CN115207109A - 半导体磊晶晶圆 - Google Patents

半导体磊晶晶圆 Download PDF

Info

Publication number
CN115207109A
CN115207109A CN202210351304.7A CN202210351304A CN115207109A CN 115207109 A CN115207109 A CN 115207109A CN 202210351304 A CN202210351304 A CN 202210351304A CN 115207109 A CN115207109 A CN 115207109A
Authority
CN
China
Prior art keywords
ohmic contact
layer
contact layer
substrate
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210351304.7A
Other languages
English (en)
Inventor
黄朝兴
金宇中
戴文长
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Visual Photonics Epitaxy Co Ltd
Original Assignee
Visual Photonics Epitaxy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visual Photonics Epitaxy Co Ltd filed Critical Visual Photonics Epitaxy Co Ltd
Publication of CN115207109A publication Critical patent/CN115207109A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/6631Bipolar junction transistors [BJT] with an active layer made of a group 13/15 material
    • H01L29/66318Heterojunction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • H01L31/1035Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type the devices comprising active layers formed only by AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • H01L29/0817Emitter regions of bipolar transistors of heterojunction bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • H01S5/32358Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers containing very small amounts, usually less than 1%, of an additional III or V compound to decrease the bandgap strongly in a non-linear way by the bowing effect
    • H01S5/32366(In)GaAs with small amount of N

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

一种半导体磊晶晶圆,包含基板、第一磊晶堆叠结构、第一欧姆接触层与第二磊晶堆叠结构。其特征在于欧姆接触层是使用含氮量低的化合物,且通过使欧姆接触层于长晶过程时不产生明显的应力。如此,形成于欧姆接触层之上的第二磊晶堆叠结构,能有良好磊晶品质。由此提供制作GaAs集成电路或InP集成电路用的高品质半导体磊晶晶圆,同时不影响欧姆接触层的欧姆接触特性与减少干蚀刻制程时所生成的反应物。

Description

半导体磊晶晶圆
技术领域
一种半导体磊晶晶圆,尤其是一种能制作出GaAs集成电路或InP集成电路的半导体磊晶晶圆,并不使用GaN材料系统,其中两半导体组件之间具有低含氮量且相对于基板不产生明显应力的欧姆接触层,其中两半导体组件为垂直堆叠的相对关系。
背景技术
在半导体领域中,不论是对半导体物理和材料的特性研究,还是半导体组件的制作,金属与半导体相互接触发挥着极其重要的作用,接触性能的好坏直接影响半导体组件的品质。金属-半导体接触一般分为两类:一类是具有整流作用的萧特基接触;另一类是非整流作用的欧姆接触。通常半导体组件是采用欧姆接触做电气连接,欧姆接触品质的好坏、接触电阻的大小和散热性会影响到半导体组件的效率、RF特性、光电特性、杂讯、增益或开关速度等主要特性。一般而言,金属与半导体层间的欧姆接触电阻越小越好,这就需要实现良好的欧姆接触,欧姆接触性能越好,欧姆接触电阻越低。
参阅图1,图1是现有技术的异质接面双极性晶体管(HBT)的示意图,射极的欧姆接触层普遍使用砷化铟镓(InGaAs)。在美国专利公开号2003/0025128 A1一案中,揭示了射极的欧姆接触层为砷锑化铟镓(InGaAsSb)。可知,现有的欧姆接触层是通过含铟的材料来使射极的欧姆接触层的电阻变低。
InGaAs或InGaAsSb欧姆接触层通常是形成于GaAs或AlGaAs之上。以InGaAs欧姆接触层与GaAs为例,因为InGaAs的晶格常数是大于GaAs的晶格常数,从而磊晶成长InGaAs的过程中,InGaAs会产生压缩应力,当InGaAs层的厚度超过其临界厚度(criticalthinckness)时,则容易在InGaAs层产生缺陷或差排(dislocation)。从而,在有缺陷或差排的InGaAs欧姆接触层上形成多层的磊晶层,则InGaAs欧姆接触层上的多层磊晶层也容易产生缺陷、差排(dislocation)或表面形态(surface morphology)不良。结果,导致InGaAs欧姆接触层上的磊晶层品质不良。受限于此,InGaAs层或InGaAsSb欧姆接触层之上难以制作出品质良好的另一半导体组件。连带难以实现高集成化或高品质的GaAs(砷化镓)集成电路。
通常,要形成良好的欧姆接触,欧姆接触层需要使用能隙较小的材料。以InGaAs与InGaAsSb而言,通过提高铟(In)含量,能使InGaAs与InGaAsSb的能隙变小。然而提高In的含量,在干蚀刻制程中却因为In变多,而产生较多的反应物。因此,需要经常清除残留在腔室与排气系统的反应物,换言之,直接影响产能,良率或加重成本。
此外,当基板与欧姆接触层分别是GaAs与InGaAs(Sb),GaAs基板与InGaAs(Sb)欧姆接触层会有较大的晶格不匹配,导致InGaAs(Sb)欧姆接触层会有明显的应力,InGaAs(Sb)欧姆接触层容易引发缺陷、差排(dislocation)或表面形态(surface morphology)不良;当欧姆接触层为GaAs时,且基板为GaAs时,虽然GaAs欧姆接触层与基板的晶格常数一样,但是GaAs欧姆接触层的能隙太大,欧姆接触特性不佳。虽然InGaAs(Sb)欧姆接触层的能隙可以通过增加In含量来降低能隙,但有前文所述的缺点。
发明内容
本发明的目的在于解决现有技术的缺点与限制,并提供具有良好磊晶品质的GaAs集成电路或InP集成电路,同时不影响欧姆接触层的欧姆接触特性与减少干蚀刻制程时所生成的反应物。
在一实施例中,半导体磊晶晶圆包含基板、第一磊晶堆叠结构、欧姆接触层以及第二磊晶堆叠结构。其特点在于,欧姆接触层是使用含氮量低的化合物,且控制欧姆接触层与基板之间的晶格不匹配度,而使欧姆接触层于长晶过程时相对于GaAs基板不会有明显的应力,因此欧姆接触层的缺陷与差排较少或具有较佳的表面型态。如此,欧姆接触层之上可以继续形成足够层数且晶体品质良好的第二磊晶堆叠结构。此外,虽然欧姆接触层是使用含氮量低的化合物,但并不会显着增加欧姆接触层的接触电阻。
在一实施例,在基板与第一磊晶堆叠结构之间或在第一磊晶堆叠结构之中更设置含氮量低的欧姆接触层。
在一实施例中,“欧姆接触层”的含氮量低的材料可以是GaAsN、GaAsNSb、GaAsNBi、GaAsNSbBi、InGaAsN、InGaAsNSb、InGaAsNBi或InGaAsNSbBi。
提供一种能制作出具良好磊晶品质的GaAs集成电路或InP集成电路的半导体磊晶晶圆。所谓的GaAs集成电路或InP集成电路是指,基板使用GaAs基板、Ge基板或InP基板,第一与第二磊晶堆叠结构依据基板种类而使用GaAs材料系统或InP材料系统。值得注意的是,第一与第二磊晶堆叠结构不使用GaN等材料系统
在一实施例,第一磊晶堆叠结构更包含一半导体层,其与欧姆接触层是直接或间接接触。当磊晶晶圆是用于制作GaAs集成电路,则基板可以为Ge基板或GaAs基板,而半导体层可以是GaAs、AlGaAs、InAlAs、InGaP或InGaAs,第一与第二磊晶堆叠结构使用GaAs材料系统(GaAs-based material)。当磊晶晶圆是用于制作InP集成电路是指,基板是使用InP基板,半导体层可以是InAlAs、InGaP、InP、InAlGaAs及InGaAsP,第一与第二磊晶堆叠结构使用InP材料系统(InP-based material)。本文所指的GaAs集成电路或InP集成电路是指,一磊晶晶圆内具有多个为垂直堆叠关系的半导体组件(相对关系)。
相比于现有技术,因为欧姆接触层是含低氮材料如“GaAsN”,“InGaAsN”等,所以“N型欧姆接触层”与“N型欧姆接触金属”之间的载子位障会下降(相比于现有技术InGaAs),因此“N型欧姆接触层”与“N型欧姆接触金属”的欧姆接触特性较好。类似的,相比于现有技术,欧姆接触层为(In)GaAsNSb、(In)GaAsNBi或(In)GaAsNSbBi时,因为欧姆接触层含Sb或Bi,所以“P型欧姆接触层”与“P型欧姆接触金属”之间的载子位障会下降(相比于InGaAs),因此“P型欧姆接触层”与“P型欧姆接触金属”的欧姆接触特性可能较好。
另一方面,InGaAsN、InGaAsNSb、InGaAsNBi或InGaAsNSbBi的能隙比InGaAs(InGaAsSb)低,所以InGaAsN、InGaAsNSb、InGaAsNBi或InGaAsNSbBi中的In含量能降低,所以,每次的干蚀刻制程时,所生成的反应物变得较少,如此将延长设备的清洁保养的周期,与降低设备清洁保养的频率,有利于提升产能,良率或降低成本。
较佳的,“欧姆接触层与Ge”、“欧姆接触层与GaAs”或“欧姆接触层与InP”的晶格不匹配度需约小于±10000ppm。通过使欧姆接触层的晶格常数接近于基板的晶格常数,因此欧姆接触层于长晶时,欧姆接触层不会引起明显的应力,所以欧姆接触层的临界厚度可以较厚。换言之,欧姆接触层不容易产生缺陷、差排(dislocation)或表面型态(surfacemorphology)劣化。如此,欧姆接触层之上容易磊晶成长出品质良好的一层或多层磊晶层。
在一实施例,于欧姆接触层及与其相邻的半导体层之间更设置一“能隙渐变层”,其中“能隙渐变层”能帮助电子越过较高的电子位障。
使用GaAsN、GaAsNSb、GaAsNBi、GaAsNSbBi、InGaAsN、InGaAsNSb、InGaAsNBi或InGaAsNSbBi的“欧姆接触层”,能与多数用于欧姆接触的金属材料形成欧姆接触。且低含氮的欧姆接触层的材料的能隙较小,也能达成较佳的欧姆接触。
在一实施例,半导体磊晶晶圆包含基板、第一磊晶堆叠结构、含氮量低的欧姆接触层。含氮量低的欧姆接触层设置于在基板与第一磊晶堆叠结构之间、在第一磊晶堆叠结构之中或包含上述两者。欧姆接触层的实施方式与上述的欧姆接触层相同。
第一磊晶堆叠结构与第二磊晶堆叠结构可形成第一半导体组件与第二半导体组件。依照不同应用目的,第一半导体组件与第二半导体组件可以是相同或不同的半导体组件。第一半导体组件或第二半导体组件可以是场效晶体管(Field Effect Transisotr,FET)、异质接面双极性晶体管(Heterojunction Bipolar Transistor,HBT)、高电子迁移率晶体管(High Electron Mobility Transisotr,HEMT)、假型高电子迁移率晶体管(pseudomorphic High Electron Mobility Transistor,PHEMT)、双极性晶体管(bipolarjunction transistor,BJT)、双极场效晶体管(bipolar field effect transistor,BiFET)、双极高电子移动率晶体管(bipolar high-electron mobility transistor,BiHEMT)、光电二极体(Photodiode,PD)、激光二极体(Laser Diode,LD)、边射型激光二极体(Edge Emitting Laser,EEL)、垂直共振腔面射型激光二极体(Vertical Cavity SurfaceEmitting Laser,VCSEL)、可变电容(varactor)、(pnpn)resistor、发光二极体(LightEmitting Diode,LED)、太阳能电池(Solar Cell,SC)。
附图说明
图1是现有技术的异质接面双极性晶体管(HBT)的示意图,其中,欧姆接触层与射极盖层分别为InGaAs与GaAs。
图2为本说明书的第一实施例的HBT的示意图,其中欧姆接触层是位于HBT的顶部上。
图3是本说明书的第二实施例的HBT的示意图。
图4是本说明书的第三实施例的VCSEL的示意图。
图5是本说明书的第四实施例的EEL的示意图。
图6是本说明书的金属电极的一实施例示意图。
图7是本说明书的砷化镓(GaAs)集成电路的一实施例示意图。
图8是本说明书的砷化镓(GaAs)集成电路的另一实施例示意图。
图9a是在图2的第一欧姆接触层(InGaAsN)之上形成多层磊晶层的示意图。
图9b是在图1的欧姆接触层(InGaAs)之上形成多层磊晶层的示意图。
图10a与图10b是以光学显微镜(Optical Microscope)拍摄图9a与图9b磊芯片的顶部的表面形态的影像。
图11是TLM电阻的量测结果示意图。
主要组件符号说明
1’ 基板
2’ 次集极层
3’ 集极层
4’ 基极层
5’ 射极层
6’ 射极盖层
7’ 欧姆接触层
10 基板
20 次集极层
30 集极层
40 基极层
50 射极层
60 射极盖层
71 第一欧姆接触层
72 第二欧姆接触层
80 金属
1 基板
2 缓冲层
3 下分布式布拉格反射器层
4 下间隔层
5 主动层
6 上间隔层
7 上分布式布拉格反射器层
73 第三欧姆接触层
100 基板
200 缓冲层
300 下披覆层
400 下间隔层
500 主动层
600 上间隔层
700 上披覆层
74 第四欧姆接触层
L1 InGaP层
L2 C-GaAs层
L3 Si-GaAs层
L4 i-GaAs层
L5 C-GaAs层
S1 顶面
S2 顶面。
具体实施方式
以下配合图示及组件符号对本发明的实施方式做更详细的说明,从而使本领域技术人员在研读本说明书后能据以实施。
以下描述具体的组件及其排列的例子以简化本发明。当然这些仅是例子且不该以此限定本发明的范围。例如,在描述中提及一层于另一层之上时,其可能包括该层与该另一层直接接触的实施例,也可能包括两者之间有其他组件或磊晶层形成而没有直接接触的实施例。此外,在不同实施例中可能使用重复的标号及/或符号,这些重复仅为了简单清楚地叙述一些实施例,不代表所讨论的不同实施例及/或结构之间有特定关联。
此外,其中可能用到与空间相关的用词,像是“在...下方”、“下方”、“较低的”、“上方”、“较高的”及类似的用词,这些关系词为了便于描述图式中一个(些)组件或特征与另一个(些)组件或特征之间的关系。这些空间关系词包括使用中或操作中的装置的不同方位,以及图式中所描述的方位。
本发明说明书提供不同的实施例来说明不同实施方式的技术特征。举例而言,全文说明书中所指的“一些实施例”意味着在实施例中描述到的特定特征、结构、或特色至少包含在一实施例中。因此,全文说明书不同地方所出现的片语“在一些实施例中”所指不一定为相同的实施例。
此外,特定的特征、结构、或特色可在一或多个的实施例中通过任何合适的方法结合。进一步地,对于在此所使用的用语“包括”、“具有”、“有”、“其中”或前述的变换,这些语意类似于用语“包括”来包含相应的特征。
此外,”层”可以是单一层或者包含是多层;而一磊晶层的”一部分”可能是该磊晶层的一层或互为相邻的复数层。
图2是本说明书的第一实施例的HBT的示意图。
如图2所示,第一实施例是HBT的一例示结构。如图2所示,半导体组件是以HBT为例来做说明;依据第一实施例,HBT包含基板10、次集极层20、集极层30、基极层40、射极层50、射极盖层60与第一欧姆接触层71。如图2所示,第一欧姆接触层71是形成于射极盖层60上,金属(射极)电极(图未示)则是形成在第一欧姆接触层71之上。
在一些实施例中,射极层50会是HBT的顶层,则第一欧姆接触层71则是欧姆接触于射极层50之上,第一欧姆接触层71的实际设置位置与设置方式依需求而定,只要是设置在半导体层与金属材料之间即可。
图3是本说明书的第二实施例的HBT的示意图。如图3所示,相比于第一实施例,第二实施例更包含第二欧姆接触层72。第二欧姆接触层72是设置于基板10跟次集极层20之间。或者,第二欧姆接触层72是设置于基极层或适当磊晶层之上。
以下内容是以激光二极体为例,激光二极体可依据实际需求而选择性的设置缓冲层,且在一些实例中,缓冲层与基板在材料可以是相同的。且缓冲层设置与否,跟以下实施例所欲讲述的技术特点与所欲提供的效果并无实质相关,因此为了简要示例说明,以下实施例仅以具有缓冲层的激光二极体来做为说明用的示例,而不另赘述没有设置缓冲层的激光二极体,也就是以下实施例如置换无缓冲层的激光二极体也能一体适用。
图4是本说明书的第三实施例的VCSEL的示意图。图4是显示一种面射型激光二极体的结构,图4所示的VCSEL包含基板1、缓冲层2、下分布式布拉格反射器(distributedBragg reflector,DBR)层3、下间隔层4、主动层5、上间隔层6、上分布式布拉格反射器(distributed Bragg reflector,DBR)层7以及第三欧姆接触层73。
在一实施例中,更包含另一第三欧姆接触层73,另一第三欧姆接触层73能设置于图4的VCSEL的缓冲层2中,其中缓冲层2的部分或全部是第三欧姆接触层;或者,图4的VCSEL能包含复数第三欧姆接触层73,因此能分别于缓冲层2之中或之上形成第三欧姆接触层73,以及于上DBR层7之上形成第三欧姆接触层73。
在一实施例中,下DBR层3、下间隔层4、上间隔层6或上DBR层7的一部份包含含氮量低的欧姆接触层。
图5是本说明书的第四实施例的EEL示意图。图5是显示一种边射型激光二极体的结构,图5所示的EEL包含基板100、缓冲层200、下披覆(Cladding)层300、下间隔层400、主动层500、上间隔层600、上披覆(Cladding)层700以及第四欧姆接触层74。
在以上的每一个实施例中,根据半导体组件所需特性,基板10能选用Ge基板、GaAs基板或InP基板。特性泛指包含电性或光学特性。
第一欧姆接触层至第四欧姆接触层71~74的任一可以使用(In)GaAsN、(In)GaAsNSb、(In)GaAsNBi或(In)GaAsNSbBi;为简化叙述,后文统一用欧姆接触层代表第一欧姆接触层71、第二欧姆接触层72、第三欧姆接触层73或第四欧姆接触层74。
Ge基板能与欧姆接触层材料的(In)GaAsN、(In)GaAsNSb、(In)GaAsNBi或(In)GaAsNSbBi(即GaAsN、GaAsNSb、GaAsNBi、GaAsNSbBi、InGaAsN、InGaAsNSb、InGaAsNBi或InGaAsNSbBi)互相搭配运用;GaAs基板能与欧姆接触层材料的(In)GaAsN、(In)GaAsNSb、(In)GaAsNBi或(In)GaAsNSbBi互相搭配运用;或者,InP基板能与欧姆接触层材料的(In)GaAsN、(In)GaAsNSb、(In)GaAsNBi或(In)GaAsNSbBi互相搭配运用。
“欧姆接触层与Ge之间”、“欧姆接触层与GaAs之间”或“欧姆接触层与InP之间”的晶格不匹配度约介于0~10000ppm。晶格不匹配度是指基板的晶格常数与欧姆接触层的晶格常数的差值。换言之,基板具有第一晶格常数X1,欧姆接触层具有第二晶格常数X2,晶格不匹配度为X1-X2。其中,晶格不匹配度可以是±300、±1000、±1500、±2000、±2500、±3000、±4000或±5000ppm等等。其中“+”号代表压缩应力,“一”号代表拉伸应力。
InxGa1-xAsyN1-y、InxGa1-xAsyNzSb1-y-z、InxGa1-xAsyNzBi1-y-z或InxGa1- xAsyNzSbwBi1-y-z-w,其中x是0~1,比如x可以是:0、0.05、0.10、0.15、0.20、0.25、0.30、0.35、0.50、0.55、0.60、0.65、0.70、或0.75。较佳的,当基板为GaAs或Ge,x值约为0.05~0.3。当基板为InP,x值约为0.5~0.75。而y、z、w为0.001~0.2,其中y、z或w可以是:0.005、0.010、0.015、0.020、0.021、0.03、0.04或0.05。
欧姆接触层的厚度大约介于5~1000nm;其中,欧姆接触层的厚度可以是50、100、200、400、500、700或900nm。
以(In)GaAsN欧姆接触层做为代表说明,由于(In)GaAsN欧姆接触层的晶格常数接近于Ge、GaAs或AlGaAs,因此欧姆接触层于长晶过程时,欧姆接触层不会有明显的应力。如此,欧姆接触层之上可以继续形成晶体品质良好的多层磊晶层。换言之,(In)GaAsN欧姆接触层之上能形成另一种组件。据此,提供一种集成电路。如图7与图8所示的两种不同砷化镓(GaAs)集成电路,其中砷化镓集成电路包含至少两半导体组件。
现有技术中是使用(In)GaAs或(In)GaAsSb的欧姆接触层。相比于现有技术,因为欧姆接触层为含低氮材料如(In)GaAsN等,所以“N型欧姆接触层”与“N型欧姆接触金属”之间的载子位障会下降(相比于现有技术InGaAs),所以“N型欧姆接触层”与“N型欧姆接触金属”的欧姆接触特性可能较好。
类似的,相比于现有技术,欧姆接触层为(In)GaAsNSb、(In)GaAsNBi或(In)GaAsNSbBi时,因为欧姆接触层含Sb或Bi,所以“P型欧姆接触层”与“P型欧姆接触金属”之间的载子位障会下降(相比于InGaAs欧姆接触层),所以“P型欧姆接触层”与“P型欧姆接触金属”的欧姆接触特性可能较好。
欧姆接触层为InGaAsN、InGaAsNSb、InGaAsNBi或InGaAsNSbBi时,因欧姆接触层的能隙比现有技术来得低,所以InGaAsN、InGaAsNSb、InGaAsNBi或InGaAsNSbBi中的In含量能降低,所以,每次的干蚀刻制程时,所生成的反应物变得较少,如此能延长清洁保养的周期或降低清洁保养的频率,有利于提升产能或降低成本。尤其,当欧姆接触层为GaAsN、GaAsNSb、GaAsNBi或GaAsNSbBi时,由于没有含In,所以干蚀刻制程时,所生成的反应物会很少,更能延长清洁保养的周期或降低清洁保养的频率,更有利于提升产能或降低成本。
在一些实施例中,欧姆接触层更掺杂有掺杂材料,掺杂材料包含Te、Se、Si、Sn、Ge、S、C、Zn或Cd。一般而言,C、Zn与Cd能单独掺杂于欧姆接触层,但上述的两者与三者也能掺杂于欧姆接触层中。而Te、Se、Si、Sn、Ge或S也能单独掺杂于欧姆接触层,或上述的任两者或两者以上也能掺杂于欧姆接触层中。
在以上的每一个实施例中,欧姆接触层包含N型III-V族半导体或P型III-V族半导体。
以上所述的各种实施例,能根据半导体组件所需特性而互相配合运用。
欧姆接触层除了能应用于HBT、VCSEL、EEL,也能适用于需要做欧姆接触的半导体组件,比如FET、HEMT、PHEMT、BJT、BiFET、BiHEMT、PD、APD、LD、LED、SC。比如,图6的砷化镓(GaAs)集成电路是包含HBT与PD;图7的砷化镓(GaAs)集成电路则是包含HBT与LD。
在一些实施例中,使用(In)GaAsN、(In)GaAsNSb、(In)GaAsNBi或(In)GaAsNSbBi的“欧姆接触层”,能与多数用于欧姆接触的金属材料形成欧姆接触。参阅图8,第一欧姆接触层之上71更形成金属电极80,金属电极80可以使用P型金属材料或N型金属材料。
在一些实施例中,当金属电极80是使用P型金属材料,P型金属材料是包含金属Al、Ti、Au、Pt、Be、Zn、W的至少一种或具有至少一种化合物,或该化合物具有上述金属的至少一种,举例而言,P型金属材料是Ti/Au、Ti/Pt/Au、AuBe、AuZn的层状结构或合金。
在一些实施例中,当金属电极80是使用N型金属材料,N型金属材料是包含金属Al、Ti、Au、Pt、Ge、Ni、W的至少一种或具有至少一种化合物,或该化合物具有上述金属的至少一种,举例而言,N型金属材料是Ti/Au、Ti/Pt/Au、Au/Ge/Ni、Au/Ge、Al/Ge、Al/Ge/Ni的层状结构或合金。
图9a是在图2的第一欧姆接触层(InGaAsN)之上形成多层磊晶层的示意图。图9b是在图1的欧姆接触层(InGaAs)之上形成多层磊晶层的示意图。图9a与图9b均是于GaAs基板上磊晶成长GaAs材料系统HBT。图9a与图9b的差异在于:欧姆接触层的化合物材料。
图9a的第一欧姆接触层为掺杂Te(碲)的InxGa1-xAs1-yNy,Te的掺杂浓度约为2×1019cm-3,第一欧姆接触层的总厚度约为
Figure BDA0003580489030000111
图9a的第一欧姆接触层包含厚度约为500埃的成分渐变层与厚度约为500埃的成分均匀层,成分渐变层较成分均匀层更靠近GaAs基板。成分渐变层的铟(In)与氮(N)含量是越远离基板则越高,In含量及氮含量分别逐渐上升约到10%与3.5%,故成分均匀层约为In0.1Ga0.9As0.965N0.035
图9b的欧姆接触层为掺杂Te(碲)的InxGa1-xAs,Te的掺杂浓度约为2×1019cm-3,欧姆接触层的总厚度约为1000埃。图9b的欧姆接触层也包含厚度约为500埃的成分渐变层与厚度约为500埃的成分均匀层,成分渐变层较成分均匀层更靠近GaAs基板。成分渐变层的铟(In)是越远离基板则越高,In含量逐渐上升到60%,故成分均匀层约为In0.6Ga0.4As。
图9a与图9b的射极盖层为掺杂硅(Si)的GaAs。此外,欧姆接触层之上也都是成长相同的多层磊晶层。如图9a与图9b所示,在第一欧姆接触层71或欧姆接触层7’之上是依序形成厚度200埃的InGaP层L1、厚度900埃且掺杂碳的GaAs层L2、厚度5000埃且掺杂硅的GaAs层L3、厚度12000埃且本质掺杂的GaAs层L4与厚度800埃且掺杂碳的GaAs层L5。
图10a与图10b是以光学显微镜(Optical Microscope)拍摄图9a与图9b磊芯片的顶部的表面形态的影像。如图10a所示,图9a的磊芯片的顶面S1的表面形貌为相当平整,可知图9a的第一欧姆接触层与多层磊晶层的缺陷不多,多层磊晶层具有良好的磊晶质量。根据图10b所示,图9b的磊芯片的顶面S2的表面形貌为粗糙状,可知图9b的第一欧姆接触层与多层磊晶层具有严重的差排与缺陷。
此外,使用Transmission Line Method(TLM)法来评估图9a的第一欧姆接触层的接触电阻与图9b的欧姆接触层的接触电阻,量测结果请参图11的TLM电阻的量测结果示意图。图9a的接触电阻为3.37×10-7Ω-cm2,图9b的接触电阻为3.24×10-7Ω-cm2。由此可知,含氮的欧姆接触层并不会过多增加接触电阻。
上文概述了若干实施例的特征,以便本领域技术人员可较佳地理解本申请的实施例。本领域技术人员应了解,本领域技术人员可容易地使用本申请作为用于设计或变更其他制程及结构的基础,此等其他制程及结构用于执行本文引入的实施例的相同目的及/或达成此等实施例的相同优点。本领域技术人员亦应了解,此等同等构造不背离本申请的精神及范畴;且本领域技术人员可在不背离本申请的精神及范畴的情况下进行各种变化、替换或变更。

Claims (10)

1.一种半导体磊晶晶圆,包含:
一基板,具有一第一晶格常数X1,该基板为一Ge基板、一GaAs基板或一InP基板;
一第一磊晶堆叠结构,其磊晶成长于该基板之上;
一第一欧姆接触层,其磊晶成长于该第一磊晶堆叠结构之上,具有一第二晶格常数X2,该第一欧姆接触层选自由InxGa1-xAsyN1-y、InxGa1-xAsyNzSb1-y-z、InxGa1-xAsyNzBi1-y-z及InxGa1-xAsyNzSbwBi1-y-z-w所组成的群组的至少一材料,其中x是0~1,而y、z、w为0.001~0.2;以及
一第二磊晶堆叠结构,其磊晶成长于该第一欧姆接触层之上;
其中,X1-X2小于或等于±10000ppm。
2.如权利要求1所述的半导体磊晶晶圆,其中,该第一磊晶堆叠结构与该第二磊晶堆叠结构分别构成一第一半导体组件与一第二半导体组件,该第一半导体组件与该第二半导体组件通过该第一欧姆接触层构成为一集成电路。
3.如权利要求1所述的半导体磊晶晶圆,其中,当该基板为该Ge基板或GaAs基板时,该第一磊晶堆叠结构与该第二磊晶堆叠结构使用GaAs系列材料。
4.如权利要求1所述的半导体磊晶晶圆,其中,当该基板为该InP基板时,该第一磊晶堆叠结构与该第二磊晶堆叠结构使用InP系列材料。
5.如权利要求1所述的半导体磊晶晶圆,该第一磊晶堆叠结构更包含一半导体层,该半导体层接触于或相邻于该第一欧姆接触层,当基板为该GaAs基板时,该半导体层选自由GaAs、AlGaAs、InAlAs、InGaP及InGaAs所组成的群组的至少一材料。
6.如权利要求1所述的半导体磊晶晶圆,其中,该第一磊晶堆叠结构更包含一半导体层,该半导体层接触于或相邻于该第一欧姆接触层,当基板为InP基板时,该半导体层选自由为InAlAs、InGaP、InP、InAlGaAs及InGaAsP所组成的群组的至少一材料。
7.如权利要求5或6所述的半导体磊晶晶圆,其中,更包含一能隙渐变层,该能隙渐变层设置于该半导体层与该第一欧姆接触层之间。
8.如权利要求1所述的半导体磊晶晶圆,其中,更包含一第二欧姆接触层,该第二欧姆接触层设置于该基板与该第一磊晶堆叠结构之间。
9.如权利要求1所述的半导体磊晶晶圆,其中,该第一欧姆接触层更掺杂有一掺杂材料,该掺杂材料选自由Te、Se、Si、Sn、Ge、S、C、Zn及Cd所组成的群组的至少一材料。
10.如权利要求1所述的半导体磊晶晶圆,其中,更形成一金属电极,该金属电极的材料为一P型金属材料或一N型金属材料,其中该P型金属材料选自由Al、Ti、Au、Pt、Be、Zn及W所组成的群组的至少一材料,该N型金属材料选自由Al、Ti、Au、Pt、Ge、Ni及W所组成的群组的至少一材料。
CN202210351304.7A 2021-04-07 2022-04-02 半导体磊晶晶圆 Pending CN115207109A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110112578 2021-04-07
TW110112578 2021-04-07

Publications (1)

Publication Number Publication Date
CN115207109A true CN115207109A (zh) 2022-10-18

Family

ID=83511048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210351304.7A Pending CN115207109A (zh) 2021-04-07 2022-04-02 半导体磊晶晶圆

Country Status (3)

Country Link
US (1) US11799011B2 (zh)
CN (1) CN115207109A (zh)
TW (1) TWI790155B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385236B2 (en) * 2005-10-21 2008-06-10 Visual Photonics Epitaxy Co., Ltd. BiFET semiconductor device having vertically integrated FET and HBT
WO2012100647A1 (zh) * 2011-01-24 2012-08-02 晶能光电(江西)有限公司 缓解铟镓铝氮薄膜应力的半导体器件的制造方法
CN104637794A (zh) * 2015-01-27 2015-05-20 北京中科天顺信息技术有限公司 一种氮化物led垂直芯片结构及其制备方法
CN104638071B (zh) * 2015-01-27 2017-03-15 江苏巨晶新材料科技有限公司 一种使用复合衬底的氮化物led外延片结构及其制备方法
CN109346573A (zh) * 2018-09-21 2019-02-15 华灿光电(苏州)有限公司 一种氮化镓基发光二极管外延片及其制备方法
CN111628022B (zh) * 2019-02-28 2022-07-15 中国科学院物理研究所 GaAs基光电器件及其阵列的制备方法

Also Published As

Publication number Publication date
US20220328645A1 (en) 2022-10-13
TWI790155B (zh) 2023-01-11
US11799011B2 (en) 2023-10-24
TW202240903A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
US11335794B2 (en) Advanced wafer bonded heterojunction bipolar transistors and methods of manufacture of advanced wafer bonded heterojunction bipolar transistors
US9437772B2 (en) Method of manufacture of advanced heterojunction transistor and transistor laser
US10991835B2 (en) Hydrogen diffusion barrier for hybrid semiconductor growth
US8872231B2 (en) Semiconductor wafer, method of producing semiconductor wafer, and electronic device
US9761678B2 (en) Gallium arsenide heterojunction semiconductor structure
US11456374B2 (en) Germanium-silicon-tin (GeSiSn) heterojunction bipolar transistor devices
US7915640B2 (en) Heterojunction semiconductor device and method of manufacturing
CN113764519B (zh) 异质结双极晶体管
US6768141B2 (en) Heterojunction bipolar transistor (HBT) having improved emitter-base grading structure
US7030462B2 (en) Heterojunction bipolar transistor having specified lattice constants
US11799011B2 (en) Semiconductor epitaxial wafer
US20130126826A1 (en) Optical Tilted Charge Devices And Methods
Monier et al. Significant operating voltage reduction on high-speed GaAs-based heterojunction bipolar transistors using a low band gap InGaAsN base layer
JP2005136162A (ja) 化合物半導体素子の製造方法
US11133405B2 (en) High ruggedness heterojunction bipolar transistor
US20240234625A1 (en) Light-emitting element and method of manufacturing the same
JP5098193B2 (ja) ヘテロ接合バイポーラトランジスタ
US20230132522A1 (en) Layered structure
JP2008071945A (ja) 化合物半導体素子およびその製造方法
CN111341842A (zh) 具坚固性的异质结双极性晶体管结构
US20020190271A1 (en) InP heterojunction bipolar transistor with intentionally compressively mismatched base layer
JP2003273118A (ja) へテロ接合バイポーラトランジスタ
Dupuis et al. III-N Epitaxial Growth for Nitride Devices
JPH05291282A (ja) コレクタアップ構造ヘテロ接合バイポーラトランジスタの製造方法
JP2003243406A (ja) ヘテロ接合バイポーラトランジスタ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination