CN115221801B - 基于动态近似建模的飞行器不确定性传播分析方法和装置 - Google Patents

基于动态近似建模的飞行器不确定性传播分析方法和装置 Download PDF

Info

Publication number
CN115221801B
CN115221801B CN202211141131.2A CN202211141131A CN115221801B CN 115221801 B CN115221801 B CN 115221801B CN 202211141131 A CN202211141131 A CN 202211141131A CN 115221801 B CN115221801 B CN 115221801B
Authority
CN
China
Prior art keywords
initial
meteorological
detection height
random variable
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211141131.2A
Other languages
English (en)
Other versions
CN115221801A (zh
Inventor
武泽平
李国盛
杨家伟
张德权
张为华
高经纬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202211141131.2A priority Critical patent/CN115221801B/zh
Publication of CN115221801A publication Critical patent/CN115221801A/zh
Application granted granted Critical
Publication of CN115221801B publication Critical patent/CN115221801B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请涉及一种基于动态近似建模的飞行器不确定性传播分析方法和装置。所述方法包括:根据气象飞行器探测高度仿真模型的输入随机变量参数信息,得到均匀分布的初始采样点后通过逆累积分布变换,这一过程将对某一区间的均匀采样变换为对不同分布类型概率密度随机输入的等概率采样,可以解决气象飞行器探测高度仿真模型的输入随机变量为非均匀分布时设计空间的随机采样问题,有更好的通用性;通过有界扩充型拉丁超立方对初始采样点进行扩充,可以实现新增采样点和已有采样点的整体均匀性,可以更加方便、动态地进行近似模型的构建以及不确定性传播分析。本发明具有人工参与过程少、迭代速度快,自动化程度高,设计结果性能可靠的优点。

Description

基于动态近似建模的飞行器不确定性传播分析方法和装置
技术领域
本申请涉及不确定性传播分析领域,特别是涉及一种基于动态近似建模的飞行器不确定性传播分析方法和装置。
背景技术
临近空间探测/干扰飞行器中各种不确定性因素相互耦合,导致实际探测高度与预期理想探测高度之间出现偏差,影响飞行器的探测/干扰效果。为此,开展临近空间探测/干扰飞行器探测高度偏差不确定性分析研究,明确不确定性因素的传播规律,对提高临近空间探测/干扰飞行器使用效能具有重要意义。
目前,研究飞行器不确定性传播的方法主要包括数值仿真方法和基于代理模型预测方法两种:
(1)采用弹道飞行仿真软件,如iSIGHT等,对不确定性条件下飞行器的弹道进行仿真,得出飞行器的实际探测高度。对所获得的探测高度结果进行不确定性传播分析。
(2)将代理模型技术用于飞行器探测高度预测,构造飞行器探测高度预示模型。根据试验设计方法进行采样,如拉丁超立方采样方法。在拥有一定规模的数据量后,采用克里金(Kriging)代理模型技术构建飞行器探测高度的代理模型以降低计算资源消耗。随着样本数量的增加,所构建代理模型的精度会不断提高。
然而,数值仿真方法求解成本高,计算效率低。为此,采用代理模型方法进行飞行器探测高度不确定性传播分析。
目前常用的基于代理模型的不确定性传播分析方法其缺点在于:
(1)采样点的数量难以事先指定,这在实际工程实践中很不方便,难以满足动态建模的发展需求;
(2) 现有采样方法和基于代理模型的近似建模方法通常难以处理非均匀分布类型的随机变量,这是基于代理模型的不确定性传播分析方法需要解决的。
发明内容
基于此,有必要针对上述技术问题,提供一种能够处理气象飞行器非均匀分布类型的随机变量的基于动态近似建模的飞行器不确定性传播分析方法、装置、计算机设备和存储介质。
一种基于动态近似建模的飞行器不确定性传播分析方法,所述方法包括:
获取气象飞行器探测高度仿真模型的输入随机变量参数信息,根据所述输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点;所述输入随机变量参数信息包括输入随机变量的分布类型、均值、标准差信息;
根据所述初始采样点,通过逆累积分布变换算法生成符合实际概率分布的初始真实采样点;
将所述初始真实采样点代入弹道仿真模型,根据所述弹道仿真模型的输出生成初始训练样本;
通过所述初始训练样本构建气象飞行器探测高度预测代理模型,检验所述气象飞行器探测高度预测代理模型的精度值是否小于预设阈值,若不满足,则通过有界扩充型拉丁超立方对所述初始采样点进行扩充,进而得到更新的训练样本并进行检验,直到所述更新的训练样本所构建的气象飞行器探测高度预测代理模型的精度值小于所述预设阈值,结束迭代;
通过最终的训练样本构建的气象飞行器探测高度预测代理模型进行气象飞行器探测高度不确定性传播分析。
在其中一个实施例中,还包括:获取气象飞行器探测高度仿真模型的输入随机变量参数信息;
根据所述输入随机变量参数信息,通过增强随机进化算法生成优化拉丁超立方体,得到均匀分布的初始采样点。
在其中一个实施例中,还包括:所述输入随机变量表示为:
Figure 826765DEST_PATH_IMAGE001
,其中,
Figure 664140DEST_PATH_IMAGE002
为所述输入随机变量的维度。
在其中一个实施例中,还包括:通过所述初始训练样本构建气象飞行器探测高度预测代理模型;
通过计算预设的验证点的观察值和所述气象飞行器探测高度预测代理模型预测响应值的均方根误差,检验所述气象飞行器探测高度预测代理模型的精度值是否小于预设阈值。
在其中一个实施例中,还包括:获取所述初始采样点构成的矩阵为:
Figure 384971DEST_PATH_IMAGE003
其中,
Figure 612691DEST_PATH_IMAGE004
为所述初始采样点中的一个样本点;
循环删除矩阵
Figure 444380DEST_PATH_IMAGE005
的一个样本点
Figure 277207DEST_PATH_IMAGE006
,依次得到矩阵
Figure 44306DEST_PATH_IMAGE007
为:
Figure 962583DEST_PATH_IMAGE008
Figure 722598DEST_PATH_IMAGE009
评估
Figure 878773DEST_PATH_IMAGE010
的样本均匀性,选取得到均匀性最优的
Figure 206986DEST_PATH_IMAGE011
为待扩充矩阵
Figure 956767DEST_PATH_IMAGE012
将所述待扩充矩阵
Figure 661418DEST_PATH_IMAGE013
的各列用
Figure 327892DEST_PATH_IMAGE014
表示,确定各列与第一列的变换矩阵
Figure 827006DEST_PATH_IMAGE015
,使得所述待扩充矩阵
Figure 329663DEST_PATH_IMAGE016
的各列表示为变换矩阵
Figure 306846DEST_PATH_IMAGE017
与第一列
Figure 703192DEST_PATH_IMAGE018
的相乘形式,得到演化矩阵;
将所述初始采样点构成的矩阵
Figure 497842DEST_PATH_IMAGE019
插入
Figure 346849DEST_PATH_IMAGE020
后的得到整体矩阵
Figure 3089DEST_PATH_IMAGE021
为:
Figure 253942DEST_PATH_IMAGE022
其中,
Figure 94859DEST_PATH_IMAGE023
为演化矩阵中的样本点;
采用排列优化算法,以
Figure 555796DEST_PATH_IMAGE024
的第一维排列为设计变量,保持
Figure 874782DEST_PATH_IMAGE025
的各列之间的变换矩阵
Figure 245721DEST_PATH_IMAGE026
不变,以叠加后的整体样本矩阵
Figure 867326DEST_PATH_IMAGE027
的最大最小距离准则值为目标函数进行优化,得到整体样本均匀性优良的样本矩阵
Figure 690926DEST_PATH_IMAGE028
Figure 813602DEST_PATH_IMAGE029
Figure 163681DEST_PATH_IMAGE030
重复演化、扩充步骤,直至样本数量满足要求,完成对所述初始采样点的有界扩充操作。
在其中一个实施例中,还包括:所述变换矩阵
Figure 346401DEST_PATH_IMAGE031
的计算公式为:
Figure 798242DEST_PATH_IMAGE032
其中,
Figure 459030DEST_PATH_IMAGE033
表示对角矩阵,所述变换矩阵
Figure 663616DEST_PATH_IMAGE034
Figure 282816DEST_PATH_IMAGE035
阶对角矩阵。
在其中一个实施例中,还包括:所述输入随机变量参数包括:第一阶段工作推力、第一阶段推力工作时间、第二阶段工作推力、第二阶段推力工作时间、发射倾角、平均比冲、质量比、阻力系数修正因子和载荷质量。
在其中一个实施例中,还包括:所述气象飞行器探测高度预测代理模型的精度值的预设阈值为0.01。
在其中一个实施例中,还包括:所述气象飞行器探测高度预测代理模型为克里金代理模型。
一种基于动态近似建模的飞行器不确定性传播分析装置,所述装置包括:
初始采样点确定模块,用于获取气象飞行器探测高度仿真模型的输入随机变量参数信息,根据所述输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点;所述输入随机变量参数信息包括输入随机变量的分布类型、均值、标准差信息;
逆累积分布变换模块,用于根据所述初始采样点,通过逆累积分布变换算法生成符合实际概率分布的初始真实采样点;
初始训练样本确定模块,用于将所述初始真实采样点代入弹道仿真模型,根据所述弹道仿真模型的输出生成初始训练样本;
有界扩充迭代模块,用于通过所述初始训练样本构建气象飞行器探测高度预测代理模型,检验所述气象飞行器探测高度预测代理模型的精度值是否小于预设阈值,若不满足,则通过有界扩充操作对所述初始采样点进行扩充,进而得到更新的训练样本并进行检验,直到所述更新的训练样本所构建的气象飞行器探测高度预测代理模型的精度值小于所述预设阈值,结束迭代;
不确定性传播分析模块,用于通过最终的训练样本构建的气象飞行器探测高度预测代理模型进行气象飞行器探测高度不确定性传播分析。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取气象飞行器探测高度仿真模型的输入随机变量参数信息,根据所述输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点;所述输入随机变量参数信息包括输入随机变量的分布类型、均值、标准差信息;
根据所述初始采样点,通过逆累积分布变换算法生成符合实际概率分布的初始真实采样点;
将所述初始真实采样点代入弹道仿真模型,根据所述弹道仿真模型的输出生成初始训练样本;
通过所述初始训练样本构建气象飞行器探测高度预测代理模型,检验所述气象飞行器探测高度预测代理模型的精度值是否小于预设阈值,若不满足,则通过有界扩充型拉丁超立方对所述初始采样点进行扩充,进而得到更新的训练样本并进行检验,直到所述更新的训练样本所构建的气象飞行器探测高度预测代理模型的精度值小于所述预设阈值,结束迭代;
通过最终的训练样本构建的气象飞行器探测高度预测代理模型进行气象飞行器探测高度不确定性传播分析。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取气象飞行器探测高度仿真模型的输入随机变量参数信息,根据所述输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点;所述输入随机变量参数信息包括输入随机变量的分布类型、均值、标准差信息;
根据所述初始采样点,通过逆累积分布变换算法生成符合实际概率分布的初始真实采样点;
将所述初始真实采样点代入弹道仿真模型,根据所述弹道仿真模型的输出生成初始训练样本;
通过所述初始训练样本构建气象飞行器探测高度预测代理模型,检验所述气象飞行器探测高度预测代理模型的精度值是否小于预设阈值,若不满足,则通过有界扩充型拉丁超立方对所述初始采样点进行扩充,进而得到更新的训练样本并进行检验,直到所述更新的训练样本所构建的气象飞行器探测高度预测代理模型的精度值小于所述预设阈值,结束迭代;
通过最终的训练样本构建的气象飞行器探测高度预测代理模型进行气象飞行器探测高度不确定性传播分析。
上述基于动态近似建模的飞行器不确定性传播分析方法、装置、计算机设备和存储介质,根据气象飞行器探测高度仿真模型的输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点,再通过逆累积分布变换,将初始采样点变换到真实概率分布空间,得到初始真实采样点,这一过程将对某一区间的均匀采样变换为对不同分布类型概率密度随机输入的等概率采样,可以解决气象飞行器探测高度仿真模型的输入随机变量为非均匀分布时设计空间的随机采样问题,具有更好的通用性;另外,通过有界扩充型拉丁超立方对初始采样点进行扩充,直到扩充后的样本点对应的训练样本能使构建的气象飞行器探测高度预测代理模型的精度满足预设要求,通过最终的训练样本构建的气象飞行器探测高度预测代理模型进行气象飞行器探测高度不确定性传播分析,通过有界扩充型拉丁超立方扩充样本的方式可以实现新增采样点和已有采样点的整体均匀性,可以更加方便、动态地进行近似模型的构建以及不确定性传播分析。本发明具有人工参与过程少、迭代速度快,自动化程度高,设计结果性能可靠的优点,可以提高气象飞行器探测高度偏差不确定性传播分析的效率。
附图说明
图1为一个实施例中基于动态近似建模的飞行器不确定性传播分析方法的流程示意图;
图2为一个实施例中不确定性条件下临近空间气象探测/干扰火箭高度偏差示意图;
图3为一个实施例中样本对设计空间的划分示意图;
图4为另一个实施例中基于动态近似建模的飞行器不确定性传播分析方法的流程示意图;
图5为一个具体实施例中探测高度模型逐步迭代后的RMSE变化图;
图6为一个具体实施例中400组弹道仿真值频数分布直方图;
图7为一个具体实施例中探测高度分布的概率密度函数动态收敛过程示意图;
图8为一个具体实施例中基于动态近似建模的飞行器不确定性传播分析装置的结构框图;
图9为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种基于动态近似建模的飞行器不确定性传播分析方法,包括以下步骤:
步骤102,获取气象飞行器探测高度仿真模型的输入随机变量参数信息,根据输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点。
气象飞行器,是用于探测中层大气参数的温度、压力、密度及风速、风向等气象参数的飞行器,或是达到气象干扰目的的飞行器。
临近空间气象飞行器探测高度模型如下:
Figure 815428DEST_PATH_IMAGE036
(1)
式中,
Figure 420853DEST_PATH_IMAGE037
为输入随机变量
Figure 89732DEST_PATH_IMAGE038
所组成的向量,
Figure 4467DEST_PATH_IMAGE039
为输入随机变量的维度。
临近空间气象飞行器模拟系统的输入参数测量不可避免地存在误差,各种不确定性因素相互耦合,导致实际探测高度与预期理想探测高度之间出现偏差。气象探测/干扰火箭是气象飞行器中的一种,如图2所示为临近空间气象探测/干扰火箭高度偏差示意图,实线为预期理想探测高度,虚线为实际探测高度,影响火箭的气象探测/干扰效果。
临近空间气象探测/干扰飞行器探测高度模型的输入随机变量通常为非均匀分布类型的随机变量,输入随机变量参数信息包括输入随机变量的分布类型、均值、标准差等信息。
通过优化拉丁超立方体的生成算法,如增强随机进化算法(ESE)得到均匀分布的初始采样点,实现的是在归一化的设计空间内进行实验设计得到均匀分布的样本点。
步骤104,根据初始采样点,通过逆累积分布变换算法生成符合实际概率分布的初始真实采样点。
本发明提出了基于逆累积分布函数的转换方法,将任意区间的均匀分布的训练集转换为不同分布的训练集。通过这一措施,可以采用普通的试验设计方法生成样本集来训练代理模型,可以通过归一化过程和逆累积分布变换转换过程来解决临近空间气象探测/干扰飞行器探测高度模型的输入随机变量任何设计空间的随机采样问题。
逆累积分布变换方法通常被认为是一种采样非均匀概率密度的方法,用于生成服从指定概率密度分布的点集。对于服从概率密度函数
Figure 24376DEST_PATH_IMAGE040
的随机变量
Figure 292546DEST_PATH_IMAGE041
,其累积分布函数(CDF)如下所示:
Figure 222456DEST_PATH_IMAGE042
(2)
使用累积分布函数
Figure 917879DEST_PATH_IMAGE043
,可以将服从概率密度函数的分布在任意区间的随机变量集映射为均匀分布在[0,1]中的随机变量集。相反,逆累积分布变换
Figure 549718DEST_PATH_IMAGE044
可以将[0,1]中的统一变量集映射到任何区间内服从指定概率密度函数的变量集。
对于均匀分布在[0,1]中的随机变量
Figure 621579DEST_PATH_IMAGE045
,可使用逆累积分布变换方法获得服从概率密度函数的随机变量,如下所示:
Figure 671575DEST_PATH_IMAGE046
(3)
步骤106,将初始真实采样点代入弹道仿真模型,根据弹道仿真模型的输出生成初始训练样本。
将样本点变换到真实概率分布空间,带入弹道仿真模型计算得出对应实际探测高度,形成样本集。
步骤108,通过初始训练样本构建气象飞行器探测高度预测代理模型,检验气象飞行器探测高度预测代理模型的精度值是否小于预设阈值,若不满足,则通过有界扩充型拉丁超立方对初始采样点进行扩充,进而得到更新的训练样本并进行检验,直到更新的训练样本所构建的气象飞行器探测高度预测代理模型的精度值小于预设阈值,结束迭代。
气象飞行器探测高度预测代理模型可以是克里金模型。基于样本集和克里金模型构建实际探测高度的代理模型。
通过计算预设的验证点的观察值和气象飞行器探测高度预测代理模型预测响应值的均方根误差,检验气象飞行器探测高度预测代理模型的精度值是否小于预设阈值。若满足则进入下一步,否则通过有界扩充型拉丁超立方扩充样本。均方根误差的计算公式为:
Figure 272320DEST_PATH_IMAGE047
(4)
其中,
Figure 532400DEST_PATH_IMAGE048
表示第i个验证点的观察值,
Figure 267007DEST_PATH_IMAGE049
表示代理模型的相应预测响应。
Figure 30564DEST_PATH_IMAGE050
是验证点的数量,从设计空间中随机选择。
有界扩充型拉丁超立方扩充样本的步骤为:
(i)初定初始采样个数为
Figure 943156DEST_PATH_IMAGE051
生成初始设计:应用增强随机进化算法(ESE)生成优化拉丁超立方体(OLHD),得到
Figure 424953DEST_PATH_IMAGE052
个均匀分布的样本
Figure 573038DEST_PATH_IMAGE053
,其中
Figure 581314DEST_PATH_IMAGE054
表示第
Figure 55020DEST_PATH_IMAGE055
个样本。样本矩阵
Figure 899480DEST_PATH_IMAGE056
见式(5)
Figure 585676DEST_PATH_IMAGE057
(5)
(ii)演化操作:循环删除初始实验设计矩阵
Figure 589404DEST_PATH_IMAGE058
的一个样本点
Figure 827487DEST_PATH_IMAGE059
得到矩阵
Figure 283876DEST_PATH_IMAGE060
Figure 914709DEST_PATH_IMAGE061
(6)
且评估删除后的样本均匀性。选取删除操作后均匀性最优的
Figure 507364DEST_PATH_IMAGE062
作为待扩充矩阵
Figure 57294DEST_PATH_IMAGE063
。此时待扩充矩阵的行数为
Figure 125614DEST_PATH_IMAGE064
且包含
Figure 153612DEST_PATH_IMAGE065
个样本点,从而自然地将每一维度的设计域分为
Figure 866353DEST_PATH_IMAGE066
个间隔。
待扩充矩阵
Figure 462551DEST_PATH_IMAGE067
的各列用
Figure 893532DEST_PATH_IMAGE068
表示,则演化矩阵的各列可通过对应的变换矩阵
Figure 725222DEST_PATH_IMAGE069
与第一列
Figure 417103DEST_PATH_IMAGE070
相乘得到:
Figure 308836DEST_PATH_IMAGE071
(7)
式中的
Figure 961534DEST_PATH_IMAGE072
为变换矩阵,该矩阵为
Figure 472281DEST_PATH_IMAGE073
阶对角矩阵,
Figure 894035DEST_PATH_IMAGE074
可以通过下式进行计算
Figure 346882DEST_PATH_IMAGE075
(8)
式中,
Figure 221297DEST_PATH_IMAGE076
表示对角矩阵。
所有变换矩阵
Figure 925948DEST_PATH_IMAGE077
确定后,整个演化矩阵
Figure 77575DEST_PATH_IMAGE078
的排列仅与第一列的排列有关。仅优化演化矩阵的第一列,保持变换矩阵
Figure 576689DEST_PATH_IMAGE079
不变,即可实现对整个待扩充矩阵的优化。
(iii)有界扩充操作:
Figure 938401DEST_PATH_IMAGE080
包含
Figure 774638DEST_PATH_IMAGE081
个样本,即每一维度被均匀分为
Figure 436564DEST_PATH_IMAGE082
个间隔,
Figure 841000DEST_PATH_IMAGE083
中的所有间隔将形成一个
Figure 830953DEST_PATH_IMAGE084
的实验空间
Figure 346248DEST_PATH_IMAGE085
。将初始矩阵
Figure 987314DEST_PATH_IMAGE086
叠加到实验空间
Figure 562652DEST_PATH_IMAGE087
中,即:
Figure 571059DEST_PATH_IMAGE088
(9)
则将样本矩阵
Figure 155624DEST_PATH_IMAGE089
插入
Figure 385617DEST_PATH_IMAGE090
后的得到的整体矩阵
Figure 131856DEST_PATH_IMAGE091
为:
Figure 955456DEST_PATH_IMAGE092
(10)
采用排列优化算法,以
Figure 953499DEST_PATH_IMAGE093
的第一维排列为设计变量,保持
Figure 178944DEST_PATH_IMAGE094
的各列之间的变换矩阵
Figure 96084DEST_PATH_IMAGE095
不变,以叠加后的整体样本矩阵
Figure 797193DEST_PATH_IMAGE096
的最大最小距离准则值为目标函数进行优化,得到整体样本均匀性优良的设计
Figure 457981DEST_PATH_IMAGE097
Figure 272354DEST_PATH_IMAGE098
Figure 766920DEST_PATH_IMAGE099
关系具体示意如图3所示:
Figure 299532DEST_PATH_IMAGE100
(11)
(iv)对
Figure 498433DEST_PATH_IMAGE101
重复上述演化、扩充步骤,直至样本数量满足要求。由于每轮扩充后的总长度都只比上一轮多出先前最小距离的一般,因此这种扩充方法的总长度是有边界的。
步骤110,通过最终的训练样本构建的气象飞行器探测高度预测代理模型进行气象飞行器探测高度不确定性传播分析。
随着样本数量的增加,所构建代理模型的精度会不断提高。通过所构建的代理模型得到大量输出探测高度的预测值,基于预测值进行探测高度的不确定性传播分析。
上述基于动态近似建模的飞行器不确定性传播分析方法中,根据气象飞行器探测高度仿真模型的输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点,再通过逆累积分布变换,将初始采样点变换到真实概率分布空间,得到初始真实采样点,这一过程将对某一区间的均匀采样变换为对不同分布类型概率密度随机输入的等概率采样,可以解决气象飞行器探测高度仿真模型的输入随机变量为非均匀分布时设计空间的随机采样问题,具有更好的通用性;另外,通过有界扩充型拉丁超立方对初始采样点进行扩充,直到扩充后的样本点对应的训练样本能使构建的气象飞行器探测高度预测代理模型的精度满足预设要求,通过最终的训练样本构建的气象飞行器探测高度预测代理模型进行气象飞行器探测高度不确定性传播分析,通过有界扩充型拉丁超立方扩充样本的方式可以实现新增采样点和已有采样点的整体均匀性,可以更加方便、动态地进行近似模型的构建以及不确定性传播分析。本发明具有人工参与过程少、迭代速度快,自动化程度高,设计结果性能可靠的优点,可以提高气象飞行器探测高度偏差不确定性传播分析的效率。
在另一个实施例中,如图4所示,提供了一种基于动态近似建模的飞行器不确定性传播分析方法,包括:
(1)输入模型随机变量参数,如随机变量的分布类型、均值、标准差等;
(2)根据模型输入的维度,通过有界扩充型拉丁超立方生成初始试验设计;
(3)通过对拉丁超立方进行逆累积分布变换生成符合实际概率分布的采样点;
(4)将采样点带入弹道仿真模型得到模型输出,生成样本点的响应数据;
(5)将得到的样本点带入克里金模型进行超参数的训练,构建气象飞行器探测高度预测代理模型;
(6)计算均方根误差(Root mean square error, RMSE)检验模型精度是否满足要求,若满足则进入下一步,否则通过有界扩充型拉丁超立方扩充样本;
(7)模型精度满足后,通过所构建的代理模型进行探测高度的不确定性传播分析。
在一个具体实施例中,气象飞行器为空间气象探测/干扰火箭,针对临近空间气象探测/干扰火箭探测高度偏差输入随机变量存在多概率密度分布的情况,通过逆累积分布变换将非均匀分布的随机采样转化为均匀区间的等概率采样。采用有界扩充型拉丁超立方实验设计方法在设计空间中动态生成均匀分布的样本点集,通过逆累积分布变换,将样本点变换到真实概率分布空间,带入弹道仿真模型计算得出对应实际探测高度,形成样本集并基于样本集和克里金模型构建实际探测高度的代理模型。通过所构建的代理模型得到大量输出探测高度的预测值,基于预测值进行探测高度的不确定性传播分析。
气象火箭的输入随机变量参数设置如表1所示。
表1 气象火箭输入随机变量参数设置
Figure 823104DEST_PATH_IMAGE102
首先,根据ESE方法生成15个样本点的初始实验设计;通过对拉丁超立方进行逆累积分布变换生成符合实际概率分布的采样点;将其将采样点带入弹道仿真模型得到模型输出,生成样本点;通过得到的样本点构建气象火箭探测高度预测代理模型;在模型精度不足时通过有界扩充操作对样本集进行扩充;模型精度满足后,通过所构建的代理模型进行探测高度的不确定性传播分析。具体步骤如下:
(1)根据模型输入的维度,通过有界扩充型拉丁超立方生成初始试验设计;
(2)通过对拉丁超立方进行逆累积分布变换生成符合实际概率分布的采样点;
(3)将采样点带入弹道仿真模型得到模型输出,生成样本点;
(4)通过得到的样本点构建气象火箭探测高度预测代理模型;
(5)检验模型精度是否满足要求,若满足则进入下一步,否则通过有界扩充型拉丁超立方扩充样本;
(6)模型精度满足后,通过所构建的代理模型进行探测高度的不确定性传播分析。
案例1:气象探测火箭探测高度偏差不确定性传播分析
采用本方法建立气象探测火箭探测高度偏差预测模型,并基于所构建模型进行不确定性传播分析。首先应用ESE方法生成15个采样点的实验设计,通过对采样点进行逆累积分布变换生成符合实际概率分布的采样点。将真实采样点带入弹道仿真模型得到模型输出,生成初始训练样本。基于初始样本训练克里金代理模型,并检验模型精度。
通过得到的样本点构建气象火箭探测高度预测代理模型;在模型精度不足时通过有界扩充操作对样本集进行扩充;在扩充四次后,模型精度低于0.01,达到预期标准。在预测精度不满足要求的情况下,将检验用到的样本并入初始样本中继续进行建模,重复样本的扩充以及模型的检验,直至模型的预测精度满足设计标准。在测试样本扩充四次后,模型精度低于0.01,达到预期标准。采用Kriging模型通过本方法逐次训练的代理模型测试结果如图5所示。随着训练样本的逐渐增多,代理模型越来越多地反映模型的真实信息,对于新样本的预测精度逐渐提高。模型精度满足后,通过所构建的代理模型进行探测高度的不确定性传播分析。将蒙特卡洛方法产生的随机采样点带入所构建模型中,得到探测高度的预测输出,并对结果的概率密度函数进行拟合。
获得探测高度偏差的概率信息列于表2。从表2中可知,400组弹道仿真探测高度平均值为119.9134 km,Kriging预测探测高度的均值和方差迭代过程也列在表2中。图6所示为400组弹道仿真值频数分布直方图,图7为Kriging模型预测值的概率密度函数(Probability Density Function, PDF)曲线迭代过程示意图。本文用400组数据进行弹道仿真计算,少量的数据导致无法获得精确的概率信息。随着样本数据的增加,其概率曲线会逐渐平滑。Kriging预测值由1×105组样本得到,因此概率曲线较光滑。对比图6和图7,可以看出,在整体趋势上Kriging预测值的概率曲线与弹道仿真的曲线较为接近。
表2 推力偏差概率信息
Figure 347626DEST_PATH_IMAGE103
应该理解的是,虽然图1、4的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1、4中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图8所示,提供了一种基于动态近似建模的飞行器不确定性传播分析装置,包括:初始采样点确定模块802、逆累积分布变换模块804、初始训练样本确定模块806、有界扩充迭代模块808和不确定性传播分析模块810,其中:
初始采样点确定模块802,用于获取气象飞行器探测高度仿真模型的输入随机变量参数信息,根据输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点;输入随机变量参数信息包括输入随机变量的分布类型、均值、标准差信息;
逆累积分布变换模块804,用于根据初始采样点,通过逆累积分布变换算法生成符合实际概率分布的初始真实采样点;
初始训练样本确定模块806,用于将初始真实采样点代入弹道仿真模型,根据弹道仿真模型的输出生成初始训练样本;
有界扩充迭代模块808,用于通过初始训练样本构建气象飞行器探测高度预测代理模型,检验气象飞行器探测高度预测代理模型的精度值是否小于预设阈值,若不满足,则通过有界扩充操作对初始采样点进行扩充,进而得到更新的训练样本并进行检验,直到更新的训练样本所构建的气象飞行器探测高度预测代理模型的精度值小于预设阈值,结束迭代;
不确定性传播分析模块810,用于通过最终的训练样本构建的气象飞行器探测高度预测代理模型进行气象飞行器探测高度不确定性传播分析。
初始采样点确定模块802还用于获取气象飞行器探测高度仿真模型的输入随机变量参数信息;根据输入随机变量参数信息,通过增强随机进化算法生成优化拉丁超立方体,得到均匀分布的初始采样点。
有界扩充迭代模块808还用于通过初始训练样本构建气象飞行器探测高度预测代理模型;通过计算预设的验证点的观察值和气象飞行器探测高度预测代理模型预测响应值的均方根误差,检验气象飞行器探测高度预测代理模型的精度值是否小于预设阈值。
有界扩充迭代模块808还用于获取初始采样点构成的矩阵为:
Figure 242901DEST_PATH_IMAGE104
其中,
Figure 511071DEST_PATH_IMAGE105
为初始采样点中的一个样本点;
循环删除矩阵
Figure 300035DEST_PATH_IMAGE106
的一个样本点
Figure 120093DEST_PATH_IMAGE107
,依次得到矩阵
Figure 627297DEST_PATH_IMAGE108
为:
Figure 699159DEST_PATH_IMAGE109
Figure 217996DEST_PATH_IMAGE110
评估
Figure 349900DEST_PATH_IMAGE111
的样本均匀性,选取得到均匀性最优的
Figure 469034DEST_PATH_IMAGE112
为待扩充矩阵
Figure 79007DEST_PATH_IMAGE113
将待扩充矩阵
Figure 108143DEST_PATH_IMAGE114
的各列用
Figure 755156DEST_PATH_IMAGE115
表示,确定各列与第一列的变换矩阵
Figure 502533DEST_PATH_IMAGE116
,使得待扩充矩阵
Figure 650617DEST_PATH_IMAGE117
的各列表示为变换矩阵
Figure 658893DEST_PATH_IMAGE118
与第一列
Figure 867021DEST_PATH_IMAGE119
的相乘形式,得到演化矩阵;
将初始采样点构成的矩阵
Figure 445901DEST_PATH_IMAGE120
插入
Figure 663255DEST_PATH_IMAGE121
后的得到整体矩阵
Figure 135825DEST_PATH_IMAGE122
为:
Figure 905067DEST_PATH_IMAGE123
其中,
Figure 95877DEST_PATH_IMAGE124
为演化矩阵中的样本点;
采用排列优化算法,以
Figure 585764DEST_PATH_IMAGE125
的第一维排列为设计变量,保持
Figure 319365DEST_PATH_IMAGE126
的各列之间的变换矩阵
Figure 869295DEST_PATH_IMAGE127
不变,以叠加后的整体样本矩阵
Figure 672035DEST_PATH_IMAGE128
的最大最小距离准则值为目标函数进行优化,得到整体样本均匀性优良的样本矩阵
Figure 965613DEST_PATH_IMAGE129
Figure 412775DEST_PATH_IMAGE130
Figure 274551DEST_PATH_IMAGE131
重复演化、扩充步骤,直至样本数量满足要求,完成对初始采样点的有界扩充操作。
关于基于动态近似建模的飞行器不确定性传播分析装置的具体限定可以参见上文中对于基于动态近似建模的飞行器不确定性传播分析方法的限定,在此不再赘述。上述基于动态近似建模的飞行器不确定性传播分析装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图9所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种基于动态近似建模的飞行器不确定性传播分析方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图9中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,该存储器存储有计算机程序,该处理器执行计算机程序时实现上述方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink) DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种基于动态近似建模的飞行器不确定性传播分析方法,其特征在于,所述方法包括:
获取气象飞行器探测高度仿真模型的输入随机变量参数信息,根据所述输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点;所述输入随机变量参数信息包括输入随机变量的分布类型、均值、标准差信息;所述输入随机变量参数包括:第一阶段工作推力、第一阶段推力工作时间、第二阶段工作推力、第二阶段推力工作时间、发射倾角、平均比冲、质量比、阻力系数修正因子和载荷质量;
根据所述初始采样点,通过逆累积分布变换算法生成符合实际概率分布的初始真实采样点;
将所述初始真实采样点代入弹道仿真模型,根据所述弹道仿真模型的输出生成初始训练样本;
通过所述初始训练样本构建气象飞行器探测高度预测代理模型,检验所述气象飞行器探测高度预测代理模型的精度值是否小于预设阈值,若不满足,则通过有界扩充型拉丁超立方对所述初始采样点进行扩充,进而得到更新的训练样本并进行检验,直到所述更新的训练样本所构建的气象飞行器探测高度预测代理模型的精度值小于所述预设阈值,结束迭代;
通过最终的训练样本构建的气象飞行器探测高度预测代理模型进行气象飞行器探测高度不确定性传播分析;
获取气象飞行器探测高度仿真模型的输入随机变量参数信息,根据所述输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点,包括:
获取气象飞行器探测高度仿真模型的输入随机变量参数信息;
根据所述输入随机变量参数信息,通过增强随机进化算法生成优化拉丁超立方体,得到均匀分布的初始采样点。
2.根据权利要求1所述的方法,其特征在于,所述输入随机变量表示为:
Figure 806378DEST_PATH_IMAGE002
,其中,
Figure 316993DEST_PATH_IMAGE004
为所述输入随机变量的维度。
3.根据权利要求1所述的方法,其特征在于,通过所述初始训练样本构建气象飞行器探测高度预测代理模型,检验所述气象飞行器探测高度预测代理模型的精度值是否小于预设阈值,包括:
通过所述初始训练样本构建气象飞行器探测高度预测代理模型;
通过计算预设的验证点的观察值和所述气象飞行器探测高度预测代理模型预测响应值的均方根误差,检验所述气象飞行器探测高度预测代理模型的精度值是否小于预设阈值。
4.根据权利要求3所述的方法,其特征在于,通过有界扩充型拉丁超立方对所述初始采样点进行扩充,包括:
获取所述初始采样点构成的矩阵为:
Figure 831151DEST_PATH_IMAGE006
其中,
Figure 304989DEST_PATH_IMAGE008
为所述初始采样点中的一个样本点;
循环删除矩阵
Figure 588203DEST_PATH_IMAGE010
的一个样本点
Figure 269720DEST_PATH_IMAGE012
,依次得到矩阵
Figure 5595DEST_PATH_IMAGE014
为:
Figure 938916DEST_PATH_IMAGE016
Figure 686423DEST_PATH_IMAGE018
评估
Figure 273262DEST_PATH_IMAGE020
的样本均匀性,选取得到均匀性最优的
Figure 496433DEST_PATH_IMAGE022
为待扩充矩阵
Figure 967866DEST_PATH_IMAGE024
将所述待扩充矩阵
Figure 832529DEST_PATH_IMAGE026
的各列用
Figure 996794DEST_PATH_IMAGE028
表示,确定各列与第一列的变换矩阵
Figure 831895DEST_PATH_IMAGE030
,使得所述待扩充矩阵
Figure 575860DEST_PATH_IMAGE032
的各列表示为变换矩阵
Figure 297960DEST_PATH_IMAGE030
与第一列
Figure 367547DEST_PATH_IMAGE034
的相乘形式,得到演化矩阵;
将所述初始采样点构成的矩阵
Figure 689944DEST_PATH_IMAGE036
插入
Figure 503179DEST_PATH_IMAGE038
后的得到整体矩阵
Figure 469998DEST_PATH_IMAGE040
为:
Figure 851432DEST_PATH_IMAGE042
其中,
Figure DEST_PATH_IMAGE044
为演化矩阵中的样本点;
采用排列优化算法,以
Figure DEST_PATH_IMAGE046
的第一维排列为设计变量,保持
Figure DEST_PATH_IMAGE048
的各列之间的变换矩阵
Figure DEST_PATH_IMAGE050
不变,以叠加后的整体样本矩阵
Figure DEST_PATH_IMAGE052
的最大最小距离准则值为目标函数进行优化,得到整体样本均匀性优良的样本矩阵
Figure DEST_PATH_IMAGE054
Figure DEST_PATH_IMAGE056
Figure DEST_PATH_IMAGE058
重复演化、扩充步骤,直至样本数量满足要求,完成对所述初始采样点的有界扩充操作。
5.根据权利要求4所述的方法,其特征在于,所述变换矩阵
Figure DEST_PATH_IMAGE060
的计算公式为:
Figure DEST_PATH_IMAGE062
其中,
Figure DEST_PATH_IMAGE064
表示对角矩阵,所述变换矩阵
Figure DEST_PATH_IMAGE066
Figure DEST_PATH_IMAGE068
阶对角矩阵。
6.根据权利要求1所述的方法,其特征在于,所述气象飞行器探测高度预测代理模型的精度值的预设阈值为0.01。
7.根据权利要求1至6任意一项所述的方法,其特征在于,所述气象飞行器探测高度预测代理模型为克里金代理模型。
8.一种基于动态近似建模的飞行器不确定性传播分析装置,其特征在于,所述装置包括:
初始采样点确定模块,用于获取气象飞行器探测高度仿真模型的输入随机变量参数信息,根据所述输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点;所述输入随机变量参数信息包括输入随机变量的分布类型、均值、标准差信息;所述输入随机变量参数包括:第一阶段工作推力、第一阶段推力工作时间、第二阶段工作推力、第二阶段推力工作时间、发射倾角、平均比冲、质量比、阻力系数修正因子和载荷质量;
逆累积分布变换模块,用于根据所述初始采样点,通过逆累积分布变换算法生成符合实际概率分布的初始真实采样点;
初始训练样本确定模块,用于将所述初始真实采样点代入弹道仿真模型,根据所述弹道仿真模型的输出生成初始训练样本;
有界扩充迭代模块,用于通过所述初始训练样本构建气象飞行器探测高度预测代理模型,检验所述气象飞行器探测高度预测代理模型的精度值是否小于预设阈值,若不满足,则通过有界扩充操作对所述初始采样点进行扩充,进而得到更新的训练样本并进行检验,直到所述更新的训练样本所构建的气象飞行器探测高度预测代理模型的精度值小于所述预设阈值,结束迭代;
不确定性传播分析模块,用于通过最终的训练样本构建的气象飞行器探测高度预测代理模型进行气象飞行器探测高度不确定性传播分析;
初始采样点确定模块还用于获取气象飞行器探测高度仿真模型的输入随机变量参数信息,根据所述输入随机变量参数信息,通过优化拉丁超立方体的生成算法得到均匀分布的初始采样点,包括:
获取气象飞行器探测高度仿真模型的输入随机变量参数信息;
根据所述输入随机变量参数信息,通过增强随机进化算法生成优化拉丁超立方体,得到均匀分布的初始采样点。
CN202211141131.2A 2022-09-20 2022-09-20 基于动态近似建模的飞行器不确定性传播分析方法和装置 Active CN115221801B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211141131.2A CN115221801B (zh) 2022-09-20 2022-09-20 基于动态近似建模的飞行器不确定性传播分析方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211141131.2A CN115221801B (zh) 2022-09-20 2022-09-20 基于动态近似建模的飞行器不确定性传播分析方法和装置

Publications (2)

Publication Number Publication Date
CN115221801A CN115221801A (zh) 2022-10-21
CN115221801B true CN115221801B (zh) 2022-12-09

Family

ID=83617785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211141131.2A Active CN115221801B (zh) 2022-09-20 2022-09-20 基于动态近似建模的飞行器不确定性传播分析方法和装置

Country Status (1)

Country Link
CN (1) CN115221801B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115913413B (zh) * 2023-02-22 2023-07-14 西安电子科技大学 一种智能化空间毫米波传播特征分析方法
CN116522068B (zh) * 2023-07-03 2023-09-15 西安羚控电子科技有限公司 一种试验参数生成方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933261A (zh) * 2015-06-29 2015-09-23 北京理工大学 一种高效序列拉丁超立方试验设计方法
WO2020000248A1 (zh) * 2018-06-27 2020-01-02 大连理工大学 一种基于空间重构的航空发动机过渡态加速过程关键性能参数预测方法
CN113705045A (zh) * 2021-08-20 2021-11-26 上海交通大学 一种基于代理模型的转静子系统碰摩可靠性分析方法
CN114662285A (zh) * 2022-03-01 2022-06-24 南京航空航天大学 一种高速飞行器火力控制模型的智能解算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104933261A (zh) * 2015-06-29 2015-09-23 北京理工大学 一种高效序列拉丁超立方试验设计方法
WO2020000248A1 (zh) * 2018-06-27 2020-01-02 大连理工大学 一种基于空间重构的航空发动机过渡态加速过程关键性能参数预测方法
CN113705045A (zh) * 2021-08-20 2021-11-26 上海交通大学 一种基于代理模型的转静子系统碰摩可靠性分析方法
CN114662285A (zh) * 2022-03-01 2022-06-24 南京航空航天大学 一种高速飞行器火力控制模型的智能解算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于PCE的飞行器不确定性量化方法;刘博等;《系统仿真学报》;20181208(第12期);63-70 *
基于主动学习Kriging的飞行器射程评估;王浩等;《兵器装备工程学报》;20190525(第05期);62-66 *

Also Published As

Publication number Publication date
CN115221801A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
CN115221801B (zh) 基于动态近似建模的飞行器不确定性传播分析方法和装置
CN112434448B (zh) 基于多点加点的代理模型约束优化方法和装置
CN110795887B (zh) 多应力加速寿命试验分析方法和装置
KR20220020881A (ko) 기계 학습을 이용한 신속한 디지털 원자로 설계
CN112749495A (zh) 基于多点加点的代理模型优化方法、装置和计算机设备
CN112906295B (zh) 固体火箭发动机燃速预示方法、装置和设备
CN111104644A (zh) 可靠性评估方法、装置、计算机设备和存储介质
CN111159904A (zh) 一种用于地热资源量估算评价的方法
CN114595577B (zh) 基于克里金代理模型的分阶段高效约束优化方法和装置
CN101399708B (zh) 一种建立网络性能模型的方法和设备
CN116842853B (zh) 用于不确定度量化的导弹气动特性预测模型构建方法
CN111507591B (zh) 电力系统状态确定方法、装置、计算机介质及存储介质
CN106874561B (zh) 基于牛顿迭代的多学科不确定性传播分析方法
CN115186486A (zh) 导弹低高精度性能数据的独立融合建模及响应预测方法
CN110083946B (zh) 一种基于无约束优化模型的多状态模型修正的方法
US9245067B2 (en) Probabilistic method and system for testing a material
CN114627963B (zh) 蛋白数据填充方法、系统、计算机设备及可读存储介质
CN111651904B (zh) 基于机器学习的流场数据计算方法和装置
CN115291247A (zh) 精密对流层建模方法、装置、设备和介质
CN115859783A (zh) 用于核反应堆仿真测试的多保真度网络构建方法和装置
CN115712977A (zh) 一种基于Kriging代理模型辅助的齿轮减速器稳健优化设计方法
CN111210105B (zh) 连续工作性能验证、装置、计算机设备和存储介质
CN113361155A (zh) 一种热物性参数辨识结果置信区间估计方法及系统
CN114200843B (zh) 喉栓式固体姿轨控推力快速预示方法
CN112884052A (zh) 结构模态参数提取方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant