CN115233184A - 一种氢化非晶氧化硅膜、其制备方法和用途 - Google Patents

一种氢化非晶氧化硅膜、其制备方法和用途 Download PDF

Info

Publication number
CN115233184A
CN115233184A CN202210885529.0A CN202210885529A CN115233184A CN 115233184 A CN115233184 A CN 115233184A CN 202210885529 A CN202210885529 A CN 202210885529A CN 115233184 A CN115233184 A CN 115233184A
Authority
CN
China
Prior art keywords
hydrogenated amorphous
oxide film
amorphous silicon
silicon oxide
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210885529.0A
Other languages
English (en)
Inventor
周雨
董雪迪
林佳继
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laplace Wuxi Semiconductor Technology Co Ltd
Original Assignee
Laplace Wuxi Semiconductor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laplace Wuxi Semiconductor Technology Co Ltd filed Critical Laplace Wuxi Semiconductor Technology Co Ltd
Priority to CN202210885529.0A priority Critical patent/CN115233184A/zh
Publication of CN115233184A publication Critical patent/CN115233184A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供了一种氢化非晶氧化硅膜、其制备方法和用途,所述制备方法包括:以硅源、氧源和氢气作为气源,热丝化学气相沉积法在硅片表面反应沉积得到所述的氢化非晶氧化硅膜。本发明采用热丝化学气相沉积法制备氢化非晶氧化硅膜,相比于PECVD法具有更高的沉积速率,并且减少膜层表面损伤,有效提高了膜层质量,具有更高的钝化效果。

Description

一种氢化非晶氧化硅膜、其制备方法和用途
技术领域
本发明属于太阳能电池技术领域,涉及一种氢化非晶氧化硅膜、其制备方法和用途。
背景技术
薄膜/晶硅异质结太阳能电池(以下简称异质结太阳能电池,又可称HIT或HJT或SHJ太阳能电池)属于第三代高效太阳能电池技术,其结合了第一代晶硅与第二代硅薄膜的优势,具有转换效率高、温度系数低等特点,特别是双面的异质结太阳能电池转换效率可以达到26%以上,具有广阔的市场前景。其关键工艺技术之一包括:利用化学气相沉积(CVD)工艺在表面织构化后的N型晶体硅的一面上沉积很薄的I型本征非晶硅薄膜和P型非晶硅薄膜,并在晶体硅的另一面沉积薄的I型本征非晶硅薄膜和N型非晶硅薄膜。
氢化非晶氧化硅(α-SiOx:H)的禁带宽度比非晶硅(α-Si:H)大,其作为钝化层时可以降低蓝光区域的吸收,提高钝化质量。另外氢化非晶氧化硅具有工艺窗口宽,薄膜透射率较高等优点,是作为钝化层比较理想的选择。目前关于氢化非晶氧化硅的大部分研究是基于PECVD技术展开的。PECVD技术中产生的等离子体会对薄膜表面产生损伤,破坏薄膜质量,影响钝化效果。
CN104037264A公开了一种PECVD沉积低表面复合太阳电池介电层的方法,将经过清洗制绒、扩散和刻蚀的硅片放入PECVD腔室,抽真空后通入反应气体,加射频起辉低温沉积一层厚度为1~30nm的介电层薄膜;再次抽真空并升高沉积温度,待温度稳定后通入反应气体,加射频起辉高温沉积一层厚度为50~100nm的介电层薄膜。该发明采用分步变温沉积方式,先进行低温沉积同时使用较低的射频电源功率,降低等离子体对硅片表面的轰击作用;再进行高温沉积,同时使用较高的激励源功率,增加氢原子的产生以及其在介电膜和硅的界面处的扩散,此时由于低温沉积层的保护,高能量密度等离子体并不会直接作用在硅片表面,从而实现硅片表面缺陷态密度的降低和氢钝化的增强,降低载流子复合,提升太阳电池电性能。但是整个制备过程工艺复杂。
因此,如何提供一种氢化非晶氧化硅膜的制备方法,减少薄膜表面缺陷,简化制备工艺和提高制备速度,成为目前迫切需要解决的技术问题。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种氢化非晶氧化硅膜、其制备方法和用途,采用热丝化学气相沉积法制备氢化非晶氧化硅膜,相比于PECVD法具有更高的沉积速率,并且减少膜层表面损伤,有效提高了膜层质量,具有更高的钝化效果。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法包括:
以硅源、氧源和氢气作为气源,热丝化学气相沉积法在硅片表面反应沉积得到所述的氢化非晶氧化硅膜。
本发明中采用气态原料,包括硅源、氧源和氢气,氢气作为稀释气体和反应气体,利用热丝化学气相沉积法在硅片表面进行反应沉积,相比等离子体增强化学的气相沉积法(PECVD),具有更高的沉积速率,而且没有等离子体对薄膜表面轰击和损伤,不仅简化了镀膜工艺,而且具有更高的薄膜质量;此外,本申请中采用氢化非晶氧化硅薄膜作为钝化层,相比于氢化非晶硅薄膜具有更好的钝化效果,有效提高太阳能光电转换效率。
需要说明的是,本发明中硅片进行预处理,从而保证硅片具有良好的沉积表面,例如,预处理包括对硅片进行清洗和表面织构化处理。
需要说明的是,本发明对硅片的种类不做具体要求和特殊限定,本领域技术人员可根据实际要求合理选择,例如,硅片可以是N型直拉单晶硅片。
作为本发明的一个优选技术方案,所述硅源包括硅烷和/或正硅酸乙酯。
优选地,所述氧源包括二氧化碳、臭氧或水中的一种或至少两种的组合。
作为本发明的一个优选技术方案,所述硅源为硅烷,所述氧源为二氧化碳。
本发明中采用硅烷为硅源,二氧化碳为氧源,与氢气进行反应,反应机理如下:
a、SiH4、H2、CO2经过高温热丝发生分解
SiH4→SiH3+H;H2→H+H;CO2→CO+O;
b、原子H和原子O结合生成-OH基团
H+O→-OH;
c、-OH基团与已有的硅的悬挂键Si-或者被打断的弱的硅硅键Si-Si结合
Si-+-OH→Si-OH;
d、Si-OH基团与氛围中存在的富余的-OH和-SiH3反应生成Si-O-Si:Hx
Si-OH+-SiH3→Si-O-SiH2+H2O,Si-O-SiH2+-OH→Si-O-SiH+H2O;或,
Si-OH+-OH→Si-O-+H2O,Si-O-+-SiH3→Si-O-SiH3
Si-O-SiH3+-OH→Si-O-SiH2+H2O,Si-O-SiH2+-OH→Si-O-SiH+H2O。
优选地,所述硅源为正硅酸乙酯,所述氧源为臭氧。
本发明中选用硅源为正硅酸乙酯,氧源为臭氧,与氢气进行反应,反应机理如下:
a、正硅酸乙酯、臭氧和氢气经热丝催化分解
Si(OC2H5)4→SiO-+-C2H5,H2→H+H;O3→O+O2
b、分解产物再结合生成Si-O-SiHx
SiO-+Si-+H→Si-O-Si:Hx,-C2H5+-H→C2H6
作为本发明的一个优选技术方案,所述硅源与氢气的体积流量比为1:(1~100),例如为1:1、1:5、1:10、1:20、1:30、1:40、1:50、1:60、1:70、1:80、1:90或1:100。
本发明中通过控制硅源与氢气的体积流量比为1:(1~100),保证沉积的膜层质量,若硅源与氢气的体积流量比低于1:1,由于氢原子可以钝化表面的悬挂键以及晶界,故氢气流量小,会造成氢原子供应不足,影响钝化效果;若硅源与氢气的体积流量比高于1:100,则过量的氢原子会对薄膜表面起到刻蚀作用,不仅影响成膜速率而且会对薄膜造成缺陷。
优选地,所述硅源与氧源的体积流量比为1:(0.01~10),例如为1:0.01、1:0.05、1:0.10、1:0.50、1:1.00、1:2.00、1:3.00、1:4.00、1:5.00、1:6.00、1:7.00、1:8.00、1:9.00或1:10.00。
作为本发明的一个优选技术方案,所述硅源为硅烷,所述硅烷与氧源的体积流量比为1:(0.01~1),例如为1:0.01、1:0.05、1:0.10、1:0.20、1:0.30、1:0.40、1:0.50、1:0.60、1:0.70、1:0.80、1:0.90或1:1.00。
优选地,所述硅源为正硅酸乙酯,所述正硅酸乙酯与氧源体积流量比为1:(1~10),例如为1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9或1:10。
本发明中通过控制硅源与氧源之间的体积流量比,从而控制氧原子的数量,氧原子的数量直接影响薄膜中-SiH和-SiH2的组分比例,从而影薄膜的致密性,进而对薄膜的钝化效果发生影响。
作为本发明的一个优选技术方案,所述热丝化学气相沉积法的热丝温度为1500~2000℃,例如为1500℃、1550℃、1600℃、1650℃、1700℃、1750℃、1800℃、1850℃、1900℃、1950℃或2000℃。
优选地,所述热丝化学气相沉积法中热丝与所述硅片之间的距离为20~200mm,例如为20nm、40nm、60nm、80nm、90nm、100nm、120nm、140nm、160nm、180nm或200nm。
本发明通过控制热丝与硅片之间的距离为20~200mm,热丝的热量能够保证热辐射至硅片表面,避免硅片温度过高,保证活性粒子的反应活性,保证成膜速度以及质量。若距离低于20mm,则热丝热辐射过快导致硅片温度过高,从而影响成膜质量;若距离高于200mm,则硅片温度不足,并且活性反应粒子到达硅片的距离过大,影响成膜速率。
作为本发明的一个优选技术方案,所述热丝化学气相沉积法中腔体温度为100~200℃,例如为100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃或200℃。
优选地,所述热丝化学气相沉积法中沉积气压为1~100Pa,例如为1Pa、5Pa、10Pa、20Pa、30Pa、40Pa、50Pa、60Pa、70Pa、80Pa、90Pa或100Pa。
本发明中通过对沉积气压进行控制,保证硅源浓度稳定,从而在保证成膜速率的情况下,保证成膜质量,若气压低于1Pa,则导致硅源浓度过低,影响成膜速率,若气压高于100Pa,则沉积速率过大,容易发生膜缺陷,影响致密性,而且气压过高容易导致原料分解不完全,造成薄膜中存在杂质。
示例性地,提供一种上述氢化非晶氧化硅膜的制备方法,所述制备方法具体包括以下步骤:
将硅片进行表面处理后,放置于热丝化学气相沉积设备中,将腔体内抽至压力<0.001Pa,并将腔体温度升高至100~200℃,热丝加热至1500~2000℃,调整热丝与硅片之间的距离为20~200mm,向腔体内通入硅源、氢气和氧源,体积流量比为1:(1~100):(0.01~10),在沉积气压为1~100Pa下,沉积得到所述的氢化非晶氧化硅膜。
第二方面,本发明提供了一种氢化非晶氧化硅膜,所述氢化非晶氧化硅膜由第一方面所述的氢化非晶氧化硅膜的制备方法制备得到。
作为本发明的一个优选技术方案,所述氢化非晶氧化硅膜的少子寿命为2.2~2.8ms,例如为2.2ms、2.3ms、2.4ms、2.5ms、2.6ms、2.7ms或2.8ms。
优选地,所述氢化非晶氧化硅膜的表面复合速率为2.0~3.1cm/s,例如为2.0cm/s、2.1cm/s、2.2cm/s、2.3cm/s、2.4cm/s、2.5cm/s、2.6cm/s、2.7cm/s、2.8cm/s、2.9cm/s、3.0cm/s或3.1cm/s。
第三方面,本发明提供了一种太阳能电池,所述太阳能电池包括异质结太阳能电池,所述异质结太阳能电池中包括第二方面所述的氢化非晶氧化硅膜。
示例性地,提供一种异质结太阳能电池,包括依次层叠设置的i层(非晶硅层)、p/n层和TCO层(透明导电层),其中i层为所述的氢化非晶氧化硅膜。
本发明所述的数值范围不仅包括上述例举的点值,还包括没有例举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
与现有技术相比,本发明的有益效果为:
本发明中采用气态原料,包括硅源、氧源和氢气,氢气作为稀释气体和反应气体,利用热丝化学气相沉积法在硅片表面进行反应沉积,相比等离子体增强化学的气相沉积法(PECVD),具有更高的沉积速率,而且没有等离子体对薄膜表面轰击和损伤,不仅简化了镀膜工艺,而且具有更高的薄膜质量;此外,本申请中采用氢化非晶氧化硅薄膜作为钝化层,相比于氢化非晶硅薄膜具有更好的钝化效果,有效提高太阳能光电转换效率。
具体实施方式
下面通过具体实施例来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法具体包括以下步骤:
将N型直拉单晶硅片(晶相100)进行清洗和表面织构化处理,放置于热丝化学气相沉积设备中,将腔体内抽至压力<0.001Pa,并将腔体温度升高至200℃,热丝加热至1800℃,调整热丝与硅片之间的距离为50mm,向腔体内通入硅烷、氢气和二氧化碳,体积流量比为1:1.6:0.04,在沉积气压为1Pa下,沉积得到所述的氢化非晶氧化硅膜。
实施例2
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法具体包括以下步骤:
将N型直拉单晶硅片(晶相100)进行清洗和表面织构化处理,放置于热丝化学气相沉积设备中,将腔体内抽至压力<0.001Pa,并将腔体温度升高至100℃,热丝加热至2000℃,调整热丝与硅片之间的距离为80mm,向腔体内通入正硅酸乙酯、氢气和臭氧,体积流量比为1:5:0.02,在沉积气压为5Pa下,沉积得到所述的氢化非晶氧化硅膜。
实施例3
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法具体包括以下步骤:
将N型直拉单晶硅片(晶相100)进行清洗和表面织构化处理,放置于热丝化学气相沉积设备中,将腔体内抽至压力<0.001Pa,并将腔体温度升高至150℃,热丝加热至1500℃,调整热丝与硅片之间的距离为20mm,向腔体内通入硅烷、氢气和二氧化碳,体积流量比为1:0.5:1,在沉积气压为100Pa下,沉积得到所述的氢化非晶氧化硅膜。
实施例4
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法具体包括以下步骤:
将N型直拉单晶硅片(晶相100)进行清洗和表面织构化处理,放置于热丝化学气相沉积设备中,将腔体内抽至压力<0.001Pa,并将腔体温度升高至180℃,热丝加热至1900℃,调整热丝与硅片之间的距离为200mm,向腔体内通入正硅酸乙酯、氢气和臭氧,体积流量比为1:50:5,在沉积气压为50Pa下,沉积得到所述的氢化非晶氧化硅膜。
实施例5
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法具体包括以下步骤:
将N型直拉单晶硅片(晶相100)进行清洗和表面织构化处理,放置于热丝化学气相沉积设备中,将腔体内抽至压力<0.001Pa,并将腔体温度升高至130℃,热丝加热至1600℃,调整热丝与硅片之间的距离为80mm,向腔体内通入正硅酸乙酯、氢气和臭氧,体积流量比为1:100:10,在沉积气压为10Pa下,沉积得到所述的氢化非晶氧化硅膜。
实施例6
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法与实施例1相比,其区别在于,硅烷与氢气的体积流量比为1:0.5,其余参数和步骤与实施例1相同。
实施例7
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法与实施例1相比,其区别在于,硅烷与氢气的体积流量比为1:110,其余参数和步骤与实施例1相同。
实施例8
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法与实施例1相比,其区别在于,硅烷与二氧化碳的体积流量比为1:0.005,其余参数和步骤与实施例1相同。
实施例9
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法与实施例1相比,其区别在于,硅烷与二氧化碳的体积流量比为1:1.5,其余参数和步骤与实施例1相同。
实施例10
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法与实施例1相比,其区别在于,热丝与硅片之间的距离为10mm,其余参数和步骤与实施例1相同。
实施例11
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法与实施例1相比,其区别在于,热丝与硅片之间的距离为250mm,其余参数和步骤与实施例1相同。
实施例12
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法与实施例1相比,其区别在于,沉积气压为0.5Pa,其余参数和步骤与实施例1相同。
实施例13
本实施例提供了一种氢化非晶氧化硅膜的制备方法,所述制备方法与实施例1相比,其区别在于,沉积气压为150Pa,其余参数和步骤与实施例1相同。
对比例1
本对比例提供了一种采用PECVD法制备氢化非晶氧化硅膜的制备方法,所述制备方法包括:
将N型直拉单晶硅片(晶相100)进行清洗和表面织构化处理,放入PECVD设备内沉积α-SiOx:H层,通入硅烷和笑气,硅烷流量为90sccm,笑气流量为3.7slm,温度控制在450℃,压力为700mTorr,功率为2100W,沉积得到氢化非晶氧化硅层。
对上述实施例和对比例制备得到的氢化非晶氧化硅层进行少子寿命测试和表面复合速率测试,测试方法包括:
少子寿命测试,采用Semilab WT-2000设备进行测试;
表面复合速率测试,采用Semilab WT-2000测试和计算所得。测试结果如表1所示。
表1
Figure BDA0003765739850000101
Figure BDA0003765739850000111
由上表可知:
(1)实施例1与实施例6-7相比,可以看出,本发明中通过控制硅源与氢气的体积流量比为1:(1~100),保证沉积的膜层质量,若硅源与氢气的体积流量比低于1:1,由于氢原子可以钝化表面的悬挂键以及晶界,故氢气流量小,会造成氢原子供应不足,影响钝化效果;若硅源与氢气的体积流量比高于1:100,则过量的氢原子会对薄膜表面起到刻蚀作用,不仅影响成膜速率而且会对薄膜造成缺陷。
(2)实施例1与实施例8-9相比,可以看出,本发明中通过控制硅源与氧源之间的体积流量比,从而控制氧原子的数量,氧原子的数量直接影响薄膜中-SiH和-SiH2的组分比例,从而影薄膜的致密性,进而对薄膜的钝化效果发生影响。
(3)实施例1与实施例10-11相比,可以看出,本发明通过控制热丝与硅片之间的距离为20~200mm,热丝的热量能够保证热辐射至硅片表面,避免硅片温度过高,保证活性粒子的反应活性,保证成膜速度以及质量。若距离低于20mm,则热丝热辐射过快导致硅片温度过高,从而影响成膜质量;若距离高于200mm,则硅片温度不足,并且活性反应粒子到达硅片的距离过大,影响成膜速率。
(4)实施例1与实施例12-13相比,可以看出,本发明中通过对沉积气压进行控制,保证硅源浓度稳定,从而在保证成膜速率的情况下,保证成膜质量,若气压低于1Pa,则导致硅源浓度过低,影响成膜速率,若气压高于100Pa,则沉积速率过大,容易发生膜缺陷,影响致密性,而且气压过高容易导致原料分解不完全,造成薄膜中存在杂质。
(5)实施例1与对比例1相比,可以看出,
本发明中采用气态原料,包括硅源、氧源和氢气,氢气作为稀释气体和反应气体,利用热丝化学气相沉积法在硅片表面进行反应沉积,相比等离子体增强化学的气相沉积法(PECVD),具有更高的沉积速率,而且没有等离子体对薄膜表面轰击和损伤,不仅简化了镀膜工艺,而且具有更高的薄膜质量;此外,本申请中采用氢化非晶氧化硅薄膜作为钝化层,相比于氢化非晶硅薄膜具有更好的钝化效果,有效提高太阳能光电转换效率。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种氢化非晶氧化硅膜的制备方法,其特征在于,所述制备方法包括:
以硅源、氧源和氢气作为气源,热丝化学气相沉积法在硅片表面反应沉积得到所述的氢化非晶氧化硅膜。
2.根据权利要求1所述的制备方法,其特征在于,所述硅源包括硅烷和/或正硅酸乙酯;
优选地,所述氧源包括二氧化碳、臭氧或水中的一种或至少两种的组合。
3.根据权利要求1或2所述的制备方法,其特征在于,所述硅源为硅烷,所述氧源为二氧化碳;
优选地,所述硅源为正硅酸乙酯,所述氧源为臭氧。
4.根据权利要求1-3任一项所述的制备方法,其特征在于,所述硅源与氢气的体积流量比为1:(1~100);
优选地,所述硅源与氧源的体积流量比为1:(0.01~10)。
5.根据权利要求2-4任一项所述的制备方法,其特征在于,所述硅源为硅烷,所述硅烷与氧源的体积流量比为1:(0.01~1);
优选地,所述硅源为正硅酸乙酯,所述正硅酸乙酯与氧源的体积流量比为1:(1~10)。
6.根据权利要求1-5任一项所述的制备方法,其特征在于,所述热丝化学气相沉积法的热丝温度为1500~2000℃;
优选地,所述热丝化学气相沉积法中热丝与所述硅片之间的距离为20~200mm。
7.根据权利要求1-6任一项所述的制备方法,其特征在于,所述热丝化学气相沉积法中腔体温度为100~200℃;
优选地,所述热丝化学气相沉积法中沉积气压为1~100Pa。
8.一种氢化非晶氧化硅膜,其特征在于,所述氢化非晶氧化硅膜由权利要求1-7任一项所述的氢化非晶氧化硅膜的制备方法制备得到。
9.根据权利要求8所述的氢化非晶氧化硅膜,其特征在于,所述氢化非晶氧化硅膜的少子寿命为2.2~2.8ms;
优选地,所述氢化非晶氧化硅膜的表面复合速率为2.0~3.1cm/s。
10.一种太阳能电池,其特征在于,所述太阳能电池包括异质结太阳能电池,所述异质结太阳能电池中包括权利要求8或9所述的氢化非晶氧化硅膜。
CN202210885529.0A 2022-07-26 2022-07-26 一种氢化非晶氧化硅膜、其制备方法和用途 Pending CN115233184A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210885529.0A CN115233184A (zh) 2022-07-26 2022-07-26 一种氢化非晶氧化硅膜、其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210885529.0A CN115233184A (zh) 2022-07-26 2022-07-26 一种氢化非晶氧化硅膜、其制备方法和用途

Publications (1)

Publication Number Publication Date
CN115233184A true CN115233184A (zh) 2022-10-25

Family

ID=83674847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210885529.0A Pending CN115233184A (zh) 2022-07-26 2022-07-26 一种氢化非晶氧化硅膜、其制备方法和用途

Country Status (1)

Country Link
CN (1) CN115233184A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115527903A (zh) * 2022-11-24 2022-12-27 西安奕斯伟材料科技有限公司 一种用于背封硅片的设备和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562215A (zh) * 2009-05-27 2009-10-21 南开大学 提高单室沉积微晶硅基薄膜太阳电池效率的制备方法
CN102593253A (zh) * 2012-02-23 2012-07-18 上海中智光纤通讯有限公司 一种异质结晶硅太阳电池钝化层的制备方法
CN103590014A (zh) * 2013-10-12 2014-02-19 南昌大学 掺氧氢化非晶硅薄膜高效钝化晶硅异质结太阳能电池用硅片的方法
CN109449257A (zh) * 2018-05-04 2019-03-08 中国科学院上海微系统与信息技术研究所 非晶薄膜后氢化处理方法及硅异质结太阳电池制备方法
CN111509058A (zh) * 2020-05-02 2020-08-07 熵熠(上海)能源科技有限公司 一种以非晶氧化硅薄膜为本征钝化层的异质结太阳电池
CN111628032A (zh) * 2020-05-11 2020-09-04 中威新能源(成都)有限公司 一种硅异质结太阳电池本征钝化层的结构及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562215A (zh) * 2009-05-27 2009-10-21 南开大学 提高单室沉积微晶硅基薄膜太阳电池效率的制备方法
CN102593253A (zh) * 2012-02-23 2012-07-18 上海中智光纤通讯有限公司 一种异质结晶硅太阳电池钝化层的制备方法
CN103590014A (zh) * 2013-10-12 2014-02-19 南昌大学 掺氧氢化非晶硅薄膜高效钝化晶硅异质结太阳能电池用硅片的方法
CN109449257A (zh) * 2018-05-04 2019-03-08 中国科学院上海微系统与信息技术研究所 非晶薄膜后氢化处理方法及硅异质结太阳电池制备方法
CN111509058A (zh) * 2020-05-02 2020-08-07 熵熠(上海)能源科技有限公司 一种以非晶氧化硅薄膜为本征钝化层的异质结太阳电池
CN111628032A (zh) * 2020-05-11 2020-09-04 中威新能源(成都)有限公司 一种硅异质结太阳电池本征钝化层的结构及其制作方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
何玉平: "HWCVD法掺氧氢化非晶硅( a-SiOx∶H)钝化n-Cz-Si研究", 《真空科学与技术学报》, vol. 39, no. 6, pages 519 - 523 *
何玉平;袁贤;刘宁;黄海宾;: "气体流量对氢化非晶氧化硅(a-SiO_x∶H)钝化性能影响", 南昌工程学院学报, no. 04 *
李伟: "《太阳能电池材料及其应用》", 电子科技大学出版社, pages: 103 *
田罡煜;王涛;黄海宾;孙喜莲;高超;岳之浩;袁吉仁;周耐根;周浪;: "热丝CVD法沉积超薄α-Si∶H钝化膜", 半导体技术, no. 05 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115527903A (zh) * 2022-11-24 2022-12-27 西安奕斯伟材料科技有限公司 一种用于背封硅片的设备和方法
CN115527903B (zh) * 2022-11-24 2023-11-03 西安奕斯伟材料科技股份有限公司 一种用于背封硅片的设备和方法

Similar Documents

Publication Publication Date Title
US20110126893A1 (en) Thin film silicon solar cell and manufacturing method thereof
CN104094418A (zh) 硅基太阳能电池的钝化薄膜堆叠
JP2533639B2 (ja) P形炭素添加非晶質シリコンの生成方法
CN109004038B (zh) 太阳能电池及其制备方法和光伏组件
EP2656401B1 (en) Method for heterojunction interface passivation
JP2616929B2 (ja) 微結晶炭化ケイ素半導体膜の製造方法
WO2023184844A1 (zh) 硅基薄膜、太阳电池及其制备方法
CN112071951B (zh) 一种太阳能电池的制备方法和太阳能电池
CN112838143A (zh) 一种perc电池中氧化铝膜的沉积方法
CN111063612B (zh) 一种提高本征非晶硅钝化效果的镀膜工艺、钝化结构、异质结太阳能电池及制备工艺
CN115233184A (zh) 一种氢化非晶氧化硅膜、其制备方法和用途
CN114823969A (zh) 一种提升钝化接触结构性能的低温氢等离子体辅助退火方法和TOPCon太阳能电池
CN112030143A (zh) 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法
CN112267105A (zh) 一种用于硅异质结太阳电池生产的单腔pecvd沉积工艺
CN116613244A (zh) 太阳能电池钝化层的制备方法和太阳能电池
CN114725239B (zh) 一种异质结电池的制备方法
CN111403492A (zh) 太阳能电池用钝化层的制备方法以及太阳能电池的制备方法
Kakiuchi et al. High-rate deposition of intrinsic amorphous silicon layers for solar cells using very high frequency plasma at atmospheric pressure
CN104037264A (zh) 一种pecvd沉积低表面复合太阳电池介电层的方法
Guo et al. Surface passivation of crystalline silicon by intrinsic a-Si: H films deposited in remote low frequency inductively coupled plasma
Babal et al. Microstructure analysis of n-doped μc-SiO x: H reflector layers and their implementation in stable a-Si: H pin junctions
CN112018217A (zh) 硅异质结太阳能电池的制备方法及其太阳能电池
Jeon et al. Hydrogenated amorphous silicon thin films as passivation layers deposited by microwave remote-PECVD for heterojunction solar cells
Goya et al. Development of amorphous silicon/microcrystalline silicon tandem solar cells
CN102257630A (zh) 在衬底上沉积微晶硅的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination