效油水分离壳聚糖海绵及其制备方法
Wang et al. Continuous fixed bed adsorption of Cu (II) by halloysite nanotube–alginate hybrid beads: an experimental and modelling study
CN110575794A (zh) 一种超疏水棉纤维素气凝胶及其制备方法和应用
Moon A review on interesting properties of chicken feather as low-cost adsorbent
CN105797596B (zh) 一种用于水净化的过滤膜的制备方法
Trang et al. Effective Treatment of Oil Spills by Adsorbent Formed from Chitin and Polyurethane Foam
CN109647295B (zh) 一种海藻酸钠/n-琥珀酰壳聚糖复合气凝胶及其制备方法和应用
Wang et al. A mini review: Application progress of magnetic graphene three-dimensional materials for water purification
CN115245795A (zh) 一种超疏水壳聚糖基气凝胶的制备方法
Ali et al. Adsorption of crude and waste diesel oil onto agar-carboxymethylcellulose-silver nanocomposite in aqueous media
CN111672434A (zh) 一种具有重金属离子吸附和油水分离功能的纤维素气凝胶制备方法
CN111375357A (zh) 一种具有两亲性的多功能纳米气凝胶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant