CN115201295A - 一种检测高倍甜味剂nhdc的化学修饰电极及制备方法 - Google Patents

一种检测高倍甜味剂nhdc的化学修饰电极及制备方法 Download PDF

Info

Publication number
CN115201295A
CN115201295A CN202210824767.0A CN202210824767A CN115201295A CN 115201295 A CN115201295 A CN 115201295A CN 202210824767 A CN202210824767 A CN 202210824767A CN 115201295 A CN115201295 A CN 115201295A
Authority
CN
China
Prior art keywords
electrode
nhdc
zif
solution
nafion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210824767.0A
Other languages
English (en)
Other versions
CN115201295B (zh
Inventor
王亚珍
张亮
胡思泉
徐俊晖
钱晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jianghan University
Original Assignee
Jianghan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jianghan University filed Critical Jianghan University
Priority to CN202210824767.0A priority Critical patent/CN115201295B/zh
Publication of CN115201295A publication Critical patent/CN115201295A/zh
Application granted granted Critical
Publication of CN115201295B publication Critical patent/CN115201295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明提供一种检测高倍甜味剂NHDC的化学修饰电极及制备方法,运用电沉积方法将ZIF‑8材料修饰于玻碳电极表面,用Nafion试剂将其固定,据此制备的化学修饰电极能实现对NHDC的灵敏性检测。

Description

一种检测高倍甜味剂NHDC的化学修饰电极及制备方法
技术领域
本发明涉及高倍甜味剂及电化学传感技术领域,属于食品、医药品、饲料等领域检测技术领域。
背景技术
新橙皮苷二氢查耳酮(Neohesperidin dihydrochalcone,NHDC)作为一种食品添加剂,具有低热量、高甜度的特点,以及为食品增香与修饰风味作用,在饮料、甜品、糖果制品等食品方面应用广泛。在医药方面,还具有保护肝脏、降低血糖血脂、改善肠道益生菌群、抗炎、抗氧化作用等功效。NHDC用作食品添加剂与医药制剂辅料的含量检测是重要环节。目前常见的对于NHDC的检测方法有高效液相色谱法、高效液相色谱-质谱联用法、毛细管电泳法、电化学分析法等,其中电化学方法具有响应快、操作简单、仪器成本低、灵敏度高、选择性好等优点,且还有助于识别化合物的氧化还原反应并提供有关药理作用的重要信息。
咪唑类沸石框架材料(Zeolitic Imidazolate Frameworks,简称ZIFs),通常以锌离子或钴离子与咪唑类有机配体以配位作用形成,属于金属有机框架材料的一个分支,因它们具有与沸石分子筛相似拓扑结构,不仅具有高比表面积、高孔隙率、拓扑多样性,更具有高的化学和热稳定性。因此ZIFs被应用于药物传递、气体吸附、气体存储、多相催化、电化学传感器以及能量存储和收集等领域。目前利用ZIFs材料制备化学修饰电极来检测NHDC的文献尚未报道。
发明内容
本发明旨在创新性应用ZIF-8/Nafion复合膜修饰电极检测水样和实际样品中NHDC含量。
本发明提供一种检测高倍甜味剂NHDC的化学修饰电极,用于高倍甜味剂NHDC及含NHDC产品,或无糖饮料检测,化学修饰电极包括玻碳电极,玻碳电极表面从内至外依次覆盖ZIF-8晶体、Nafion。
进一步的,所述化学修饰电极是采用电沉积法将ZIF-8晶体沉积于玻碳电极表面,电沉积时循环伏安环扫圈数为30~50圈。
本发明还提供一种检测高倍甜味剂NHDC的化学修饰电极制备方法,化学修饰电极ZIF-8/Nafion是采用电沉积法将ZIF-8晶体沉积于玻碳电极表面,晾干,电沉积时循环伏安环扫圈数为30~50圈,再在该电极表面滴加Nafion溶液得到的。
进一步的,检测高倍甜味剂NHDC的化学修饰电极制备方其步骤如下:将打磨光滑后的玻碳电极作为工作电极,与饱和甘汞电极、铂电极组装成三电极体系,在含ZIF-8的电解质溶液中进行循环伏安环扫,电沉积形成ZIF-8晶体,然后取出电极晾干,最后在该电极表面再继续滴加Nafion后自然晾干,得到化学修饰电极ZIF-8/Nafion GCE。
所述含ZIF-8的电解质溶液中ZIF-8的浓度为1mg/mL。
所述循环伏安环扫时电压窗口-0.2~0.9V,扫速0.1V/s,扫描30~50圈。
所滴加的Nafion是3μL 0.05%Vol的乙醇溶液。
所述扫描圈数为35~45圈。
所述ZIF-8晶体粉末的制备步骤包括:边缓慢搅拌边将2-甲基咪唑的水溶液滴加到Zn(NO3)2·6H2O的水溶液中,逐渐混合形成乳白色溶液,不断搅拌,离心处理,同时用无水乙醇和双蒸水洗涤,最后烘箱干燥,得到ZIF-8晶体粉末。
利用上述的电极检测NHDC的方法,其步骤包括:将所述化学修饰电极ZIF-8/Nafion GCE作为工作电极,与饱和甘汞电极、铂电极组装成三电极体系,以pH=3的Mcllvaine溶液作为电解液,采用DPV方法测定滴加不同浓度的NHDC溶液后响应的氧化峰电流值,得到NHDC溶液浓度CNHDC与氧化峰电流值ipa1的标准曲线,在曲线中选取具有线性关系的一段区域,拟合NHDC溶液浓度CNHDC与氧化峰电流值ipa1的线性方程:ipa1(10-7A)=0.45019+0.01281CNHDC(μmol/L),在3倍信噪比的条件下,根据公式
Figure BDA0003743587980000021
计算得到检测限,其中σ表示DPV曲线最低浓度的峰电流值标准偏差;R表示线性方程的斜率;
取待测样品滴加到所述电解液,用所述三电极体系检测NHDC的氧化还原峰,并根据所述线性方程,求出NHDC溶液浓度。
本发明采用简单易控的电沉积方法将ZIF-8材料修饰于玻碳电极表面,再滴加几滴Nafion溶液制备ZIF-8/Nafion复合膜修饰电极,将其作为工作电极,与饱和甘汞电极、铂电极组装成三电极体系,电解液是由0.1M柠檬酸和0.2M磷酸氢二钠溶液按照一定体积混合而成的pH=3Mcllvaine溶液,并且连接电化学工作站应用于NHDC的电化学检测。
基于ZIF-8材料制备的化学修饰电极用于检测高倍甜味剂NHDC具有良好的线性关系,检测范围为0.16μM~160μM,检测限达0.056μM。
本发明的优点及有益效果如下:
1、利用ZIF-8材料的高比表面积、高孔隙率的特点,将其修饰于玻碳电极表面,发现NHDC在其上具有灵敏的电化学响应,并且在一定浓度范围内NHDC氧化还原峰电流与浓度存在良好线性关系,检测限低。
2、采用电沉积方法将ZIF-8材料修饰在玻碳电极表面,该法简单易控,将Nafion易成膜的特性通过简单滴涂方法进一步修饰在ZIF-8表面,起到固定ZIF-8的作用。
附图说明
图1为ZIF-8/Nafion GCE制备流程及检测NHDC示意图;
图2为电沉积10、20、30、40、50、60圈与NHDC氧化峰电流值关系图;
图3 ZIF-8(a)与ZIF-8/Nafion复合膜(b)SEM图;
图4为在pH=3Mcllvaine溶液中Bare GCE、Nafion GCE、ZIF-8/Nafion GCE对含160μM NHDC的CV电化学行为响应图;
图5为Bare GCE、Nafion GCE、ZIF-8/Nafion GCE在5mM Fe[(CN)6]3-/4-和0.1MKCl溶液中的电化学阻抗谱图;插图为阻抗曲线的拟合等效电路图;
图6为在pH=3Mcllvaine溶液中ZIF-8/Nafion GCE检测不同浓度NHDC的DPV曲线图,由下到上NHDC的检测浓度依次是0.16μM、0.8μM、1.6μM、3.2μM、6.4μM、9.6μM、12.8μM、16μM、32μM、64μM、96μM、128μM、160μM;插图为分别在低浓度下0.16~16μM和高浓度下16~160μM的氧化峰电流值(ipa1)与NHDC浓度(CNHDC)的线性拟合关系图。
具体实施方式
以下结合附图和具体实施例对本发明作进一步的详细说明。
实施例1:ZIF-8/Nafion复合膜修饰电极的制备
(1)ZIF-8材料的合成
将0.74g的Zn(NO3)2·6H2O和12.3g的2-甲基咪唑分别溶于10mL和90mL的双蒸水中,在超声条件下将两种溶液溶解,呈无色透明状态。然后,边缓慢搅拌边将2-甲基咪唑溶液滴加到Zn(NO3)2溶液中,逐渐混合形成乳白色溶液,不断搅拌24h,再进行5min,转速8000r/min的离心处理,同时用无水乙醇和双蒸水分别洗涤3次,最后80℃烘箱干燥12h,得到ZIF-8白色固体粉末。
(2)ZIF-8/Nafion复合膜修饰电极的制备
依次在含有0.3μm、0.05μm的抛光粉(Al2O3粉末)浆的麂皮打磨玻碳电极(GCE),再将玻碳电极依次用稀硝酸溶液(体积比1:1)、乙醇水溶液、双蒸水中超声清洗,每次1min,自然晾干。
10mg的ZIF-8晶体粉末加入到10mL0.1mol/L KNO3(NaNO3,KCl等盐溶液中均可)溶液中,超声分散30min,制备成1mg/mL ZIF-8溶液。将上述打磨后的玻碳电极作为工作电极,与饱和甘汞电极、铂电极组装成三电极体系,将玻碳电极插入到上述ZIF-8溶液中进行循环伏安(CV)环扫,电压窗口-0.2~0.9V,扫速0.1V/s,扫描40圈,然后取出电极自然晾干,最后在该电极表面再继续滴加3μL0.05%vol Nafion的乙醇溶液(全氟磺酸膜)后自然晾干,得到ZIF-8/Nafion GCE。将其作为工作电极,与饱和甘汞电极、铂电极组装成三电极体系,电解液是由0.1M柠檬酸和0.2M磷酸氢二钠溶液按照一定体积混合而成的pH=3Mcllvaine溶液(柠檬酸-磷酸盐缓冲液),并且连接电化学工作站应用于NHDC的电化学检测。
将实施例1中电沉积方法制备ZIF-8时CV扫描圈数分别设置为10、20、30、40、50、60圈,以调控电极表面电沉积的ZIF-8修饰膜厚度,再滴加3μL 0.05%vol Nafion的乙醇溶液,自然晾干,得到不同厚度的ZIF-8/Nafion复合膜修饰电极。采用CV方法测量160μM NHDC在不同厚度复合膜修饰电极上氧化峰Pa1电流响应,得到图2关系图。图2结果显示,随着扫描圈数增加,NHDC氧化峰电流值不断增加,在40圈时氧化峰电流值达到最大,随后CV电沉积扫描50、60圈,NHDC的Pa1氧化峰电流值反而下降,原因是ZIF-8修饰量过多,制备的ZIF-8/Nafion复合膜过厚,阻碍电极表面电子传输。因此扫描40圈时制备ZIF-8/Nafion复合膜为最佳修饰量。
实施例2:裸电极的制备
依次在含有0.3μm、0.05μm的抛光粉(Al2O3粉末)浆的麂皮打磨玻碳电极(GCE),再将玻碳电极依次用稀硝酸溶液(体积比1:1)、乙醇水溶液、双蒸水中超声清洗,每次1min,自然晾干。不加任何修饰材料,得到Bare GCE(裸玻碳电极)。将其作为工作电极,与饱和甘汞电极、铂电极组装成三电极体系,电解液是由0.1M柠檬酸和0.2M磷酸氢二钠溶液按照一定体积混合而成的pH=3Mcllvaine溶液,并且连接电化学工作站应用于NHDC的电化学检测。
实施例3:Nafion修饰电极的制备
依次用含有0.3μm、0.05μm的抛光粉(Al2O3粉末)浆的麂皮打磨玻碳电极(GCE),再将玻碳电极依次用稀硝酸溶液(体积比1:1)、乙醇水溶液、双蒸水中超声清洗,每次1min,自然晾干。接着在该电极表面滴加3μL 0.05%vol Nafion的乙醇溶液后自然晾干,得到Nafion GCE。将其作为工作电极,与饱和甘汞电极、铂电极组装成三电极体系,电解液是由0.1M柠檬酸和0.2M磷酸氢二钠溶液按照一定体积混合而成的pH=3Mcllvaine溶液,并且连接电化学工作站应用于NHDC的电化学检测。
实施例1-3制备ZIF-8晶体与ZIF-8/Nafion复合膜材料形貌表征、不同修饰电极对NHDC电化学行为研究、电化学表征以及抗干扰性、重现性性能测试。
如图3所示是材料的扫描电镜图(SEM),从左侧的图中可以看出电沉积在玻碳电极表面的ZIF-8晶体大小均一,分布均匀,直径大约在150nm,粒子之间形成的孔隙有利于NHDC的吸附与电化学反应的发生。右侧的图可以看出滴加一定量的Nafion的乙醇溶液后,ZIF-8表面覆盖了一薄层Nafion膜,有利于将ZIF-8晶体固定在玻碳基底表面上,得到ZIF-8/Nafion复合膜修饰电极。
如图4所示是不同的修饰电极对160μmol/L的NHDC标准溶液分别在pH=3Mcllvaine缓冲溶液与空白溶液中的CV测试曲线,电势窗口0~0.8V、扫速0.05V/s、扫描2圈,其中ZIF-8/Nafion GCE测试结果第一圈没有出现Pa2氧化峰,说明此峰的产生是来自NHDC生成产物发生新的氧化峰。本实验选择第二圈的测试曲线进行对比分析,结果显示在第2圈的测试过程先在0.672V下出现一个不可逆的强氧化峰(Pa1),而后在0.307V时出现还原峰(Pc),最后在0.364V时出现新的一个氧化峰(Pa2),可见Pa1与Pc是一对可逆的氧化还原峰,这一结果与报道的检测NHDC文献相符。从图中可以看出ZIF-8/Nafion GCE在空白溶液中没有任何氧化还原峰出现,说明电极上的修饰材料不会发生氧化还原反应。NHDC在Nafion修饰的GCE上也有一定的氧化还原响应,但响应强度高于裸玻碳电极,这主要归因于Nafion膜为阴离子全氟磺酸膜,有利于NHDC氧化还原反应中氢质子的转移。而其他膜材料如壳聚糖、聚乙烯吡咯烷酮、聚乙烯醇等覆盖在ZIF-8表面时响应强度远不如ZIF-8/NafionGCE,Bare GCE、Nafion GCE、与ZIF-8/Nafion GCE在检测NHDC所发生的氧化还原峰电流值依次增大,说明ZIF-8材料对NHDC的响应电流有增敏作用。ZIF-8用于吸附NHDC,因ZIF-8不属于导体,如图2沉积膜越厚导电性能越差,ZIF-8膜的空隙越小,比表面积越大,越有利于吸附NHDC提高峰电流,空隙越大,比表面越小,吸附能力越弱,
而NHDC分子结构为:
Figure BDA0003743587980000061
高倍甜味剂NHDC分子量为612.58较大,其活性中心不易接触到电极表面对NHDC分子进行催化氧化,因此ZIF-8膜上的孔隙大小太小时阻碍了吸附NHDC,依据图2的实验数据增加扫描圈数能使沉积的ZIF-8膜的孔隙减小有利于吸附NHDC,但孔隙太小时阻碍了NHDC分子的活性中心与电极表面接触。
如图5所示,分别测试Bare GCE、Nafion GCE、ZIF-8/Nafion GCE在5mM Fe[(CN)6]3-/4-和0.1M KCl溶液中得电化学阻抗谱(EIS)曲线图,三种电极的曲线趋势都是在高频区出现传荷控制的特征阻抗半圆,低频区出现扩散控制的特征直线,并且对三组曲线进行等效电路拟合,结果显示各修饰电极传荷电阻(Rct)值分别为Bare GCE为165.7Ω、Nafion GCE为1669Ω、ZIF-8/Nafion GCE为427.8Ω,其中Nafion是全氟化树脂有机物质其导电性能很差,所以Rct值最大,但是ZIF-8修饰在电极表面时,其内部的电阻减小,这与ZIF-8材料的多孔结构、高孔隙率、高比表面积有关,多孔结构为电子传输提供了通道,加快了电子传输。但ZIF-8/Nafion GCE的电阻值相比较于Bare GCE的电阻值大了许多,说明ZIF-8材料的导电性能较差。结合CV测试的结果,进一步说明由于ZIF-8材料多孔结构、高比表面积特点对NHDC产生吸附作用,从而增加检测NHDC响应电流。
如表1所示,采用DPV方法检测16μM NHDC,并加入一些无机盐或者有机物来测试ZIF-8/Nafion GCE抗干扰能力。先测定出16μM NHDC氧化峰电流值,再分别加入100倍的NaCl、MgCl2、FeCl3、KNO3、CuSO4分别测定出加入干扰物后的NHDC氧化峰电流强度值,结果测定的NHDC氧化峰电流强度相对偏差都小于5%,表明该修饰电极在上述离子存在时检测NHDC基本不干扰;同样方法,将10倍浓度的抗坏血酸(AA)、对硝基苯酚(p-nitrophenol),结果也是基本不干扰;以及同等浓度多巴胺(DA)对于NHDC的检测,结果也基本无干扰。结果表明在一些常见的无机离子与一些同NHDC存在类酚羟基的有机物都对于NHDC的氧化还原峰电流检测不干扰,因此该修饰电极具有良好的选择性。
同一修饰电极,在优化条件下连续用DPV方法重复测试6次,其中每测试完一次后将修饰电极置于空白缓冲溶液中CV循环多次,再接着进行下一次测试,氧化峰电流值相对标准偏差3.67%;同一批次的ZIF-8修饰电极6组,在优化条件下测定同一浓度NHDC溶液,氧化峰电流值相对标准偏差1.4%,结果说明该修饰重现性良好。
表1在pH=3Mcllvaine溶液中,不同浓度物质对NHDC氧化峰电流值的干扰
Figure BDA0003743587980000071
效果例:工作曲线与实际样品中NHDC检测
将NHDC样品溶解于乙醇中,配制成0.01g/mL的NHDC标准溶液,在pH=3Mcllvaine溶液中滴加不同浓度的NHDC标准液。如图6所示,采用DPV方法测定0.16~160μmol/L范围内的NHDC,插图是不同浓度(CNHDC)与测定NHDC氧化峰电流值(ipa1)线性关系图,在低浓度范围0.16~16μmol/L内CNHDC与ipa1呈良好线性关系,其拟合线性方程:ipa1(10-7A)=0.14940+0.02868CNHDC(μmol/L),R2=0.99870;且高浓度16~160μmol/L内,其拟合线性方程ipa1(10- 7A)=0.45019+0.01281CNHDC(μmol/L),R2=0.99785,σ=0.16782(指DPV曲线最低浓度的峰电流值标准偏差,用DPV方法10次平行测量0.16μmol/L NHDC,记录氧化峰电流ipa1,由标准偏差公式计算得到σ)在3倍信噪比(S/N)的条件下,检测限为0.056μmol/L。
将购买市面上某品牌的无糖饮料移取10mL于烧杯中超声30min去除其中的CO2,取100μL原液用pH=3Mcllvaine缓冲溶液稀释10mL,在优化实验条件下采用DPV方法多次测试,结果未发现NHDC的氧化还原峰,因此判定该款无糖饮料中无NHDC添加成分。随后采用加标回收法,在样品中分别加入0.1μL、0.5μL、2μL的NHDC标准溶液检测三次,如表2所示测试结果回收率在99.0%~101.2%之间,结果可靠性好,因此该方法可用于饮料实际样品中NHDC的含量检测。
表2加标回收法检测饮料中的NHDC(n=3)
Figure BDA0003743587980000081

Claims (10)

1.一种检测高倍甜味剂NHDC的化学修饰电极,其特征在于,用于高倍甜味剂NHDC及含NHDC产品,或无糖饮料检测,化学修饰电极包括玻碳电极,玻碳电极表面从内至外依次覆盖ZIF-8晶体、Nafion。
2.根据权利要求1所述的检测高倍甜味剂NHDC的化学修饰电极,其特征在于,所述化学修饰电极是采用电沉积法将ZIF-8晶体沉积于玻碳电极表面,电沉积时循环伏安环扫圈数为30~50圈。
3.如权利要求2所述的检测高倍甜味剂NHDC的化学修饰电极的制备方法,其特征在于,化学修饰电极ZIF-8/Nafion是采用电沉积法将ZIF-8晶体沉积于玻碳电极表面,晾干,电沉积时循环伏安环扫圈数为30~50圈,再在该电极表面滴加Nafion溶液得到的。
4.根据权利要求3所述的方法,其特征在于,其步骤如下:将打磨光滑后的玻碳电极作为工作电极,与饱和甘汞电极、铂电极组装成三电极体系,在含ZIF-8的电解质溶液中进行循环伏安环扫,电沉积形成ZIF-8晶体,然后取出电极晾干,最后在该电极表面再继续滴加Nafion后自然晾干,得到化学修饰电极ZIF-8/Nafion GCE。
5.根据权利要求4所述的方法,其特征在于,所述含ZIF-8的电解质溶液中ZIF-8的浓度为1mg/mL。
6.根据权利要求5所述的方法,其特征在于,所述循环伏安环扫时电压窗口-0.2~0.9V,扫速0.1V/s,扫描30~50圈。
7.根据权利要求6所述的方法,其特征在于,所滴加的Nafion是0.05vol%Nafion的乙醇溶液。
8.根据权利要求7所述的方法,其特征在于,所述扫描圈数为35~45圈。
9.根据权利要求8所述的方法,其特征在于,所述ZIF-8晶体粉末的制备步骤包括:边缓慢搅拌边将2-甲基咪唑的水溶液滴加到Zn(NO3)2·6H2O的水溶液中,逐渐混合形成乳白色溶液,不断搅拌,离心处理,同时用无水乙醇和双蒸水分别洗涤,最后烘箱干燥,得到ZIF-8晶体粉末。
10.利用如权利要求9所述的电极检测NHDC的方法,其步骤包括:将所述化学修饰电极ZIF-8/Nafion GCE作为工作电极,与饱和甘汞电极、铂电极组装成三电极体系,以pH=3的Mcllvaine溶液作为电解液,采用DPV方法测定滴加不同浓度的NHDC溶液后响应的氧化峰电流值,得到NHDC溶液浓度CNHDC与氧化峰电流值ipa1的标准曲线,在曲线中选取具有线性关系的一段区域,拟合NHDC溶液浓度CNHDC与氧化峰电流值ipa1的线性方程:ipa1(10-7A)=0.45019+0.01281CNHDC(μmol/L),在3倍信噪比的条件下,根据公式
Figure FDA0003743587970000021
计算得到检测限,其中σ表示DPV曲线最低浓度的峰电流值标准偏差;R表示线性方程的斜率;
取待测样品滴加到所述电解液,用所述三电极体系检测NHDC的氧化还原峰,并根据所述线性方程,求出NHDC溶液浓度。
CN202210824767.0A 2022-07-13 2022-07-13 一种检测高倍甜味剂nhdc的化学修饰电极及制备方法 Active CN115201295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210824767.0A CN115201295B (zh) 2022-07-13 2022-07-13 一种检测高倍甜味剂nhdc的化学修饰电极及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210824767.0A CN115201295B (zh) 2022-07-13 2022-07-13 一种检测高倍甜味剂nhdc的化学修饰电极及制备方法

Publications (2)

Publication Number Publication Date
CN115201295A true CN115201295A (zh) 2022-10-18
CN115201295B CN115201295B (zh) 2024-04-02

Family

ID=83580431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210824767.0A Active CN115201295B (zh) 2022-07-13 2022-07-13 一种检测高倍甜味剂nhdc的化学修饰电极及制备方法

Country Status (1)

Country Link
CN (1) CN115201295B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106518895A (zh) * 2016-09-12 2017-03-22 青岛大学 基于同时封装靶物质并合成具有氧化还原活性MOFs的制法
CN107238651A (zh) * 2017-06-30 2017-10-10 西南大学 一种检测多巴胺的电化学传感器的制备方法
CN107987279A (zh) * 2017-11-29 2018-05-04 湘潭大学 利用离子液体双极性电化学合成花瓣状金属有机框架物ZIF-8的Janus微球的方法
CN108130574A (zh) * 2018-01-03 2018-06-08 苏州大学 一种氧辅助阴极沉积金属有机骨架材料的方法
CN108872452A (zh) * 2018-10-10 2018-11-23 福建省产品质量检验研究院 白酒中二氢查耳酮类物质含量的同时分离检测方法
CN109187693A (zh) * 2018-11-05 2019-01-11 青岛大学 基于纳米复合物修饰电极的香草醛比率电化学适体传感器的制备方法
EP3524574A1 (en) * 2018-02-13 2019-08-14 Gaznat SA, Société pour l'pprovisionnement et le transport du gaz naturel en Suisse Romande Fe-n-c catalyst, method of preparation and uses thereof
WO2022119371A1 (ko) * 2020-12-04 2022-06-09 롯데케미칼 주식회사 개질 zif계 화합물을 포함하는 이산화탄소 환원용 촉매 및 이를 포함하는 이산화탄소 환원용 전극

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106518895A (zh) * 2016-09-12 2017-03-22 青岛大学 基于同时封装靶物质并合成具有氧化还原活性MOFs的制法
CN107238651A (zh) * 2017-06-30 2017-10-10 西南大学 一种检测多巴胺的电化学传感器的制备方法
CN107987279A (zh) * 2017-11-29 2018-05-04 湘潭大学 利用离子液体双极性电化学合成花瓣状金属有机框架物ZIF-8的Janus微球的方法
CN108130574A (zh) * 2018-01-03 2018-06-08 苏州大学 一种氧辅助阴极沉积金属有机骨架材料的方法
EP3524574A1 (en) * 2018-02-13 2019-08-14 Gaznat SA, Société pour l'pprovisionnement et le transport du gaz naturel en Suisse Romande Fe-n-c catalyst, method of preparation and uses thereof
CN108872452A (zh) * 2018-10-10 2018-11-23 福建省产品质量检验研究院 白酒中二氢查耳酮类物质含量的同时分离检测方法
CN109187693A (zh) * 2018-11-05 2019-01-11 青岛大学 基于纳米复合物修饰电极的香草醛比率电化学适体传感器的制备方法
WO2022119371A1 (ko) * 2020-12-04 2022-06-09 롯데케미칼 주식회사 개질 zif계 화합물을 포함하는 이산화탄소 환원용 촉매 및 이를 포함하는 이산화탄소 환원용 전극

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
于婷婷 等: "新橙皮苷二氢查尔酮的电化学行为研究", 西南科技大学学报, vol. 24, no. 02, 15 June 2009 (2009-06-15), pages 17 - 21 *
于婷婷 等: "新橙皮苷二氢查尔酮的电化学行为研究", 西南科技大学学报, vol. 24, no. 02, pages 17 - 21 *
张亮 等: "基于ZIF-8电化学传感器构建及用于检测饮料中新橙皮苷二氢查耳酮", 分析试验室, vol. 43, no. 1, 17 April 2023 (2023-04-17), pages 91 - 97 *
张茵 等: "甜味剂检测技术研究进展", 现代食品, no. 11, 15 June 2020 (2020-06-15), pages 30 - 32 *
曲艳萍 等: "具有类酶特性的纳米材料在传感器中的应用", 化工新型材料, vol. 49, no. 10, pages 231 - 233 *
杨凌茜: "食品添加成分的电化学分析方法研究", 中国优秀硕士论文全文数据库 工程科技I辑, no. 01, pages 38 - 52 *
罗贵铃 等: "ZIF-8衍生氮掺杂多孔碳修饰电极对芦丁的电化学分析", 海南师范大学学报(自然科学版), vol. 33, no. 01, 15 March 2020 (2020-03-15), pages 24 - 29 *

Also Published As

Publication number Publication date
CN115201295B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
Yang et al. Engineering the valence state of ZIF-67 by Cu 2 O for efficient nonenzymatic glucose detection
Wang et al. A novel biosensor for reduced l-glutathione based on cobalt phthalocyaninetetrasulfonate-intercalated layered double hydroxide modified glassy carbon electrodes
Salimi et al. Cobalt oxide nanostructure-modified glassy carbon electrode as a highly sensitive flow injection amperometric sensor for the picomolar detection of insulin
Gholivand et al. A nano-structured Ni (II)–ACDA modified gold nanoparticle self-assembled electrode for electrocatalytic oxidation and determination of tryptophan
Kemmegne-Mbouguen et al. Simultaneous quantification of dopamine, acetaminophen and tyrosine at carbon paste electrodes modified with porphyrin and clay
CN111307904B (zh) 竹节状铜镍纳米线阵列葡萄糖传感器电极制备方法及应用
Su et al. Covalent organic frameworks and electron mediator-based open circuit potential biosensor for in vivo electrochemical measurements
CN109682877B (zh) 一种用于检测葡萄糖的电化学传感器
Ahmad et al. Bimetallic copper-cobalt MOFs anchored carbon nanofibers hybrid mat based electrode for simultaneous determination of dopamine and tyramine
Ouyang et al. ZIFs derived polyhedron with cobalt oxide nanoparticles as novel nanozyme for the biomimetic catalytic oxidation of glucose and non-enzymatic sensor
Wang et al. A Novel Electrochemical Sensor for Detection of Baicalein in Human Serum Based on DUT‐9/Mesoporous Carbon Composite
Xu et al. An ultra-sensitive dual-signal ratiometric electrochemical aptasensor based on functionalized MOFs for detection of HER2
Li et al. An ultrasensitive dietary caffeic acid electrochemical sensor based on Pd-Ru bimetal catalyst doped nano sponge-like carbon
CN113075279B (zh) 一种氮掺杂石墨炔量子点在检测氯霉素中的应用
CN108918623A (zh) 一种基于锌基金属有机骨架材料和纳米金复合材料的电化学酶传感器的制备方法和应用
Qin et al. Simultaneous electrochemical detection of zinc and copper in fruit juice using Hg/CMWCNTs@ ZIF-8 modified glassy carbon electrode
CN115201295A (zh) 一种检测高倍甜味剂nhdc的化学修饰电极及制备方法
Wu et al. Construction of a selective non-enzymatic electrochemical sensor based on hollow nickel nanospheres/carbon dots–chitosan and molecularly imprinted polymer film for the detection of glucose
Sun et al. Simultaneous electrochemical detection of uric acid and ascorbic acid at a silver doped poly (glutamic acid) modified glassy carbon electrode
Ahmadi et al. Enzyme-less amperometric sensor manufactured using a Nafion–LaNiO 3 nanocomposite for hydrogen peroxide
CN114778636A (zh) 一种同时测定对苯二酚和邻苯二酚的复合电极的制备方法
Scavetta et al. Amperometric sensors based on synthetic hydrotalcites and their application for ethanol detection in beer
CN115128142B (zh) 一种基于红细胞生物传感器的制备方法与应用
CN110672691B (zh) 一种功能化石墨烯修饰玻碳电极的制备方法及用途
CN116678926A (zh) 一种高效灵敏的nhdc电化学传感器的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant