CN115166688A - 用于hyperion lidar系统的焦平面2d apd阵列的实施方案 - Google Patents
用于hyperion lidar系统的焦平面2d apd阵列的实施方案 Download PDFInfo
- Publication number
- CN115166688A CN115166688A CN202210529710.8A CN202210529710A CN115166688A CN 115166688 A CN115166688 A CN 115166688A CN 202210529710 A CN202210529710 A CN 202210529710A CN 115166688 A CN115166688 A CN 115166688A
- Authority
- CN
- China
- Prior art keywords
- fiber optic
- free end
- optic cable
- optics
- lidar device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
- G01S17/14—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4816—Constructional features, e.g. arrangements of optical elements of receivers alone
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4818—Constructional features, e.g. arrangements of optical elements using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4861—Circuits for detection, sampling, integration or read-out
- G01S7/4863—Detector arrays, e.g. charge-transfer gates
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/103—Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Measurement Of Optical Distance (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本公开的方面涉及一种Lidar装置,所述Lidar装置包括:发射TX路径上的振动光纤悬臂系统和接收RX路径上的二维2D光传感器阵列。
Description
本申请是申请日为2016年9月16日、申请号为201680053168.6(国际申请号PCT/US2016/052244)、发明名称为“用于HYPERION LIDAR系统的焦平面2D APD阵列的实施方案”的中国专利申请的分案申请。
相关申请的交叉引用
本申请案要求2016年9月15日提交的名称为“用于HYPERION LIDAR系统的焦平面2D APD阵列的实施方案(IMPLEMENTATION OF THE FOCAL PLANE 2D APD ARRAY FORHYPERION LIDAR SYSTEM)”的美国专利申请案第15/266,618号和2015年9月18日提交的名称为“用于HYPERION LIDAR系统的焦平面2D APD阵列的实施方案(IMPLEMENTATION OF THEFOCAL PLANE 2D APD ARRAY FOR HYPERION LIDAR SYSTEM)”的美国临时专利申请第62/220,777号的优先权。前述申请案的全部内容以引用的方式并入本文中。
技术领域
本文所公开的主题涉及电子装置,且更具体地说,涉及使用光来测量到物体的距离的方法、设备和系统。
背景技术
Lidar(也为LIDAR、LiDAR、或LADAR,“光”与“雷达”的混合词)是通过利用激光照射目标并且分析反射光来测量距离的遥感技术。对于许多移动应用,例如室内绘图和导航、增强型摄影或视觉处理等,能够在立即环境中精确地测距到物体的距离是重要的。
对于移动装置来说,能够快速产生物体的高度精确3D扫描将是重要特征。
已知方法受多个缺点困扰:有限范围、较低精确度、室内操作局限性等。在许多情况下,常规解决方案无法由移动装置的较小板型来调节。
发明内容
本公开的一个方面涉及一种Lidar装置,所述Lidar装置包括:发射(TX)路径上的振动光纤悬臂系统;和接收(RX)路径上的二维(2D)光传感器阵列。
一种用于实施Lidar装置的方法,所述方法包括:实施发射(TX)路径上的振动光纤悬臂系统;和实施接收(RX)路径上的二维(2D)光传感器阵列。
一种Lidar装置,包括:发射(TX)路径上的振动光纤悬臂装置;和接收(RX)路径上的二维(2D)光传感装置。
一种包括代码的非暂时性计算机可读媒体,在所述代码由处理器执行时,所述非暂时性计算机可读媒体使得所述处理器实施一种方法,所述方法包括:驱动Lidar装置的发射(TX)路径上的振动光纤悬臂系统;和驱动Lidar装置的接收(RX)路径上的二维(2D)光传感器阵列。
附图说明
图1是说明可利用其实践本公开的实施例的实例装置的图式。
图2是说明实例振动光纤悬臂系统的图式。
图3是说明包含TX和RX路径的实例Lidar的图式。
图4是说明用于从2D光传感器阵列获取数据的实例串行架构的图式。
具体实施方式
本公开的实施例涉及通过利用激光照射目标并且分析反射光来测量距离的设备、系统和方法。
参看图1,展示被调适成与Lidar一起使用的实例装置100。装置100展示为包括可通过总线105电耦合(或可在适当时以其它方式连通)的硬件元件。硬件元件可以包含一或多个处理器110,包含(但不限于)一或多个通用处理器和/或一或多个专用处理器(例如数字信号处理芯片、图形加速处理器和/或类似处理器);一或多个输入/输出装置115,包含(但不限于)Lidar 150、鼠标、键盘、扬声器、打印机和/或类似物。Lidar 150可以包含硬件Lidar控制器。
装置100可进一步包含一或多个非暂时性存储装置125(和/或与其连通),所述非暂时性存储装置可包括(但不限于)本地和/或网络可存取的存储装置,和/或可包含(但不限于)磁盘驱动器、驱动阵列、光学存储装置、例如随机存取存储器(“RAM”)和/或只读存储器(“ROM”)的固态存储装置(其可为可编程的、可快闪更新的)和/或类似装置。这些存储装置可被配置成实施任何适当的数据存储器,包含(但不限于)各种文件系统、数据库结构和/或类似物。
装置100还可包含通信子系统130,其可包含(但不限于)调制解调器、网卡(无线或有线)、红外线通信装置、无线通信装置和/或芯片组(例如蓝牙装置、802.11装置、Wi-Fi装置、WiMAX装置、蜂窝式通信设施等)和/或类似装置。通信子系统130可准许与网络、其它计算机系统/装置和/或本文中所描述的任何其它装置交换数据。在许多实施例中,装置100将进一步包括工作存储器135,其可包含RAM或ROM装置,如上文所描述。
装置100还可包括示出为当前位于工作存储器135内的软件元件,其包含操作系统140、装置驱动器、可执行库和/或例如一或多个应用程序145的其它代码,所述应用程序可包括或可经设计以实施由其它实施例提供的方法和/或配置系统,如本文中所描述。仅举例来说,相对于下文所论述的方法描述的一或多个过程可经实施为可由计算机(和/或计算机内的处理器)执行的代码和/或指令;在一方面中,然后,这些代码和/或指令可用以配置和/或调适通用计算机(或其它装置)以根据所描述方法来执行一或多个操作。
这些指令和/或代码的集合可存储于非暂时性计算机可读存储媒体上,例如上文所描述的存储装置125。在一些情况下,存储媒体可并入于计算机装置内,例如装置100。在其它实施例中,存储媒体可与计算机装置(例如可装卸式媒体(例如压缩光盘))分离,和/或提供于安装包中,使得存储媒体可用以通过其上存储的指令/代码来编程、配置和/或调适通用计算机。这些指令可呈可由计算机化装置100执行的可执行代码的形式,和/或可呈源和/或可安装代码的形式,所述源和/或可安装代码在装置100上编译和/或安装于装置100上(例如,使用多种通常可用编译程序、安装程序、压缩/解压缩实用程序等中的任一个)后,接着呈可执行代码的形式。
所属领域的技术人员将显而易见可根据特定要求作出大量变化。举例来说,还可使用定制硬件,和/或可将特定元件实施于硬件、软件(包含便携式软件,如小程序等)或硬件与软件两个中。另外,可采用到例如网络输入/输出装置的其它计算装置的连接。
Lidar,例如Lidar 150,可由两个子系统-光束导向元件和测距仪构成。光束导向元件可导引投射激光束以建立扫描模式。且测距仪可根据这些测量值和/或技术,如脉冲飞行时间、相移飞行时间或相干检测等,将来自所扫描的物体的反射光转换为关于到物体的不同部分的距离的信息。在一个实施例中,光束导向元件和测距仪子系统两个都可以极小形状因子予以实施。
因此,Lidar可以包含两个光路径:发射(TX)路径,激光通过其从激光源行进到所扫描的物体(目标);和接收(RX)路径,反射光通过其从目标行进到测距仪的光接收元件。
在一个实施例中,在TX路径上,扫描激光可从光纤电缆,例如单模或多模光纤电缆中发射,并且通过一连串TX光学件。可将来自测距仪子系统的激光耦合到光纤电缆中。
参看图2,展示说明实例性振动光纤悬臂系统200的图式。光纤电缆210可以穿过压电陶瓷管220。压电陶瓷管220可在一端230处固定到装置(例如装置100)的主体,而在另一端240处是自由的。光纤电缆210可以固定到压电陶瓷管220的自由端240,同时光纤电缆210的自由端250可以进一步从压电陶瓷管220的自由端240延伸达预定长度。因此,可以产生固定-自由振动悬臂系统200。所属领域的技术人员将认识到压电陶瓷管220外部延伸的自由光纤电缆的长度和光纤电缆210的其它物理性质可确定悬臂的共振频率。
通过施加合适的驱动信号,压电陶瓷管220可被驱动来以所需频率振动。当压电陶瓷管220被驱动来以悬臂的共振频率振动时,所述悬臂可在共振模式下激发。换句话说,悬臂的底部处的较小振动可以放大且光纤电缆210的端部(例如自由端250)可以较大幅度振动。另外,光纤电缆210的端部(例如自由端250)的运动可以通过施加到压电陶瓷管220的合适的驱动信号来控制。因此,可以实施所需扫描模式。
简单TX光学件,例如单透镜组合件可用于收集从光纤电缆210的端部(例如自由端250)射出的激光且调节所述激光以用于投射。
在RX路径上,可借助于全向透镜或透镜组合件来将反射光收集到光传感器上。因此,所扫描的到物体的距离可以根据由光传感器产生的信号来确定,同时所述物体的方向可以根据光纤电缆210的端部(例如自由端250)的位置来确定。
因此,Lidar可产生包括所扫描的目标的部分的高度精确3D坐标的点云。环境的3D地图或物体的3D扫描可以根据Lidar点云而产生。
用较宽视野(FOV)透镜将来自所扫描的物体的反射光收集到单个光传感器上可能具有某些缺点。由于透镜具有较宽FOV,因此可将背景干扰(例如阳光辐射或汽车的较高光束等)收集到光传感器上。因此,Lidar的范围可能受到不利影响。
作为RX路径上的较宽FOV透镜的替代方案,可将反射光反耦合到悬臂中使得可以减小有效FOV。然而,由于耦合效率可能是有限的,因此背景干扰的降低可能伴随着有用信号的减少。另外,TX路径上的激光脉冲大量泄漏到RX路径中可能使RX路径上的电子件迟钝并且因此降低Lidar的性能。
参看图3,展示说明包含TX和RX路径的实例Lidar 300的图式。在TX路径310上,振动光纤悬臂315可用于通过TX光学件320来将扫描激光投射到目标上。在一个实施例中,通过合适的驱动信号,光纤电缆的自由端可沿螺旋形模式行进。所使用的扫描模式并不限于本公开且也可利用其它扫描模式。激光发射元件可每隔一定间隔发射激光脉冲。图3中的每一点325可对应于单个激光脉冲。在RX路径330上,由RX光学件335将反射光以及干扰收集到包括多个光传感器的二维(2D)光传感器阵列340上。换句话说,2D光传感器阵列340可以定位于RX光学件335的焦平面处。所使用的光传感器类型并不限于本公开。举例来说,2D光传感器阵列340可包括雪崩光电二极管(APD)或PIN光电二极管作为光传感器。图3中展示4×4的2D光传感器阵列;然而,2D光传感器阵列的配置并不限于本公开。另外,应了解尽管图3中仅展示单个透镜用于RX光学件335,但也可利用更复杂的RX光学件。
由于2D光传感器阵列340中的每一单独光传感器的FOV仅是整体系统的合并的FOV的一部分,因此收集到每一光传感器上的背景干扰按比例减少,但适用于Lidar的反射光并不减弱。因此,Lidar的信噪比(SNR)值可以提高,增大范围且提高测量值的精确度。另外,Lidar可在存在干扰的情况下更稳固地执行。
在上文所描述的一个实施例中,脉冲飞行时间(ToF)方法可用于测量到所扫描物体的距离。为使用所述方法,需要测量关于对应激光脉冲投射到环境中的时间而由2D光传感器阵列340中的特定一或多个光传感器来记录反射光的时间。在不同实施例中,可使用时间-数字转换器(TDC)或模拟-数字转换器(ADC)来执行测量。
通过TDC,预定义阈值的集合可用于触发计数器的开始和停止,因此当来自光传感器的电压超出某一值时,可以启动计数器。TDC具有简单架构且易于实施。然而,由于TDC仅能够捕获定时信息,适用于Lidar的其它数据(例如反射光的功率)可能不能精确地捕获,或可能丢失。另外,当多个物体(例如树枝、雨滴等)存在于光路中时,TDC可能不能够正确地表示可用于光传感器信号中的数据。
另一方面,ADC可能能够以全面且精确方式更好地从光传感器信号中获取数据。为与Lidar一起使用,可能需要高效ADC,例如以大约10GHz运行的ADC。在一些实施例中,ADC性能要求可能放松而具有较小ADC字长(例如8位)。
来自2D光传感器阵列的信号可能通过并行架构或串行架构来处理。通过并行架构,2D光传感器阵列中的每一光传感器具备且连接到专用时间测量转换器(TDC或ADC)。因此,2D光传感器阵列中的所有光传感器的输出可以由时间测量转换器立刻处理。
在一个实施例中,由于引发的每一激光脉冲所发送的方向已知为TX路径架构的结果,因此将接收对应反射光的2D光传感器阵列中的一或多个特定光传感器同样是已知的。通过这样的架构,Lidar测量值的精确度由TX路径上的扫描清晰度限定,而RX路径架构提高测量值的SNR。换句话说,仅定时信息是未知的且需要测量,这是因为来自将不接收反射光的2D光传感器阵列中的光传感器的输出并不含有有用的信息。
参看图4,展示说明用于从2D光传感器阵列中获取数据的实例性串行架构400的图式。来自2D光传感器阵列410中的个别光传感器的所有输出可以通过动态交换机420路由。根据可获自TX路径的投射激光脉冲的方向,动态交换机420可将来自预期接收反射光的一或多个特定光传感器的输出路由到时间测量转换器430上。取决于不同实施方案,时间测量转换器430的数量可能变化。在一个实施例中,可使用单个时间测量转换器430。时间测量转换器430的数量限制光传感器的数量,所述光传感器处理信号用于引发每一激光脉冲。在每一新的激光脉冲引发于TX路径上后,动态交换机420可相应地将来自一或多个光传感器的新的特定集合的输出路由到时间测量转换器430。因此,通过使用动态交换机420,可需要比光传感器的数量更少的时间测量转换器430。在一个实施例中,仅需要且使用单个时间测量转换器430。
2D光传感器阵列还可用于帮助TX路径的校准/再校准处理。当反射光并不由2D光传感器阵列中的预期的一或多个光传感器接收时,TX路径可能不会沿正确方向投射激光脉冲。通过将清楚的投射方向与接收反射光的光传感器关联,可执行TX路径的校准/再校准处理,且更新调谐参数。
因此,本公开的实施例涉及一种Lidar,所述Lidar包括TX路径上的振动光纤悬臂系统和RX路径上的2D光传感器阵列。所述振动光纤悬臂系统可进一步包括压电陶瓷管和光纤电缆。光纤电缆的自由端可在压电陶瓷管的自由端外延伸达预定长度。压电陶瓷管可以由合适的信号驱动来以悬臂系统的共振频率振动,使得振动在光纤电缆的自由端处放大。光纤电缆的自由端的运动可以遵循预定扫描模式,且激光发射元件可以每隔一定间隔发射激光脉冲。激光脉冲可从光纤电缆的自由端中射出且通过TX光学件投射到所扫描的目标上。从扫描的目标反射回来的光可以由RX光学件收集到2D光传感器阵列上。根据激光脉冲投射的方向,动态交换机可将来自2D光传感器阵列中的预期接收反射光的一或多个特定光传感器的输出路由到一或多个时间测量转换器,其中所述时间测量转换器可以是TDC或ADC。在一个实施例中,可仅使用一个时间测量转换器。
Lidar可以处理由时间测量转换器捕获的数据且产生点云,所述点云可根据环境的精确3D地图或物体的3D扫描来构建。因此,Lidar测量值的精确度由TX路径上的扫描清晰度限定,而RX路径架构提高测量值的SNR。根据本公开的实施例,Lidar可具有更长范围和更好的信号精确度,且可以在可能存在干扰的情况下更稳固地执行。
本发明的另一实施例涉及一种用于实施Lidar装置的方法,所述方法包括:实施发射(TX)路径上的振动光纤悬臂系统;和实施接收(RX)路径上的二维(2D)光传感器阵列。
本公开的又一实施例涉及一种包括代码的非暂时性计算机可读媒体,在所述代码由处理器执行时,所述非暂时性计算机可读媒体使得处理器实施一种方法,所述方法包括:驱动Lidar装置的发射(TX)路径上的振动光纤悬臂系统;和驱动Lidar装置的接收(RX)路径上的二维(2D)光传感器阵列。
本文中呈现的实例方法、设备或制品可以整体或部分地实施以在移动通信装置中使用或结合移动通信装置使用。如本文中所使用,“移动装置”、“移动通信装置”、“手持式装置”、“平板”等或这些术语的多种形式可互换使用,并且可指能够根据一或多个通信协议来经由合适的通信网络通过无线发射或接收信息而通信并且可不时地具有改变的定位或位置的任何种类的专用计算平台或装置。作为说明,专用移动通信装置可包含(例如)蜂窝式电话、卫星电话、智能电话、热图或无线电图产生工具或装置、观测信号参数产生工具或装置、个人数字助理(PDA)、膝上型计算机、个人娱乐系统、电子书阅读器、平板个人计算机(PC)、个人音频或视频装置、个人导航单元、可穿戴装置或其类似物。然而,应了解,这些仅仅是与可以用来促进或支持本文中所描述的一或多个过程或操作的移动装置相关的说明性实例。
取决于具体应用,本文中所描述的方法可以不同方式且以不同配置实施。举例来说,这些方法可连同软件一起以硬件、固件和/或其组合实施。举例来说,在硬件实施方案中,处理单元可实施于一或多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、电子装置、被设计成执行本文所描述的功能的其它装置单元,和/或其组合内。
本文中所描述的存储媒体可包括一级、二级和/或三级存储媒体。一级存储媒体可包含存储器,例如,随机存取存储器和/或只读存储器。二级存储媒体可以包含大容量存储装置,例如磁性或固态硬盘驱动器。三级存储媒体可包含可装卸式存储媒体,例如磁盘或光盘、磁带、固态存储装置等。在某些实施方案中,存储媒体或其部分可以操作方式接收或可以其它方式配置以耦合到计算平台的其它组件,例如处理器。
在至少一些实施方案中,本文中所描述的存储媒体的一或多个部分可存储信号,所述信号表示由存储媒体的具体状态表达的数据和/或信息。举例来说,表示数据和/或信息的电子信号可通过影响或改变存储媒体的这些部分的状态来将数据和/或信息表示成二进制信息(例如一和零)来“存储”在存储媒体(例如存储器)的一部分中。因而,在具体实施方案中,用以存储表示数据和/或信息的信号的存储媒体的所述部分的状态的此改变构成存储媒体到不同状态或内容的变换。
在前述具体实施方式中,已阐述众多特定细节以提供对所要求主题的透彻理解。然而,所属领域的技术人员将理解,可在没有这些特定细节的情况下实践所要求的主题。在其它情况下,未详细描述所属领域的技术人员所已知的方法和设备以便不混淆所要求的主题。
在对特定的设备或专用计算装置或平台的存储器内存储的二进制数字电子信号的操作的算法或符号表示方面呈现前述具体实施方式的一些部分。在本具体说明书的上下文中,术语“特定设备”或其类似物包含通用计算机(一旦其被编程以依据来自程序软件的指令执行具体功能)。算法描述或符号表示是信号处理或相关领域的普通技术人员用来将其工作的实质内容传达给所属领域的其它技术人员的技术的实例。在此,算法一般被视为产生期望结果的操作或类似信号处理的自一致序列。在此上下文中,操作或处理涉及对物理量的物理操控。通常但不一定,这些量可呈能够作为表示信息的电子信号而存储、传送、组合、比较或另外操控的电或磁性信号的形式。已证实主要出于常见使用的原因而时常方便的是将这些信号称为位、数据、值、元件、符号、字符、术语、编号、数字、信息或其类似物。然而,应理解,所有这些或类似术语应与适当物理量相关联且仅为方便的标记。
除非另外确切地说明,否则如从以下论述显而易见,应了解,贯穿本说明书,利用例如“处理”、“计算(computing)”、“计算(calculating)”、“识别”、“确定”、“建立”、“获得”和/或类似术语的论述是指例如专用计算机或类似专用电子计算装置的特定设备的动作或过程。因此,在本说明书的情形下,专用计算机或类似专用电子计算装置能够操控或变换信号,所述信号通常表示为在专用计算机或类似专用电子计算装置的存储器、寄存器或其它信息存储装置、发射装置或显示装置内的物理电子或磁性量。在本特定专利申请案的上下文中,术语“特定设备”可包含通用计算机(一旦其被编程来依据来自程序软件的指令执行特定功能)。
贯穿本说明书对“一个实例”、“实例”、“某些实例”或“示例性实施方案”的提及意味关于特征和/或实例描述的特定特征、结构或特性可包含在所要求的主题的至少一个特征和/或实例中。因此,短语“在一个实例中”、“实例”、“在某些实例中”或“在一些实施方案中”或其它相似短语在贯穿本说明书的各处的出现未必皆指同一特征、实例和/或限制。另外,所述特定特征、结构或特性可在一或多个实例和/或特征中组合。
虽然已图解说明且描述当前视为实例特征的内容,但所属领域的技术人员将了解,在不脱离所要求的主题的情况下可做出各种其它修改且可替代等效物。另外,在不脱离本文中描述的中心概念的情况下,可进行许多修改以使特定情形适合于所要求的主题的教示。因此,希望所要求的主题不限于所公开的特定实例,而这些所要求的主题还可包含属于所附权利要求书和其等效物的范围内的所有方面。
Claims (30)
1.一种Lidar装置,其包括:
振动光纤悬臂系统,其位于发射TX路径上;和
二维2D光传感器阵列,其位于接收RX路径上。
2.根据权利要求1所述的Lidar装置,其中所述振动光纤悬臂系统进一步包括压电陶瓷管和光纤电缆,且所述光纤电缆的自由端在所述压电陶瓷管的自由端外延伸达预定长度,并且其中所述压电陶瓷管由信号驱动来以所述振动光纤悬臂系统的共振频率振动,使得所述振动在所述光纤电缆的所述自由端处放大。
3.根据权利要求2所述的Lidar装置,其中所述光纤电缆的所述自由端的运动遵循预定扫描模式。
4.根据权利要求3所述的Lidar装置,其进一步包括每隔一定间隔发射激光脉冲的激光发射元件。
5.根据权利要求4所述的Lidar装置,其进一步包括TX光学件,其中激光脉冲从所述光纤电缆的所述自由端中射出且通过所述TX光学件投射到目标上。
6.根据权利要求5所述的Lidar装置,其进一步包括RX光学件,其中从所述目标反射回来的光由所述RX光学件收集到所述2D光传感器阵列上。
7.根据权利要求6所述的Lidar装置,其进一步包括动态交换机和一或多个时间测量转换器,其中根据所述激光脉冲投射的方向,所述动态交换机将来自所述2D光传感器阵列中的预期接收所述反射光的一或多个特定光传感器的输出路由到所述时间测量转换器。
8.根据权利要求7所述的Lidar装置,其中所述时间测量转换器是时间-数字转换器TDC或模拟-数字转换器ADC。
9.根据权利要求1所述的Lidar装置,其中所述2D光传感器阵列包括雪崩光电二极管APD或PIN光电二极管。
10.一种用于实施Lidar装置的方法,其包括:
实施发射TX路径上的振动光纤悬臂系统;和
实施接收RX路径上的二维2D光传感器阵列。
11.根据权利要求10所述的方法,其中所述振动光纤悬臂系统进一步包括压电陶瓷管和光纤电缆,且所述光纤电缆的自由端在所述压电陶瓷管的自由端外延伸达预定长度,并且其中所述压电陶瓷管由信号驱动来以所述振动光纤悬臂系统的共振频率振动,使得所述振动在所述光纤电缆的所述自由端处放大。
12.根据权利要求11所述的方法,其中所述光纤电缆的所述自由端的运动遵循预定扫描模式。
13.根据权利要求12所述的方法,其进一步包括实施每隔一定间隔发射激光脉冲的激光发射元件。
14.根据权利要求13所述的方法,其进一步包括实施TX光学件,其中激光脉冲从所述光纤电缆的所述自由端中射出且通过所述TX光学件投射到目标上。
15.根据权利要求14所述的方法,其进一步包括实施RX光学件,其中从所述目标反射回来的光由所述RX光学件收集到所述2D光传感器阵列上。
16.根据权利要求15所述的方法,其进一步包括实施动态交换机和一或多个时间测量转换器,其中根据所述激光脉冲投射的方向,所述动态交换机将来自所述2D光传感器阵列中的预期接收所述反射光的一或多个特定光传感器的输出路由到所述时间测量转换器。
17.根据权利要求16所述的方法,其中所述时间测量转换器是时间-数字转换器TDC或模拟-数字转换器ADC。
18.根据权利要求10所述的方法,其中所述2D光传感器阵列包括雪崩光电二极管APD或PIN光电二极管。
19.一种Lidar装置,其包括:
振动光纤悬臂装置,其位于发射TX路径上;和
二维2D光传感装置,其位于接收RX路径上。
20.根据权利要求19所述的Lidar装置,其中所述振动光纤悬臂装置进一步包括压电陶瓷管和光纤电缆,且所述光纤电缆的自由端在所述压电陶瓷管的自由端外延伸达预定长度,并且其中所述压电陶瓷管由信号驱动来以所述振动光纤悬臂装置的共振频率振动,使得所述振动在所述光纤电缆的所述自由端处放大。
21.根据权利要求20所述的Lidar装置,其中所述光纤电缆的所述自由端的运动遵循预定扫描模式。
22.根据权利要求21所述的Lidar装置,其进一步包括每隔一定间隔发射激光脉冲的激光发射装置。
23.根据权利要求22所述的Lidar装置,其进一步包括TX光学件装置,其中激光脉冲从所述光纤电缆的所述自由端中射出且通过所述TX光学件装置投射到目标上。
24.根据权利要求23所述的Lidar装置,其进一步包括RX光学件装置,其中从所述目标反射回来的光由所述RX光学件装置收集到所述2D光传感器阵列上。
25.一种非暂时性计算机可读媒体,其包括在由处理器执行时致使所述处理器实施以下方法的代码,所述方法包括:
驱动Lidar装置的发射TX路径上的振动光纤悬臂系统;和
驱动所述Lidar装置的接收RX路径上的二维2D光传感器阵列。
26.根据权利要求25所述的非暂时性计算机可读媒体,其中所述振动光纤悬臂系统进一步包括压电陶瓷管和光纤电缆,且所述光纤电缆的自由端在所述压电陶瓷管的自由端外延伸达预定长度,并且其中所述压电陶瓷管由信号驱动来以所述振动光纤悬臂系统的共振频率振动,使得所述振动在所述光纤电缆的所述自由端处放大。
27.根据权利要求26所述的非暂时性计算机可读媒体,其中所述光纤电缆的所述自由端的运动遵循预定扫描模式。
28.根据权利要求27所述的非暂时性计算机可读媒体,其进一步包括用于驱动每隔一定间隔发射激光脉冲的激光发射元件的代码。
29.根据权利要求28所述的非暂时性计算机可读媒体,其进一步包括用于驱动TX光学件的代码,其中激光脉冲从所述光纤电缆的所述自由端中射出且通过所述TX光学件投射到目标上。
30.根据权利要求29所述的非暂时性计算机可读媒体,其进一步包括用于驱动RX光学件的代码,其中从所述目标反射回来的光由所述RX光学件收集到所述2D光传感器阵列上。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562220777P | 2015-09-18 | 2015-09-18 | |
US62/220,777 | 2015-09-18 | ||
US15/266,618 | 2016-09-15 | ||
US15/266,618 US10408926B2 (en) | 2015-09-18 | 2016-09-15 | Implementation of the focal plane 2D APD array for hyperion lidar system |
CN201680053168.6A CN108027424B (zh) | 2015-09-18 | 2016-09-16 | 用于hyperion lidar系统的焦平面2d apd阵列的实施方案 |
PCT/US2016/052244 WO2017049154A1 (en) | 2015-09-18 | 2016-09-16 | Implementation of the focal plane 2d apd array for hyperion lidar system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680053168.6A Division CN108027424B (zh) | 2015-09-18 | 2016-09-16 | 用于hyperion lidar系统的焦平面2d apd阵列的实施方案 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115166688A true CN115166688A (zh) | 2022-10-11 |
Family
ID=57043008
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680053168.6A Active CN108027424B (zh) | 2015-09-18 | 2016-09-16 | 用于hyperion lidar系统的焦平面2d apd阵列的实施方案 |
CN202210529710.8A Pending CN115166688A (zh) | 2015-09-18 | 2016-09-16 | 用于hyperion lidar系统的焦平面2d apd阵列的实施方案 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680053168.6A Active CN108027424B (zh) | 2015-09-18 | 2016-09-16 | 用于hyperion lidar系统的焦平面2d apd阵列的实施方案 |
Country Status (7)
Country | Link |
---|---|
US (2) | US10408926B2 (zh) |
EP (1) | EP3350614B1 (zh) |
JP (1) | JP6688880B2 (zh) |
KR (1) | KR102114781B1 (zh) |
CN (2) | CN108027424B (zh) |
BR (1) | BR112018005427B1 (zh) |
WO (1) | WO2017049154A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10408926B2 (en) | 2015-09-18 | 2019-09-10 | Qualcomm Incorporated | Implementation of the focal plane 2D APD array for hyperion lidar system |
US10509113B2 (en) * | 2017-04-07 | 2019-12-17 | ActLight SA | Techniques for performing time of flight measurements |
JP7273565B2 (ja) | 2019-03-19 | 2023-05-15 | 株式会社東芝 | 受光装置及び距離測定装置 |
US11556000B1 (en) | 2019-08-22 | 2023-01-17 | Red Creamery Llc | Distally-actuated scanning mirror |
CN111308497A (zh) * | 2020-03-06 | 2020-06-19 | 深圳市方腾网络技术有限公司 | 一种3d激光雷达及激光雷达实现方法 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5157257A (en) * | 1990-06-18 | 1992-10-20 | Lasen, Inc. | Mid-infrared light hydrocarbon DIAL LIDAR |
US5317148A (en) | 1991-05-22 | 1994-05-31 | Loral Corporation | IR/ladar scanner |
JP3697319B2 (ja) | 1996-06-14 | 2005-09-21 | 株式会社日立コミュニケーションテクノロジー | 光伝送装置および光ネットワーク |
US6341118B1 (en) * | 1998-06-02 | 2002-01-22 | Science Applications International Corporation | Multiple channel scanning device using oversampling and image processing to increase throughput |
JP3832101B2 (ja) * | 1998-08-05 | 2006-10-11 | 株式会社デンソー | 距離測定装置 |
US6563105B2 (en) * | 1999-06-08 | 2003-05-13 | University Of Washington | Image acquisition with depth enhancement |
JP2002039716A (ja) * | 2000-07-25 | 2002-02-06 | Olympus Optical Co Ltd | 距離画像入力装置 |
US20020092340A1 (en) * | 2000-10-30 | 2002-07-18 | Veeco Instruments Inc. | Cantilever array sensor system |
US6433543B1 (en) * | 2002-01-04 | 2002-08-13 | Mohsen Shahinpoor | Smart fiber optic magnetometer |
US6936810B2 (en) * | 2003-07-21 | 2005-08-30 | Thomas Hiramatsu-Tie | Method and apparatus for scanning an optical beam using an optical conduit |
US7064817B1 (en) | 2003-11-04 | 2006-06-20 | Sandia Corporation | Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system |
US7236235B2 (en) * | 2004-07-06 | 2007-06-26 | Dimsdale Engineering, Llc | System and method for determining range in 3D imaging systems |
US7312879B2 (en) * | 2005-08-23 | 2007-12-25 | University Of Washington | Distance determination in a scanned beam image capture device |
WO2007024221A1 (en) | 2005-08-23 | 2007-03-01 | University Of Washington | Distance determination in a scanned beam image capture device |
WO2007067163A1 (en) * | 2005-11-23 | 2007-06-14 | University Of Washington | Scanning beam with variable sequential framing using interrupted scanning resonance |
US8437587B2 (en) * | 2007-07-25 | 2013-05-07 | University Of Washington | Actuating an optical fiber with a piezoelectric actuator and detecting voltages generated by the piezoelectric actuator |
JP5144185B2 (ja) * | 2007-09-13 | 2013-02-13 | 株式会社エヌ・ティ・ティ・ドコモ | 情報検索システム及び情報検索方法 |
WO2009079789A1 (en) | 2007-12-21 | 2009-07-02 | Leddartech Inc. | Detection and ranging methods and systems |
FI20095619A0 (fi) * | 2009-06-04 | 2009-06-04 | Gasera Ltd | Järjestelmä ja menetelmä suhteellisen liikkeen mittaamiseksi |
JP2012083267A (ja) * | 2010-10-13 | 2012-04-26 | Japan Aerospace Exploration Agency | マルチライダーシステム |
US8946637B2 (en) | 2010-11-23 | 2015-02-03 | The United States Of America As Represented By The Secretary Of The Army | Compact fiber-based scanning laser detection and ranging system |
EP2469295A1 (en) | 2010-12-23 | 2012-06-27 | André Borowski | 3D landscape real-time imager and corresponding imaging methods |
EP2686701B1 (en) * | 2011-03-17 | 2023-03-08 | Universitat Politècnica De Catalunya | System, method and computer program for receiving a light beam |
US9069061B1 (en) * | 2011-07-19 | 2015-06-30 | Ball Aerospace & Technologies Corp. | LIDAR with analog memory |
US8826188B2 (en) * | 2011-08-26 | 2014-09-02 | Qualcomm Incorporated | Proximity sensor calibration |
US8797512B2 (en) | 2011-09-15 | 2014-08-05 | Advanced Scientific Concepts, Inc. | Automatic range corrected flash ladar camera |
CN102525384B (zh) * | 2011-12-23 | 2014-06-18 | 华中科技大学 | 光纤悬臂共振型扫描器的二维栅格式扫描方法 |
US9323010B2 (en) * | 2012-01-10 | 2016-04-26 | Invensas Corporation | Structures formed using monocrystalline silicon and/or other materials for optical and other applications |
US9448110B2 (en) * | 2012-09-27 | 2016-09-20 | Northrop Grumman Systems Corporation | Three-dimensional hyperspectral imaging systems and methods using a light detection and ranging (LIDAR) focal plane array |
DE202013101039U1 (de) | 2013-03-11 | 2014-03-12 | Sick Ag | Optoelektronischer Sensor zur Entfernungsmessung |
CN103412313B (zh) * | 2013-07-30 | 2015-03-25 | 桂林理工大学 | 低空轻小型面阵激光雷达测量系统 |
CN203385859U (zh) * | 2013-07-30 | 2014-01-08 | 桂林理工大学 | 一种面阵激光雷达测量装置 |
TWI543751B (zh) * | 2013-12-20 | 2016-08-01 | 緯創資通股份有限公司 | 高度量測裝置及其方法 |
CN103744087B (zh) * | 2014-01-11 | 2016-03-02 | 桂林理工大学 | 一种脉冲式n×n阵列激光雷达系统 |
US10379222B2 (en) * | 2014-07-04 | 2019-08-13 | Z-Senz Llc | Systems, devices, and/or methods for resonant light ranging and distance sensing |
US10088558B2 (en) * | 2014-08-15 | 2018-10-02 | Aeye, Inc. | Method and system for ladar transmission with spiral dynamic scan patterns |
US10408926B2 (en) | 2015-09-18 | 2019-09-10 | Qualcomm Incorporated | Implementation of the focal plane 2D APD array for hyperion lidar system |
-
2016
- 2016-09-15 US US15/266,618 patent/US10408926B2/en active Active
- 2016-09-16 EP EP16774759.1A patent/EP3350614B1/en active Active
- 2016-09-16 WO PCT/US2016/052244 patent/WO2017049154A1/en active Application Filing
- 2016-09-16 KR KR1020187010376A patent/KR102114781B1/ko active IP Right Grant
- 2016-09-16 BR BR112018005427-5A patent/BR112018005427B1/pt active IP Right Grant
- 2016-09-16 CN CN201680053168.6A patent/CN108027424B/zh active Active
- 2016-09-16 CN CN202210529710.8A patent/CN115166688A/zh active Pending
- 2016-09-16 JP JP2018513367A patent/JP6688880B2/ja active Active
-
2019
- 2019-08-30 US US16/557,537 patent/US11846730B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US10408926B2 (en) | 2019-09-10 |
US20170212223A1 (en) | 2017-07-27 |
KR20180054691A (ko) | 2018-05-24 |
KR102114781B1 (ko) | 2020-05-25 |
BR112018005427B1 (pt) | 2023-11-21 |
US20200011975A1 (en) | 2020-01-09 |
EP3350614B1 (en) | 2020-08-12 |
WO2017049154A1 (en) | 2017-03-23 |
CN108027424A (zh) | 2018-05-11 |
US11846730B2 (en) | 2023-12-19 |
JP2018536144A (ja) | 2018-12-06 |
EP3350614A1 (en) | 2018-07-25 |
BR112018005427A2 (zh) | 2018-10-02 |
CN108027424B (zh) | 2022-05-10 |
JP6688880B2 (ja) | 2020-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108027424B (zh) | 用于hyperion lidar系统的焦平面2d apd阵列的实施方案 | |
US11650291B2 (en) | LiDAR sensor | |
CN110809704B (zh) | Lidar数据获取与控制 | |
CN110914705B (zh) | 用于集成lidar照明功率控制的设备、系统和方法 | |
CN109564276B (zh) | 用于在光学系统中测量参考及返回光束的系统及方法 | |
CN109196378B (zh) | 用于遥感接收器的光学系统 | |
CN111352091B (zh) | 用于lidar应用的激光和检测器阵列中的实时选通和信号路由 | |
US20180074198A1 (en) | Optical beam identification using optical demodulation | |
WO2013088951A1 (ja) | 位置測定装置 | |
US20210239801A1 (en) | Laser-ranging device and mobile apparatus | |
US20210396845A1 (en) | Methods and Systems for Dithering Active Sensor Pulse Emissions | |
CN112105944A (zh) | 具有使用短脉冲和长脉冲的多模式操作的光学测距系统 | |
US20160202215A1 (en) | Vibration measuring apparatus | |
JP2008298604A (ja) | レーダ装置 | |
US20180196125A1 (en) | Systems and methods for lidar interference mitigation | |
CN109313078B (zh) | 图像获取装置和图像获取方法 | |
CN117480408A (zh) | 一种物体测距方法及装置 | |
CN114667457A (zh) | 电子设备及其控制方法 | |
WO2022216531A9 (en) | High-range, low-power lidar systems, and related methods and apparatus | |
CN103869325A (zh) | 舰艇补给安全距离提示装置 | |
US20230194684A1 (en) | Blockage detection methods for lidar systems and devices based on passive channel listening | |
CN114428254A (zh) | 距离测量设备和通过使用距离测量设备测量距离的方法 | |
JP2021012164A (ja) | 埋設物検出装置および埋設物検出装置の補正方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |