CN115181065A - 一种苝酰亚胺衍生物及应用 - Google Patents

一种苝酰亚胺衍生物及应用 Download PDF

Info

Publication number
CN115181065A
CN115181065A CN202210945836.3A CN202210945836A CN115181065A CN 115181065 A CN115181065 A CN 115181065A CN 202210945836 A CN202210945836 A CN 202210945836A CN 115181065 A CN115181065 A CN 115181065A
Authority
CN
China
Prior art keywords
cells
pmic
tumor
pbs
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210945836.3A
Other languages
English (en)
Other versions
CN115181065B (zh
Inventor
黄永伟
王颖哲
娄雪
刘雨停
刘于
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202210945836.3A priority Critical patent/CN115181065B/zh
Publication of CN115181065A publication Critical patent/CN115181065A/zh
Application granted granted Critical
Publication of CN115181065B publication Critical patent/CN115181065B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/18Ring systems of four or more rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/473Quinolines; Isoquinolines ortho- or peri-condensed with carbocyclic ring systems, e.g. acridines, phenanthridines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种苝酰亚胺衍生物及应用,属于生物医药技术领域,该衍生物可实现光动、化疗为基础的免疫原性细胞死亡(ICD),为抗癌提供了一种强有力的策略。该化合物通过产生活性物质(1O2、O2、H2O2OH)破坏线粒体结构,引起线粒体氧化应激,进而诱发肺癌细胞凋亡,同时激活ICD效应,实现肿瘤化学‑免疫或光动‑化学‑免疫治疗。

Description

一种苝酰亚胺衍生物及应用
技术领域
本发明属于生物医药领域,具体涉及一种苝酰亚胺衍生物及应用。
背景技术
恶性肿瘤是21世纪发病率和死亡率最高的重大疾病,因此对于研究高效的肿瘤治疗测量迫在眉睫。随着传统的治疗手段越来越突显出其不足,高效的癌症免疫治疗手段已经在近十年里被广泛应用于肺癌治疗。与传统治疗相比(如手术治疗和化疗),免疫疗法是一种利用宿主自身免疫系统对抗癌症的有效治疗策略。由于其能够有效地抑制肿瘤的转移和复发,因此免疫治疗在临床应用中具有很大的应用前景。
尽管免疫治疗取得了巨大的成就,但在临床实践中仍面临着一些挑战,如药物脱靶效应引起的毒性、药物血浆半衰期较短以及免疫抑制的肿瘤微环境(TME)等。此外,免疫治疗在10-30%的患者中对肿瘤的治疗效果较好,但在肿瘤无免疫原性的患者中治疗效果却较差。相比之下,传统治疗方法(如化疗)可以有效地抑制肿瘤,但却面临着耐药性、对正常组织的损害以及肿瘤的复发和转移等问题。让人感到惊喜的是,一些临床前研究表明,免疫治疗与传统治疗相结合的模式可以很好地解决上述问题,即在增强抗肿瘤免疫应答的同时提高传统治疗的疗效。因此,与免疫治疗相关的联合治疗策略不仅能够提高各自疗法的优点,同时也可能弥补各自治疗方式单独使用的缺点,这为攻克肿瘤转移和复发提供了一种新颖的治疗策略。
尽管联合治疗策略已经取得了很大的进展,但免疫抑制TME引起的低免疫应答仍然是免疫治疗中一个迫切需要解决的挑战。因此,重塑TME以此激活固有免疫和适应性免疫是提高肿瘤治疗效果的关键因素。免疫原性细胞死亡(ICD)是一种新兴的抗癌策略,它可以通过释放损伤相关分子模式(DAMPs),包括钙网蛋白(CRT)、高迁移率族蛋白B1(HMGB1)和三磷酸腺苷(ATP)来激活固有免疫和适应性免疫用以抑制癌症。最近有报道表明,过量的活性氧(ROS)可引起细胞剧烈的氧化应激,引发实体肿瘤的ICD效应,从而为机体的免疫系统提供大量的抗原刺激。一些化疗药物(如阿霉素)、放疗和光敏剂(如二氢卟吩和卟啉)已被证明可以通过释放ROS诱导ICD效应。然而,由于肿瘤内较高的氧化还原水平使还原性物质的积累较高,最终导致肿瘤细胞中ROS生成有限,故目前报道的ICD诱导剂难以产生足够的DAMPs从而实现高效的癌症免疫治疗。因此,缺氧实体瘤中诱导足够的ROS是ICD效应引发有效免疫系统激活的重要影响因素,同时也是构建高效ICD诱发剂的严峻挑战。
苝酰亚胺(PDI)由于作为一种优良的光电材料和生物医用材料而得到了广泛的研究。更有趣的是,PDI是一个丰富的缺电子体系,可利用乏氧肿瘤细胞中高浓度还原性基质将其还原为自由基阴离子,该负离子可于氧气分子发生电子交换,从而促进超氧自由基(O2 ·-)的形成,随后在PDI负离子参与下,生存细胞毒性更强的H2O2·OH,较好解决肿瘤细胞中ROS含量不足的问题。进一步通过修饰苝母核,引入供电子基团,施加光照,还可以产生单线态氧(1O2)。因此,苝酰亚胺衍生物有望成为新的ROS放大器,增强ICD效应,实现肿瘤光动-化学-免疫治疗。
发明内容
一种苝酰亚胺衍生物,苝酰亚胺衍生物为结构通式表示如下的化合物:
Figure BDA0003787293660000021
上述苝酰亚胺衍生物的可溶性盐,结构通式表示如下:
Figure BDA0003787293660000022
其中,R1=F、Cl、Br或I;R2=F、Cl、Br、I、BF4、CH3SO3、CF3SO3或ClO4。优选地,所述R1=R2=Cl。
上述苝酰亚胺衍生物及其可溶性盐在制备靶向线粒体内膜荧光探针中的应用。
上述苝酰亚胺衍生物及其可溶性盐在制备光动-化学-免疫抗肿瘤药物中的应用。
其中,所述抗肿瘤药物为抑制肺癌、黑色瘤、乳腺癌,结肠癌等细胞增殖的药物。
本发明针对线粒体和免疫原性细胞死亡的特点,通过分子结构修饰,提供一种可定位线粒体并诱发免疫原性细胞死亡,且具有光动-化学-免疫治疗肿瘤的苝酰亚胺衍生物诊疗剂。
附图说明
图1中:(A)PMIC-NC作用于B16、A549、4T1和HCT116细胞的半数致死量(IC50);(B)B16细胞与PMIC-NC孵育24h后的流式细胞仪检测细胞凋亡结果图;(C)B16细胞与PMIC-NC孵育6h后进行660nm激光照射(0.1W cm-2,5min)的流式细胞仪检测细胞凋亡结果图;(D)Western blot技术检测B16细胞与PMIC-NC共同孵育6h后加或不加激光照射细胞内凋亡蛋白的表达情况;(E)B16细胞与PMIC-NC共同孵育4h后线粒体与PMIC-NC的共定位情况;F)B16细胞与PMIC-NC共孵育6h后总ROS、1O2、O2·-、H2O2·OH、JC-1和Ca2+的荧光图像量化结果;(G)B16细胞与PMIC-NC共同孵育6h后线粒体的TEM超薄切片图像,图中的黄色箭头表示线粒体;(H)PMIC-NC诱导免疫原性细胞死亡(ICD)在癌细胞中伴随钙网蛋白(CRT)外翻、三磷酸腺苷(ATP)分泌和高迁移率族蛋白B1(HMGB1)释放的示意图;(I)Western blot技术检测B16细胞与不同浓度的PMIC-NC共同孵育6h经660nm激光照射(0.1W cm-2,5min)后内质网应激蛋白表达情况;(J)B16细胞与不同浓度的PMIC-NC共同孵育6h经660nm激光照射(0.1W cm-2,5min)后释放到细胞外的ATP浓度变化情况;(K)B16细胞与不同浓度的PMIC-NC共同孵育6h经660nm激光照射(0.1W cm-2,5min)后CRT外翻和HMGB1外排的情况。CRT:红色荧光;HMGB1:绿色荧光;细胞核:蓝色荧光。实验重复三次,*p<0.05为显著性差异。
图2为B16荷瘤模型抗肿瘤效果:(A)B16荷瘤模型治疗方案,随机将C57BL/6黑鼠分为PBS、PMIC-NC、PMIC-NC+L和Ce6+L共4组,尾静脉注射4h后,进行660nm激光照射(0.3W cm-2,5min),注射剂量:2mg kg-1,2天/次,治疗4次;(B)B16荷瘤模型原位肿瘤生长体积曲线及原位肿瘤重量统计;(C)B16荷瘤模型远端肿瘤生长体积曲线及远端肿瘤重量统计;(D)原位肿瘤组织切片H&E和TUNEL染色图像;肺组织切片H&E染色结果;(E)肺部转移结节数的统计;(F)肺组织的重量统计。每组统计4只小鼠。*p<0.05为显著性差异。
图3为B16荷瘤模型免疫抗肿瘤效果:(A)化合物在动物体内引起免疫原性死亡的示意图;(B)肿瘤引流淋巴结(TDLNs)中成熟DCs(CD11c+CD80+CD86+)的流式细胞术分析和量化;(C)B16荷瘤模型中不同处理组TNF-α和IFN-γ的含量;(D)流式细胞术分析和量化B16荷瘤模型肿瘤中浸润的辅助性T淋巴细胞(CD3+CD4+)、细胞毒性T淋巴细胞(CD3+CD8+)和激活的细胞毒性T淋巴细胞(CD3+CD8+CD38+);(E)流式细胞术分析和量化B16荷瘤模型肺组织中浸润的辅助性T淋巴细胞(CD3+CD4+)、细胞毒性T淋巴细胞(CD3+CD8+)和激活的细胞毒性T淋巴细胞(CD3+CD8+CD38+);(F)流式细胞术分析和量化B16荷瘤模型脾脏中浸润的辅助性T淋巴细胞(CD3+CD4+)、细胞毒性T淋巴细胞(CD3+CD8+)和激活的细胞毒性T淋巴细胞(CD3+CD8+CD38+)。数据统计为3小鼠标本,*p<0.05为显著性差异。
具体实施方式
以下结合附图和实施例对本发明的技术方案作进一步详细说明,但本发明的保护范围并不局限于此。
实施例1苝酰亚胺衍生物的制备和表征
Figure BDA0003787293660000041
PMIC-NC制备与表征。将1,6,7,12-四氯-3,4,9,10-苝四羧酸二酐(530.09mg,1.0mmol),溶在20mL双蒸水中,再加入6mL NaOH(1mol/L-1)。80℃摇30min后加入0.4mLCH3COOH待溶液变清。提前配置NaH2PO4饱和溶液作尾气处理,加入0.225mL Br2(10.00mmol)反应2h。将冷却至室温,并经过过滤,洗涤,干燥的粗品用20mL甲醇和20mL冰乙酸分散,100℃下搅拌5h。将纯化后的产物加入200mL甲醇中,减压抽滤,甲醇洗涤滤饼,真空干燥箱60℃烘干,使用硅胶柱干法上样,洗脱液为石油醚/二氯甲烷=10:1(体积比),旋蒸得到中间体1。
将中间体1(100mg,0.16mmol)溶于10mL氯仿中,依次加入2mL CH3COOH、N,N-二甲基乙二胺(100μL),通入足量氩气,在40℃反应2h,反应液用ddH2O和氯仿萃取,萃取3次,将氯仿层旋蒸,过柱。使用硅胶柱干法上样,洗脱液为甲醇/二氯甲烷=1:100(体积比),旋蒸得到中间体2。
将中间体2(100mg,0.15mmol)加入至3mL DMF中,超声混匀后,加入K2CO3(41.46mg,0.30mmol),再次超声混匀后滴加N,N-二甲基乙二胺(75μL,0.68mmol),氩气保护下105℃反应1.5h。双蒸水重结晶,减压抽滤,滤饼用双蒸水洗涤,真空干燥箱烘干。使用硅胶柱干法上样,甲醇/二氯甲烷=1:20(体积比)洗脱,旋蒸得到中间体3。
将中间体3(100mg)溶于2mL甲醇中再加入HCl(2M,1mL),室温反应12h。粗品用CH2Cl2洗涤,吸滤,直至滤液无色,真空干燥后得到产物PMIC-NC。1H NMR(400MHz,DMSO-d6)δ11.01(s,2H),8.40–8.29(m,2H),8.14(s,1H),7.09(s,1H),4.43(s,3H),3.79(s,3H),3.61(s,3H),3.46(d,J=6.2Hz,2H),2.91(d,J=5.6Hz,20H).ESI-MS,m/z calcd forC34H38O2N6Cl4 2+:702.18;found:351.09[M2+/2].
PMIC-NC根据文献报道制备。Y.Cai,D.Ni,W.Cheng,C.Ji,Y.Wang,K.Müllen,Z.Su,Y.Liu,C.Chen,M.Yin.Enzyme-triggered disassembly of perylene monoimide-basednanoclusters for activatable and deep photodynamictherapy.Angew.Chem.Int.Ed.2020,59,14014–14018.
下述各实验过程中苝酰亚胺衍生物PMIC-NC溶液均为PMIC-NC的水溶液。
实施例2苝酰亚胺衍生物抑制肺癌细胞增殖能力
采用人黑色素瘤细胞(A375)、鼠源黑色素瘤细胞(MeWo)及小鼠黑色素瘤细胞(B16)作为肿瘤细胞模型,同时选择小鼠肺上皮细胞(MLE-12)作为正常细胞模型。所有实验细胞均购自中国科学院上海细胞库。待细胞达到80%左右的融合度后,用0.25%的胰酶消化传代培养,使用对数生长期细胞用于体外细胞活力实验。
MTT测定苝酰亚胺衍生物抑制肿瘤细胞增殖能力
将B16肿瘤细胞按照约8.0×103个/孔的数量接种至96孔板,于37℃培养过夜,随后在对照组中更换新的培养基,在实验组中分别加入不同浓度的PMIC-NC(0、0.2、0.4、0.8和1.6μg mL-1),2h后进行660nm激光照射(0.1W cm-2,5min),继续孵育24h。使用PBS洗涤3遍并加入MTT溶液孵育4h,加入DMSO溶解蓝紫色结晶甲臜,于492nm酶标仪中检测其析光度,根据已报到文献中的公式计算出半数致死量IC50值。
化合物作用于A549细胞、4T1细胞以及HCT116细胞的实验操作步骤同上述B16细胞操作步骤。
上述实验结果计算公式为:
细胞增殖率(%)=(实验组-空白组)/(对照组-空白组)×100% (公式2-1)
IC50值计算公式:
IgIC50=Xm-I*(sigP-(3-Pm-Pn)/4) (公式2-2)
Xm:化合物最高浓度对数值;sigP:所有抑制率总和;I:Ig(化合物最高浓度/与化合物最高浓度相邻的化合物浓度);Pm:最大杀伤率;Pn:最小杀伤率。
实施例3苝酰亚胺衍生物促进肺癌细胞凋亡
(1)流式细胞仪检测肿瘤细胞凋亡
将B16肿瘤细胞按照约2.5×105个/孔接种至12孔板中,于37℃培养24h,随后在对照组中更换新的培养基,在实验组中加入PMIC-NC,使得每孔终浓度为5μg mL-1,继续孵育24h;或在实验组中加入PMIC-NC,使得每孔终浓度为2μg mL-1,6h后进行660nm激光照射(0.1W cm-2,5min)。细胞孵育结束后,丢弃原培养基,使用预冷的PBS洗涤3遍,消化并收集肿瘤细胞,加入10μL的Annexin V-FITC和5μL的PI,冰上避光孵育10min,用PBS缓冲液洗涤后,于流式细胞仪下检测细胞内的凋亡情况。
(2)蛋白信号通路检测
将B16肿瘤细胞按照约2.5×105个/孔接种12孔板,于37℃培养24h,随后在对照组中更换新的培养基,在实验组中分别加入PMIC-NC,使得每孔终浓度为2μg mL-1,孵育6h进行660nm激光照射(0.1W cm-2,5min),随后收集肿瘤细胞,经过RIPA裂解液裂解30min,裂解结束后离心(12000rpm,10min)收集上清液,使用BCA蛋白定量法测量蛋白浓度,随后加入蛋白Loading Buffer进行浓度配平,最后在100℃下放置10min,完成蛋白样品的制备。随后吸取10μL蛋白样品加入到12%的SDS-PAGE预制胶中的浓缩胶层,两侧加入标准蛋白Maker。将预制胶置于电泳槽中,加入电泳液并设置合适的电压分离蛋白。紧接着将预制胶中的条带通过设置合适的电流转移到PVDF膜,根据标准蛋白Marker分子量裁剪得出目的膜条带,于5%的脱脂奶粉封闭3h。加入对应的一抗溶液4℃孵育过夜,使用1×TBST洗涤膜条带3次。最后加入相应的二抗溶液室温孵育2h,再使用1×TBST洗涤膜条带3次,滴加ECL超敏发光液后于成像仪观察。
以上结果如图1中A-D所示,首先采用MTT和流式细胞技术研究了PMIC-NC抑制肿瘤细胞生长能力。将PMIC-NC与不同肿瘤细胞共同孵育,如图1中A所示,MTT结果表明,PMIC-NC化合物对于B16、A549、4T1和HCT116细胞的半数抑制浓度(IC50)分别约为3.47μg mL-1、7.53μg mL-1、6.32μg mL-1、8.56μg mL-1。辅助激光照射后(PMIC-NC+Laser),B16、A549、4T1和HCT116细胞的半数抑制浓度(IC50)约为0.22μg mL-1、0.35μg mL-1、0.56μg mL-1、0.93μg mL-1,表明PMIC-NC+Laser可高效抑制B16、A549、4T1和HCT116细胞增殖。同时,申请人还检测PMIC-NC对小鼠肺上皮细胞MLE-12的抑制性能。结果显示,MLE-12的半数抑制浓度为32.28±1.4μg mL-1,约是B16肿瘤细胞的10倍,表明PMIC-NC对正常细胞的细胞毒性较低。此外,流式细胞术实验进一步证实了PMIC-NC对B16具有较强的细胞毒性,显示在高浓度无激光照射或低浓度加激光照射时均展现出优异的抑制增殖效应。如图1中B和C所示,PMIC-NC(5μgmL-1)组有27.6%的B16细胞凋亡,比PBS组高11.7倍,而PMIC-NC(2μg mL-1)+Laser(0.1W cm-2,5min)的凋亡率达到32.5%,比PBS+Laser组高8.7倍,再次证明了PMIC-NC可高效抑制B16肿瘤细胞增殖。随后申请人通过Western Blot检测与凋亡相关蛋白(图1中D),结果显示,与PBS组相比,PMIC-NC治疗后(不加激光和加激光)可使Caspase 9剪切体在B16细胞的表达量分别增加了1.6和1.9倍。同时,促凋亡蛋白Bax表达量提高1.5倍和1.7倍,抗凋亡蛋白Bcl-2表达量下调50%和70%,表明细胞凋亡是导致细胞死亡重要原因。
实施例4苝酰亚胺衍生物体抑制肿瘤细胞生长机制研究
(1)抑制细胞生长机制
(i)线粒体共定位实验
将B16肿瘤细胞按照每皿约5.0×104个接种于20mm共聚焦细胞培养皿中,于37℃培养24h,丢弃原培养基,使用PBS洗涤1遍。将PMIC-NC加入实验组使其终浓度为0.5μg mL-1,孵育4h。每组加Mito-Tracker Green dye,用无血清培养基按照1:1000稀释,于37℃避光孵育30min后使用PBS洗涤3遍除去多余的化合物及染料,于共聚焦激光显微镜观察。
(ii)细胞活性氧检测
采用倒置荧光显微镜检测总活性氧的具体方法如下:将B16肿瘤细胞约2.5×105个/孔接种至12孔板,于37℃培养24h,随后在对照组中更换新的培养基,在实验组中分别加入PMIC-NC,使得每孔终浓度为2μg mL-1,孵育6h经660nm激光照射(0.1W cm-2;5min)。随后使用PBS洗涤3遍并将配置好的DCFH-DA溶液(无血清培养基:DCFH-DA=1000:1)分别加入500μL于各孔中避光孵育30min。孵育结束后,丢弃上清液,使用PBS洗涤3遍,于倒置荧光显微镜下观察。
采用流式细胞仪检测总活性氧的具体方法如下:将B16肿瘤细胞约2.5×105个/孔接种至12孔板中,于37℃培养24h,在对照组中更换新的培养基,在实验组中分别加入PMIC-NC,使得每孔终浓度为2μg mL-1,孵育6h经660nm激光照射(0.1W cm-2;5min)。细胞孵育结束后,收集细胞悬液,使用PBS重悬细胞后离心(300g,10min)洗涤1遍,将配置好的DCFH-DA溶液(无血清培养基:DCFH-DA=1000:1)按每孔500μL重悬细胞后于37℃下孵育30min并在流式细胞仪下检测总活性氧产生情况。
此外,O2 ·-检测需要使用DHE溶液(PBS:DHE=1000:1);H2O2检测需要使用H2O2探针溶液(PBS:H2O2探针=500:1);·OH检测需要使用HPF溶液(PBS:HPF=500:1),各组均加500μL染色液于37℃避光孵育30min。
(iii)透射电镜检测细胞亚结构形态
将细胞置于细胞培养瓶中,75%融合度时移除培养液,PBS洗涤2次,加5%戊二醛(pH 7.2)固定2h。刮下单层细胞移入离心管,离心3min(800rpm),沉淀细胞用0.1M磷酸漂洗液和PBS洗涤(3×15min)后,1%锇酸固定1h。然后用50%、70%、80%、95%、100%丙酮脱水,继而浸脂、包埋后聚合,切片(厚度70nm),3%醋酸铀、枸橼酸铅染色,蒸馏水冲洗5次,透射电镜(120kV)观察形态结构。
(iv)Ca2+检测实验
将B16肿瘤细胞按照约2.5×105个/孔接种于12孔板中,于37℃培养24h,随后在对照组中更换新的培养基,在实验组中加入PMIC-NC,使得每孔终浓度为2μg mL-1,孵育6h经660nm激光照射(0.1W cm-2;5min)。细胞孵育结束后,收集细胞悬液,使用PBS重悬细胞后离心(300g,10min)洗涤1遍,将配置好的Fluo-4 AM工作液(PBS:Fluo-4 AM存储溶液=1000:1)重悬细胞后于37℃下孵育30min。孵育结束后,使用PBS(300g,10min)洗涤2遍,于流式细胞仪下检测细胞内的Ca2+变化情况。
(v)PMIC-NC诱导肿瘤细胞内质网应激蛋白的变化
采用蛋白免疫印迹实验来分析肿瘤细胞内内质网应激蛋白的表达,具体实验过程同实施例3步骤(2)。
(2)免疫原性细胞死亡检测
(i)PMIC-NC诱导肿瘤细胞ATP的释放
将B16肿瘤细胞按照每孔约4×104个的细胞密度接种至12孔板中,于37℃培养24h,随后在对照组中加入新的培养基,在实验组中加入PMIC-NC,使PMIC-NC的终浓度为1μgmL-1,孵育6h经660nm激光照射(0.1W cm-2;5min)。细胞孵育结束后,收集培养基并且根据ATP试剂盒的说明指示检测ATP的释放情况。
(ii)PMIC-NC诱导肿瘤细胞CRT的外排
将B16肿瘤细胞按照每皿4×104个的细胞密度接种至共聚焦皿,于37℃培养24h,随后在对照组中更换新的培养基,在实验组中分别加入PMIC-NC,使PMIC-NC的终浓度为0.5μg mL-1,孵育6h经660nm激光照射(0.1W cm-2;5min)。随后使用PBS洗涤3遍并用甲醇固定5min,紧接着将1%BSA配置的anti-CRT兔多克隆抗体(CRT-抗体:1%BSA=1:500)4℃孵育过夜。孵育结束后使用PBS洗涤3遍以去除多余的抗体,随后与配置的山羊兔二抗(山羊兔二抗:1%BSA=1:500)在摇床上室温孵育2h。观察前使用即用型DAPI染色5min,使用PBS洗涤3遍,随后于共聚焦激光扫描显微镜观察。
(iii)PMIC-NC诱导肿瘤细胞HMGB1的释放
将B16肿瘤细胞按照每皿4×104个的细胞密度接种至共聚焦皿,于37℃培养24h,随后在对照组中更换新的培养基,在实验组中分别加入PMIC-NC,使PMIC-NC的终浓度为1μgmL-1,孵育6h经660nm激光照射(0.1W cm-2;5min)。随后使用4%多聚甲醛固定10min,并使用0.1%Triton-X-100透化5min。PBS洗涤后再与使用1%BSA配置的anti-HMGB1兔多克隆抗体(HMGB1-抗体:1%BSA=1:250)4℃孵育过夜。孵育结束后使用PBS洗涤3遍以去除多余的抗体,随后与配置的山羊兔二抗(山羊兔二抗:1%BSA=1:250)在室温孵育2h。观察前使用即用型DAPI染色5min,使用PBS洗涤3遍,随后于共聚焦激光扫描显微镜观察。
以上结果如图1中F-K所示,由图1中F可知,PMIC-NC与B16细胞共孵育6h后会引发大量活性氧产生,包括超氧阴离子(O2 ·-)、过氧化氢(H2O2)和羟基自由基(·OH)。而线粒体是电子交换和ROS生成的重要场所,结合PMIC-NC分子自身具有荧光的特性,因此通过线粒体Mito-tracker的绿色荧光与PMIC-NC的红色荧光进行荧光共定位成像实验。如图1中E所示,PMIC-NC与线粒体内膜的共定位系数高达0.84,证明化合物PMIC-NC具有靶向线粒体的功能。这可能是因为PMIC-NC具有阳离子核,而线粒体内膜处存在负线粒体膜电位(MMP),因此能够通过电荷相互吸引起到靶向线粒体的能力。根据以上数据可以得出结论,PMIC-NC可以通过与线粒体内的电子传递链配合物相互作用使电子发生泄漏,然后苝母核捕获电子进而还原为自由基阴离子,再经过苝阴离子与细胞内O2之间的电子转移促进O2 ·-、H2O2·OH的生成(图1中F)。
ROS爆发不可避免地会对线粒体形态和线粒体相关的能量代谢途径造成破坏。如图1中G所示,与PBS组相比,PMIC-NC处理后线粒体微观结构显示深度肿胀、外膜破裂和嵴溶解。此外,线粒体膜电位下降是细胞凋亡早期的一个标志性事件,线粒体膜电位较高时,JC-1聚集在线粒体基质形成聚合物(J-aggregates),可以产生红色荧光,在线粒体膜电位较低时,JC-1不能聚集,产生绿色荧光。因此,使用JC-1作为探针标记,通过计算PMIC-NC作用前后绿色荧光与红色荧光的比值来确定线粒体膜电位是否下降。结果如图1中F所示,PMIC-NC+L处理细胞后会使绿色荧光/红色荧光的比值较PBS组高1.93倍。上述实验结果进一步证实PMIC-NC+L能够严重损伤了线粒体,从而导致线粒体膜电位的改变。同时,过量的ROS会对线粒体造成严重的氧化应激,破坏钙稳态,最终导致钙通过线粒体通透性过渡孔从线粒体释放到细胞质。如图1中F所示,PMIC-NC+L孵育后B16细胞内Ca2+水平比PBS组提高了1.7倍(2μgmL-1)。过量的ROS和钙超载会导致内质网(ER)应激,因此我们评估了内质网应激相关蛋白如C/EBP同源蛋白(CHOP)和真核启动因子2α(eIF2α)的表达。如图1中I所示,与PBS组相比,PMIC-NC组CHOP表达上调2.5倍,PMIC-NC+L组表达上调约2.4倍。内质网应激的另一个标志物eIF2α磷酸化(p-eIF2α)在PMIC-NC处理中也比PBS组上调1.3倍,而PMIC-NC+L处理中也比PBS组上调1.6倍,这为B16细胞内质网应激增强提供了有力证据。这些结果清楚地证明了PMIC-NC+L可以精确靶向进入线粒体,促进内源性ROS爆发,引发钙超载,导致严重的线粒体和内质网应激,有效地触发B16细胞的凋亡。
如上所述,ICD是一种很有前途的抗癌策略,它可以通过DAMPs(包括CRT、HMGB1和ATP)激活固有免疫和适应性免疫来抑制癌症(图1中J-K)。此外,内质网应激能够促进ICD的诱发,因此研究了ATP、CRT和HMGB1的变化以评估PMIC-NC是否能成功诱发ICD。如图1中J所示,PMIC-NC(1μg mL-1)能很好地触发肿瘤细胞的ATP释放,其释放量是PBS组的2.27倍,同时PMIC-NC(1μg mL-1)经激光照射能更好地触发肿瘤细胞的ATP释放,其释放量是PBS组的3.04倍,说明PMIC-NC在ICD诱导初期可促进更多抗原提呈细胞(APCs)的募集。随后观察到肿瘤细胞表面能够具有明显的红色荧光,证明CRT成功外翻到细胞膜上,且具有浓度依赖性(图1中K)。表明CRT从内质网转移到细胞膜上,并作为“eat-me”信号促进APCs对其进行吞噬。最后,在PMIC-NC经激光照射后处理组中的HMGB1从B16细胞内释放到胞外(图1中K),并作为宿主来源的危险信号,与APCs和其他免疫细胞上的模式识别受体相结合,激活固有免疫和适应性免疫。总之,这些数据不仅表明PMIC-NC经激光照射后可以触发有效的ROS产生,对线粒体造成损伤,而且进一步证实内质网应激诱导ICD对肺细胞免疫原性凋亡的作用。鉴于PMIC-NC经激光照射后能够诱发强烈的ICD效应,后续的研究将集中在PMIC-NC经激光照射后是否能在体内显著激活免疫系统以起到良好抑制体内肿瘤生长的作用。
实施例5苝酰亚胺衍生物体内抗肿瘤性能
(1)动物模型构建
B16原位荷瘤模型的构建:根据前期预实验结果,选取16-18g SPF级C57BL/6黑鼠(适应于B16细胞),挑选培养皿中长势约95%的B16细胞,PBS洗涤后使用胰酶消化并收集肿瘤细胞,并使用PBS将细胞重悬。选择体重相近健康的黑鼠,用75%的酒精棉球消毒黑鼠右下肢,用接种针轻挑黑鼠的皮下,每只注射100μL细胞悬液(约3.5×105个细胞)。
B16远端荷瘤模型的构建:根据前期预实验结果,选取16-18g SPF级C57BL/6黑鼠(适应于B16细胞),挑选培养皿中长势约95%的B16细胞,PBS洗涤后使用胰酶消化并收集肿瘤细胞,并使用PBS将细胞重悬。选择体重相近健康的黑鼠,用75%的酒精棉球消毒黑鼠左下肢,用接种针轻挑黑鼠的皮下,每只注射100μL细胞悬液(约3×105个细胞)。
B16转移瘤模型的构建:根据前期预实验结果,选取16-18g SPF级C57BL/6黑鼠,挑选培养皿中长势约95%的B16细胞,PBS洗涤后使用胰酶消化并收集肿瘤细胞,并使用PBS将细胞重悬。选择体重相近健康的黑鼠,用75%的酒精棉球消毒的酒精棉球擦拭黑鼠尾巴,每只尾静脉注射100μL细胞悬液(约2.5×105个细胞)。
(2)苝酰亚胺衍生物体内抗肿瘤性能评价
动物模型构建完成后,随机将模型老鼠设立对照组和实验组(4只/组),实验组C57BL/6黑鼠按预实验剂量尾静脉注射苝酰亚胺衍生物,对照组小鼠尾静脉注射同量生理盐水。针对不同模型小鼠采取不同的处理措施:
B16荷瘤模型:待肿瘤长至80mm3,PBS组给予生理盐水进行处理,治疗组给予2mgkg-1PMIC-NC或者Ce6(具体操作时,将PMIC-NC用双蒸水配成浓度为0.4mg mL-1的溶液;先将Ce6溶于DMSO,再加双蒸水混匀配制Ce6的DMSO和水的混合溶液,Ce6浓度为0.4mg mL-1,DMSO占溶液体积的1‰,两种溶液均按照100μL/只进行注射)4h后进行660nm激光照射(0.1W cm-2;5min)治疗。给药频率为每2天给予1次,一共治疗4次。记录肿瘤重量,眼眶取血进行血液生化指标分析,取心、肝、脾、肺和肾,进行生物兼容性分析。
根据荷瘤模型肿瘤质量和体积,转移瘤模型收集肿瘤肺部质量和肿瘤肺结节数目,评价苝酰亚胺衍生物体内抗肿瘤性能。
(3)免疫指标检测评估
肿瘤引流淋巴结中DC细胞的成熟:治疗结束后,对不同治疗组的小鼠实施安乐死,收集各组小鼠肿瘤引流淋巴结并对其进行DC细胞的检测。
收集方法如下:
1)使用镊子取下肿瘤部位周围的淋巴结,放置于装有生理盐水的6孔板中。
2)将100μm细胞筛置于50mL离心管上,缓慢加入生理盐水,同时轻轻研磨淋巴结,收集滤液。
3)3000rpm室温离心3min,弃上清,收集沉淀。
4)PBS重悬细胞沉淀(每100μL/1×106个细胞的混悬液),用于后续的荧光染色。
染色方法如下:
分别加入FITC anti-mouse CD86,APC anti-mouse CD80或PE anti-mouse CD11C设置单染管,同时制备三染管,冰上避光孵育15-20min,随后于流式细胞仪检测。
肿瘤浸润T淋巴细胞的检测:治疗结束后,对不同治疗组的小鼠实施安乐死,收集各组小鼠肿瘤并对其进行T淋巴细胞的检测。
收集方法如下:
1)取原位肿瘤组织浸泡于PBS中,剔除周围的血块等非瘤组织,使用PBS洗涤2遍,放置于6孔板中,剪成1mm3大小的小块组织,加入含有胶原酶IV(200U/mL)和DNase I(40U/mL)的DMEM无血清培养基溶液中,37℃水浴消化45min。
2)将100μm细胞筛置于50mL离心管上,缓慢加入含组织块的消化液,同时使用含10%FBS的DMEM培养基(含2mM EDTA)溶液冲洗细胞。
3)室温1500rpm离心5min,弃上清,沉淀即为肿瘤浸润淋巴细胞。
4)PBS重悬细胞沉淀(每100μL/2.5×105个细胞的混悬液),用于后续的荧光染色。
染色方法如下:
先加入FITC anti-mouse CD3,再分别与APC anti-mouse CD4或APC anti-mouseCD8双染以及FITC anti-mouse CD3,APC anti-mouse CD8和PE anti-mouse CD38三染,同时设立单染管,冰上避光孵育15-20min,随后于流式细胞仪检测。
肿瘤肺组织浸润T淋巴细胞的检测:治疗结束后,对不同治疗组的小鼠实施安乐死,收集各组小鼠肺组织并对其进行T淋巴细胞的检测。
收集方法如下:
1)取肺组织浸泡于PBS中,剔除周围的血块、脂肪及坏死组织,使用PBS洗涤2遍,放置于6孔板中,每孔加入含有1%血清的PBS中并剪成1mm3大小的小块组织,收集并于37℃水浴消化45min。
2)将100μm细胞筛置于50mL离心管上,缓慢加入含组织块的消化液,收集滤液。
3)室温2000rpm离心6min,弃上清,收集沉淀。
4)PBS重悬细胞沉淀(每100μL/3×105个细胞的混悬液),用于后续的荧光染色。
染色方法如下:
先加入FITC anti-mouse CD3,再分别与APC anti-mouse CD4或APC anti-mouseCD8双染以及FITC anti-mouse CD3,APC anti-mouse CD8和PE anti-mouse CD38三染,同时设立单染管,冰上避光孵育15-20min,随后于流式细胞仪检测。
脾脏中T淋巴细胞的检测:治疗结束后,对不同治疗组的小鼠实施安乐死,收集各组小鼠脾脏并对其进行T淋巴细胞的检测。
收集方法如下:
1)在无菌条件下取出脾脏组织,浸泡在无菌的PBS溶液中。
2)将100μm细胞筛置于50mL离心管上,用5mL注射器头对组织进行研磨碾压,过程中不停加入含10%FBS的1640培养基冲洗,收集滤液。
3)室温2000rpm离心15min,弃上清,收集沉淀。
4)用1×红细胞裂解液重悬沉淀,室温静置5min,而后室温2000rpm离心15min,重复破红1次。
5)使用含10%FBS的1640培养基重悬沉淀,室温2000rpm离心10min,重复洗涤1次。
6)使用5mL 1640培养基重悬沉淀,除去其中不可溶的组织纤维,并进行脾细胞计数,取脾细胞在PBS中进行重悬(每100μL/2.5×105个细胞的混悬液),用于后续的荧光染色。
染色方法如下:
先加入FITC anti-mouse CD3,再分别与APC anti-mouse CD4或APC anti-mouseCD8双染以及FITC anti-mouse CD3,APC anti-mouse CD8和PE anti-mouse CD38三染,同时设立单染管,冰上避光孵育15-20min,随后于流式细胞仪检测。
(4)生物安全性评估
收集小鼠眼眶动脉血,检测其生化指标,评价化合物生物安全性。收集小鼠肿瘤、心、肝、脾、肺、肾,做石蜡切片,苏木精和曙红(H&E)染色,分析评估化合物疗效和生物安全性;对小鼠肿瘤进行末端脱氧核苷酸转移酶介导的dUTP-生物素缺口末端标记(TUNEL)染色,辅助分析化合物治疗效果。
上述实验结果如图2所示,B16荷瘤模型结果显示。经过4次治疗后,在第20天将小鼠安乐处死后解剖得到肿瘤。结果表明,与PBS组相比,PMIC-NC+L组肿瘤的生长受到了明显的抑制,治疗组的原位肿瘤体积没有出现急剧的倍增,肿瘤重量也显著降低,可有效抑制了肿瘤的生长(图2中B)。PMIC-NC+L处理后远端肿瘤体积与对照组相比没有出现急剧的倍增,表明其有效抑制了肿瘤的生长,且肿瘤重量显著降低(图2中C),这些结果表明PMIC-NC的化学–光动-免疫效应可高效地消除肿瘤。苏木精伊红H&E染色结果显示,对照组的肿瘤组织细胞数量明显增多,细胞核体积增大,增殖能力旺盛。而PMIC-NC+L处理细胞核数量明显减少的现象,表明癌细胞的增殖在PMIC-NC与激光照射同时作用时受到明显抑制(图2中D)。TUNEL染色也表明,PMIC-NC+L可高效抑制B16肿瘤细胞的增殖,诱导其明显凋亡(图2中D),证明PMIC-NC+L具有优异的抗肿瘤作用。
鉴于PMIC-NC+L对小鼠荷瘤具有显著治疗效果,因此本申请进一步探究其能否同样通过激活免疫系统从而抑制肿瘤的转移。随后通过肺转移瘤模型以评估PMIC-NC+L的抗转移疗效。如图2中D所示,治疗4次后,解剖得到的肺组织大体标本经H&E染色以评估PMIC-NC的抗转移疗效。PMIC-NC+L治疗小鼠的肺转移结节为8±3,PMIC-NC治疗小鼠的肺转移结节为11±7,而Ce6+L治疗小鼠的肺转移结节为22±21个,PBS治疗小鼠的肺转移结节为61±18个,表明PMIC-NC+L具有更好的抗转移疗效(如图2中E所示)。与其他三组相比,PMIC-NC+L处理组肺重更小(图2中F),说明PMIC-NC+L抑制了肿瘤细胞的增殖能力。H&E染色分析显示PBS组肺已被肿瘤细胞浸润,大部分细胞核体积增大,核仁肥大,数量增多(图2中D)。相比之下,PMIC-NC和Ce6+L部分肿瘤细胞存在,PMIC-NC+L组可见清晰完整的肺泡细胞,突显出其优异的抗肿瘤能力(图2中D)。随后对肿瘤切片进行TUNEL染色(图2中D),发现PMIC-NC+L处理的肺部肿瘤细胞凋亡荧光强度(荧光强度为0.008)明显高于PBS组(荧光强度为0.004),表明PMIC-NC+L具有显著的促凋亡作用。因此,PMIC-NC+L对转移性肿瘤具有较强的抑制作用,进一步证实了其作为抗肿瘤药物在临床应用中的巨大潜力。
为了进一步研究各种治疗能否影响体内的免疫应答效应,首先通过酶联免疫实验(ELISA)检测小鼠血清中的细胞因子干扰素γ(IFN-γ)和肿瘤坏死因子α(TNF-α),结果表明与PBS组相比,PMIC-NC+L处理组IFN-γ、TNF-α水平明显升高(图3中C)。收集各组小鼠的肿瘤引流淋巴结(TDLNs),并通过流式细胞术评估树突状细胞(DCs)的成熟程度。与细胞因子检测结果一致,PMIC-NC+L处理组中成熟的DC(CD11c+CD80+CD86+)数量明显增加。PMIC-NC+L处理组中成熟DC数量高达7.81%,而PBS组为0.07%(图3中B),表明PMIC-NC+L能够促进辅助性T细胞和细胞毒性T细胞的激活以及提高T细胞向肿瘤募集的数量。随即检测辅助T淋巴细胞(CD3+CD4+ T细胞),发现PMIC-NC+L处理的肿瘤组织中浸润了12.4%的CD3+CD4+ T细胞,是PBS组的6.2倍(图3中D)。同时又检测了细胞毒性T细胞的浸润程度,包括CD8+ T细胞(CD3+CD8+ T细胞)和活化的CD8+ T细胞(CD3+CD8+CD38+ T细胞)。实验结果显示,PMIC-NC+L处理的肿瘤中CD8+ T细胞和活化CD8+ T细胞的数量分别是PBS组的11倍和3.5倍,表明其可以促进肿瘤浸润淋巴细胞的募集,并激活体内的免疫系统(图3中D)。综上所述,PMIC-NC+L可以通过ICD效应加速DC细胞的成熟,随即激活辅助性T细胞和细胞毒性T细胞,从而显著减少或根除肿瘤。
PMIC-NC+L处理的小鼠肺中CD3+CD4+ T细胞的数量达到12.3%,比PBS组和Ce6+L处理组分别高3.9倍和4.8倍(图3中E)。同时,PMIC-NC+L处理组中CD3+CD8+ T细胞的数量高达6.5%,分别是PBS组和Ce6+L组的12.7倍和6.2倍(图3中E)。同时,PMIC-NC+L组中CD3+CD8+CD38+ T细胞的含量为41.1%,远高于PBS组的8.1%和Ce6+L组的7.8%(图3中E)。除此之外,在PMIC-NC+L处理组的脾脏中,辅助性T细胞和细胞毒性T细胞也明显高于其他组,其中PMIC-NC+L处理的小鼠CD3+CD4+ T细胞分别是PBS组和Ce6+L组的3.8倍和2.7倍,PBS组和Ce6+L组中CD3+CD8+CD38+ T细胞分别为7.4%,10.3%,远低于PMIC-NC+L处理组的27.8%(图3中F)。以上数据显示,增强的ICD效应能够促进体内免疫系统的激活从而实现良好的转移瘤治疗。此外,上述模型实验小鼠血常规和血生化指标未见明显影响,表明PMIC-NC具有较优异的生物兼容性和较小的副作用。
上述研究结果表明,苝湾含氯原子的苝酰亚胺衍生物可实现线粒体内膜的优势分布,通过破坏电子传递链的完整性使电子发生泄漏,随后电子与苝母核结合形成大量的阴离子,然后将电子转移到O2,从而促进Ⅰ型ROS(如O2·-、H2O2·OH)的产生。ROS爆发不仅使线粒体严重受损,还促进细胞内的钙超载,引起线粒体和内质网应激,最终引发强烈的ICD效应。此外,我们还通过B16荷瘤和转移瘤模型来研究和验证PMIC-NC的抗肿瘤性能,发现其与体内适应性免疫激活和免疫抑制肿瘤微环境的重编程有关。PMIC-NC诱发强烈的ICD促进了树突状细胞的成熟,随后激活了辅助性T淋巴细胞的细胞毒性T淋巴,从而有效抑制了肿瘤的生长和转移,为临床化疗免疫治疗提供理论依据和物质基础。
以上所述是本发明的优选实施方案,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应该视为本发明的保护范围。

Claims (6)

1.一种苝酰亚胺衍生物,其特征在于,苝酰亚胺衍生物为结构通式表示如下的化合物:
Figure DEST_PATH_IMAGE001
2.根据权利要求1所述苝酰亚胺衍生物的可溶性盐,其特征在于,结构通式表示如下:
Figure 503674DEST_PATH_IMAGE002
其中,R1 = F、Cl、Br或I;R2 = F、Cl、Br、 I、BF4、 CH3SO3、CF3SO3或ClO4
3.权利要求1或2所述苝酰亚胺衍生物及其可溶性盐在制备靶向线粒体内膜荧光探针中的应用。
4.权利要求1或2所述苝酰亚胺衍生物及其可溶性盐在制备抗肿瘤药物中的应用。
5.根据权利要求4所述的应用,其特征在于,所述苝酰亚胺衍生物用于制备光动-化学-免疫抗肿瘤药物。
6.根据权利要求4或5所述的应用,其特征在于,所述抗肿瘤药物为抑制肺癌、黑色素瘤、乳腺癌和结肠癌细胞增殖的药物。
CN202210945836.3A 2022-08-08 2022-08-08 一种苝酰亚胺衍生物及应用 Active CN115181065B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210945836.3A CN115181065B (zh) 2022-08-08 2022-08-08 一种苝酰亚胺衍生物及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210945836.3A CN115181065B (zh) 2022-08-08 2022-08-08 一种苝酰亚胺衍生物及应用

Publications (2)

Publication Number Publication Date
CN115181065A true CN115181065A (zh) 2022-10-14
CN115181065B CN115181065B (zh) 2023-07-21

Family

ID=83523745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210945836.3A Active CN115181065B (zh) 2022-08-08 2022-08-08 一种苝酰亚胺衍生物及应用

Country Status (1)

Country Link
CN (1) CN115181065B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281440A (zh) * 1997-12-15 2001-01-24 西巴特殊化学品控股有限公司 用作着色剂的苝酰亚胺单羧酸
US20020012947A1 (en) * 2000-03-14 2002-01-31 Bevers Susan Ann Biomarkers for the labeling, visual detection and quantification of biomolecules
WO2011020887A1 (en) * 2009-08-20 2011-02-24 Ruprecht-Karls-Universitaet Heidelberg Fluorescent perylene derivatives for direct detection of heparin
CN103497154A (zh) * 2013-08-12 2014-01-08 北京化工大学 一种水溶性苝酰亚胺类化合物及其作为dna嵌插剂和在抑制癌细胞生长中的应用
CN111333616A (zh) * 2018-12-18 2020-06-26 中国科学院大连化学物理研究所 一种用于脂滴标记的近红外荧光染料及其合成方法和应用
CN111333617A (zh) * 2018-12-18 2020-06-26 中国科学院大连化学物理研究所 一类用于脂滴标记的荧光染料及其合成方法和应用
CN112521388A (zh) * 2020-12-30 2021-03-19 河南大学 一种苝酰亚胺衍生物及应用
CN113354640A (zh) * 2021-06-03 2021-09-07 北京化工大学 一种基于苝酰亚胺的核仁靶向光热试剂的制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1281440A (zh) * 1997-12-15 2001-01-24 西巴特殊化学品控股有限公司 用作着色剂的苝酰亚胺单羧酸
US20020012947A1 (en) * 2000-03-14 2002-01-31 Bevers Susan Ann Biomarkers for the labeling, visual detection and quantification of biomolecules
WO2011020887A1 (en) * 2009-08-20 2011-02-24 Ruprecht-Karls-Universitaet Heidelberg Fluorescent perylene derivatives for direct detection of heparin
CN103497154A (zh) * 2013-08-12 2014-01-08 北京化工大学 一种水溶性苝酰亚胺类化合物及其作为dna嵌插剂和在抑制癌细胞生长中的应用
CN103936731A (zh) * 2013-08-12 2014-07-23 北京化工大学 一种水溶性苝酰亚胺类化合物及其作为dna嵌插剂在抗癌细胞和肿瘤中的应用
CN111333616A (zh) * 2018-12-18 2020-06-26 中国科学院大连化学物理研究所 一种用于脂滴标记的近红外荧光染料及其合成方法和应用
CN111333617A (zh) * 2018-12-18 2020-06-26 中国科学院大连化学物理研究所 一类用于脂滴标记的荧光染料及其合成方法和应用
CN112521388A (zh) * 2020-12-30 2021-03-19 河南大学 一种苝酰亚胺衍生物及应用
WO2022143183A1 (zh) * 2020-12-30 2022-07-07 河南大学 一种苝酰亚胺衍生物pdic-nc及其制备方法和应用
CN113354640A (zh) * 2021-06-03 2021-09-07 北京化工大学 一种基于苝酰亚胺的核仁靶向光热试剂的制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XUE LOU ET AL.: ""Perylene-Based Reactive Oxygen Species Supergenerator for Immunogenic Photochemotherapy against Hypoxic Tumors"", 《ANGEW. CHEM. INT. ED.》, vol. 62, pages 202214586 *
YANG CAI ET AL.: ""Enzyme-Triggered Disassembly of Perylene Monoimide-based Nanoclusters for Activatable and Deep Photodynamic Therapy"", 《ANGEW. CHEM. INT. ED.》, vol. 59, pages 14014 - 14018 *

Also Published As

Publication number Publication date
CN115181065B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
Zhou et al. Rational design of a minimalist nanoplatform to maximize immunotherapeutic efficacy: Four birds with one stone
Tang et al. An aza-BODIPY photosensitizer for photoacoustic and photothermal imaging guided dual modal cancer phototherapy
Lu et al. Photothermally activatable PDA immune nanomedicine combined with PD-L1 checkpoint blockade for antimetastatic cancer photoimmunotherapy
Lei et al. Immunosonodynamic therapy designed with activatable sonosensitizer and immune stimulant imiquimod
Zeng et al. Ultra-thin metal–organic framework nanosheets for chemo-photodynamic synergistic therapy
Lu et al. Functionalized 2D Nb 2 C nanosheets for primary and recurrent cancer photothermal/immune-therapy in the NIR-II biowindow
Yu et al. Near-infrared photoactivatable semiconducting polymer nanocomplexes with bispecific metabolism interventions for enhanced cancer immunotherapy
Chi et al. Biomimetic Nanocomposites Camouflaged with Hybrid Cell Membranes for Accurate Therapy of Early‐Stage Glioma
CN111973570B (zh) 唾液酸衍生物修饰的依鲁替尼纳米复合物及其制备方法
US20240041787A1 (en) Photosensitizer molecule and use thereof in increasing tumor retention time and enhancing treatment of large-volume tumors
Zhang et al. A NIR-triggered multifunctional nanoplatform mediated by Hsp70 siRNA for chemo-hypothermal photothermal synergistic therapy
Chen et al. A self-delivery chimeric peptide for high efficient cell membrane-targeting low-temperature photothermal/photodynamic combinational therapy and metastasis suppression of tumor
Dai et al. Tumor-targeted biomimetic nanoplatform precisely integrates photodynamic therapy and autophagy inhibition for collaborative treatment of oral cancer
Huang et al. NIR-II light evokes DNA cross-linking for chemotherapy and immunogenic cell death
Liu et al. Curcumin doped zeolitic imidazolate framework nanoplatforms as multifunctional nanocarriers for tumor chemo/immunotherapy
CN110448699B (zh) 包含功能性多肽修饰七甲川花菁素类染料的肿瘤细胞核靶向载药纳米粒子及制备方法
Xia et al. Integrated manganese (III)-doped nanosystem for optimizing photothermal ablation: Amplifying hyperthermia-induced STING pathway and enhancing antitumor immunity
CN113648401B (zh) 一种蛋白酶体抑制增敏光动力治疗的杂化纳米组装体及其制备与应用
Zhao et al. Cancer cell membrane targeting and red light-triggered carbon monoxide (CO) release for enhanced chemotherapy
Zheng et al. Carrier free nanomedicine for synergistic cancer therapy by initiating apoptosis and paraptosis
Zhang et al. Cholesterol Metabolism Modulation Nanoplatform Improves Photo‐Immunotherapeutic Effect in Oral Squamous Cell Carcinoma
CN115040494B (zh) 一种人参皂苷修饰的共载多元复合物的多功能纳米囊泡及其制备方法和应用
CN115475250B (zh) 一种靶向肝星状细胞并抑制其激活的载药外泌体及其制备和应用
CN115181065A (zh) 一种苝酰亚胺衍生物及应用
CN115227818A (zh) 一种负载藤黄酸的介孔纳米粒及其制备方法和在癌症治疗上的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant