CN115160476A - 一种交联型两性离子交换膜及其制备方法和应用 - Google Patents

一种交联型两性离子交换膜及其制备方法和应用 Download PDF

Info

Publication number
CN115160476A
CN115160476A CN202210697552.7A CN202210697552A CN115160476A CN 115160476 A CN115160476 A CN 115160476A CN 202210697552 A CN202210697552 A CN 202210697552A CN 115160476 A CN115160476 A CN 115160476A
Authority
CN
China
Prior art keywords
exchange membrane
ion exchange
cross
preparation
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210697552.7A
Other languages
English (en)
Other versions
CN115160476B (zh
Inventor
李全龙
张宇哲
冯伟
鲁志颖
胡伊宁
江杉
王世宇
宋清爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Rongke Power Co Ltd
Original Assignee
Dalian Rongke Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Rongke Power Co Ltd filed Critical Dalian Rongke Power Co Ltd
Priority to CN202210697552.7A priority Critical patent/CN115160476B/zh
Publication of CN115160476A publication Critical patent/CN115160476A/zh
Application granted granted Critical
Publication of CN115160476B publication Critical patent/CN115160476B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/26Nitrogen
    • C08F212/28Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及离子交换膜领域,公开了一种交联型两性离子交换膜及其制备方法和应用,适合于液流电池用离子交换膜,尤其是钒电池用离子交换膜。通过使用带磺酸基团的苯乙烯磺酸钠单体和带有叔胺基团的N‑(4‑乙烯基苄基)‑N,N‑二烷基胺单体进行聚合交联,使离子交换膜具有较高阻钒能力、良好机械性能和较高钒电池效率等性能,可以替代现有的离子交换膜应用于钒电池储能领域。本发明提供了一种全新的交联型两性离子交换膜及其制备方法,原料来源广泛且廉价,有效控制成本,制备工艺相对简单,条件温和,适合于大规模的工业化生产。

Description

一种交联型两性离子交换膜及其制备方法和应用
技术领域
本发明涉及离子交换膜领域,特别是一种交联型两性离子交换膜及其制备方法和应用,适合于液流电池用两性离子交换膜,尤其是钒电池用两性离子交换膜。
背景技术
目前全钒液流储能电池用离子交换膜主要是阳离子类型的离子交换膜,其主要作用是通过分子结构中的磺酸基团作为质子的导电通路,达到离子交换的效果,其代表是美国杜邦公司生产的
Figure BDA0003703309750000011
系列全氟磺酸阳离子交换膜、美国Gore公司生产的增强型全氟磺酸阳离子交换膜以及意大利索尔维公司提供的短链结构的阳离子交换膜。除此之外,德国Fumatech公司开发出适合钒电池使用的
Figure BDA0003703309750000012
FAP系列的阴离子交换膜,其主要是依靠膜分子链在酸性条件下形成季铵盐结构,可以与阴离子(如硫酸根、氯离子等)之间相互吸引,达到离子交换的效果。由于阴离子交换膜表面电荷呈正电性,可以排斥溶液中带正电荷的钒离子,使得阴离子交换膜具有良好的阻钒性能,但是阴离子膜主要的问题是其交换的基团是硫酸根离子、氯离子这些离子半径较大的阴离子,相比于离子半径较小的质子来说,这会使离子透过膜的过程中阻力会变大,导致膜面电阻升高。因此能结合阳离子交换膜和阴离子交换膜的优势,摒弃自身缺点是钒电池用离子交换膜的发展方向之一。
为了达到上述目标,部分研究人员尝试制备同时具有阳离子交换能力和阴离子交换能力的两性离子交换膜,即分子结构中同时含有阳离子交换基团(如磺酸根)和阴离子交换基团(如叔氨基或季铵盐)。
清华大学邱新平课题组(J.Polym.Sci.,PartA:Polym.Chem.,2013,51,5194–5202.)将苯乙烯和甲基丙烯酸二甲氨基乙酯(DMAEMA)通过γ射线辐射聚合接枝到聚偏氟乙烯(PVDF)上,然后在室温下利用氯磺酸对苯环磺化,最后质子化叔胺官能团,得到具有磺酸根和季铵基团的两性离子交换膜,研究表明,DMAEMA比例越高钒离子透过率和电导率越小。但是,这种制备阴离子膜的制备工艺较为复杂,辐射聚合效率较低,可控性差,工艺苛刻,不适合工业化生产。
发明内容
开发制备工艺简单,制备条件温和的两性离子交换膜是该领域发展的方向之一。为弥补现有技术的不足,本发明提供了一种交联型两性离子交换膜及其制备方法和应用,这种方法的合成原料价格便宜且来源较广,制备工艺相对简单,条件温和,同时又可以保证离子交换膜的较高机械强度和阻钒能力。
本发明的发明点是:通过使用带磺酸基团的苯乙烯磺酸钠单体和带有叔胺基团的N-(4-乙烯基苄基)-N,N-二烷基胺单体进行聚合,并引入交联剂二乙烯基苯,制备同时具有阳离子和阴离子交换能力的离子交换膜,在一定程度上减少了钒迁移现象,交联剂二乙烯基苯的加入使线性分子聚合成交联的空间网络结构,增加了分子结构的空间稳定性,提高了膜的机械强度。
本发明技术方案如下:
一种交联型两性离子交换膜,所述两性离子交换膜的分子具有如式I所示的分子结构:
Figure BDA0003703309750000031
其中,R为烷基结构,优选甲基(CH3)或乙基(CH2CH3)。
上述一种交联型两性离子交换膜的制备方法为,包含以下步骤:
(1)使用苯乙烯基磺酸钠和N-(4-乙烯基苄基)-N,N-二烷基胺作为单体在偶氮类热分解型引发剂的作用下,在惰性气体氛围中通过溶液聚合方法进行预聚合,得到预聚体溶液;
(2)在惰性气体氛围中向预聚体溶液加入交联剂二乙烯基苯,将其倒入光滑的水平槽中后,进行原位交联聚合反应,直至反应结束;
(3)蒸发体系中的溶剂,依次用0.5-1mol/L稀硫酸和去离子水洗涤至洗涤液pH值呈中性,常温自然晾干,得两性离子交换膜。
进一步的,步骤(1)中苯乙烯基磺酸钠单体与N-(4-乙烯基苄基)-N,N-二烷基胺单体的摩尔比为(0.25-4):1;偶氮型热分解型引发剂的摩尔量与苯乙烯基磺酸钠和N-(4-乙烯基苄基)-N,N-二烷基胺的总摩尔量之比为1:5;二乙烯基苯的摩尔量与苯乙烯基磺酸钠和N-(4-乙烯基苄基)-N,N-二烷基胺的总摩尔量之比为1:20。
进一步的,步骤(1)中所述偶氮类热分解型引发剂为偶氮二异丁腈、偶氮二异庚腈等,在本发明中不做具体限定。
进一步的,所述的步骤(1)和步骤(2)中惰性气体为高纯氮气或氩气等不参与化学反应的气体,在本发明中不做具体限定。
进一步的,步骤(2)中所述原位交联聚合反应的反应温度为偶氮类热分解型引发剂分解温度以上5-10℃,在此未作限定,如偶氮二异丁腈分解温度为65℃,反应温度为70℃即可。
值得说明的是,步骤(2)中所述原位交联聚合反应结束是通过反应后的双键残余量按照<1%来判断。
所述双键氢残余量的检测方法:准确称取苯乙烯基磺酸钠和N-(4-乙烯基苄基)-N,N-二烷基胺总质量的十分之一的1,3,5-三噁烷固体,1,3,5-三噁烷固体作为内标,不参与聚合反应,加入所述反应前的溶液中,搅拌均匀,充分溶解后,取一滴反应液滴加到0.6mLd-DMSO中做1H NMR核磁测试;反应结束后,再取一滴反应液,同样方法进行1H NMR核磁测试。由于反应前后内标1,3,5-三噁烷摩尔量保持不变,而双键氢含量在降低,通过比较反应前和反应后的双键质子吸收峰的积分面积,计算双键氢残余量。反应结束判断亦可以采用其他方法,仅代表体系中单体完全参与反应,在此不做限定。
进一步的,步骤(3)中所述蒸发体系中的溶剂的温度为100-150℃,可根据实际使用的溶剂进行蒸发温度的选择。
本发明第三个目的是请求保护所述的交联型两性离子交换膜的应用,可以应用在所有钒液流电池体系,理论上也可以用在其他液流电池体系,在钒液流电池储能中提高电池性能或提高机械强度。
与现有技术相比,本发明的有益效果如下:
(1)本发明提供了一种全新的交联型两性离子交换膜及其制备方法,原料来源广泛且廉价,有效控制成本,制备工艺相对简单,条件温和,适合于大规模的工业化生产;
(2)本发明所制备的交联型两性离子交换膜与单纯的阳离子交换膜或阴离子交换膜相比具有较好的阻钒能力、良好机械性能和较高钒电池效率等性能,可以替代现有的离子交换膜应用于钒电池储能领域。
具体实施方式
为了更好的理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于以下几个实施例。以下实施例更加详细地描述了本发明中一种交联型两性离子交换膜及其制备方法,并且这些实施例以说明的方式给出,但这些实施例不限制本发明的范围。如无特殊说明,本发明所采用的实验方法为常规方法,所用实验器材、材料、试剂等均可从化学公司购买。
本发明中所使用的N-(4-乙烯基苄基)-N,N-二烷基胺单体的合成方法参见文献Macromolecules 2013,46,3137-3146。
离子膜的厚度由Fisher厚度测试仪进行测试,每个样品在不同位置测50个值求平均值;
离子膜的拉伸强度、断裂伸长率的测试参照标准GB/T 1040.3-2006《塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件》,将膜裁成宽度为10mm,夹具初始间距为50mm的条状,以200mm/min的拉伸速率进行实验;
离子膜的钒离子透过率的测试方法参照标准NB/T 42080-2016《全钒液流电池用离子传导膜测试方法》进行测试;
离子膜的全钒液流储能电池性能测试条件:在电流密度为80mA/cm2条件下进行充放电实验,充电至1.55V,放电至1.00V,使用辽阳金谷炭材料股份有限公司生产的石墨碳毡作为反应电极,电极有效工作面积为48cm2,正负极电解液分别为VO2+/VO2 +和V2+/V3+的硫酸溶液,电池工作温度为37℃。
在以下实施例中,乙醇/水混合溶剂不是必须的,可以换成其他溶剂,前提是可以把体系中的单体和交联剂完全溶解即可,在此,选用乙醇/水(质量比为50:50)的混合溶剂仅限举例。选用乙醇/水(质量比为50:50)的混合溶剂时,则单体(苯乙烯基磺酸钠+N-(4-乙烯基苄基)-N,N-二烷基胺)的总质量与乙醇/水混合溶剂的质量比为(0.1-0.2):1,使用溶剂时,比例会有变化,因此未做限定。
实施例1
将2.06g(0.01mol)苯乙烯基磺酸钠和6.44g(0.04mol)N-(4-乙烯基苄基)-N,N-二甲基胺溶解在50g乙醇/水(质量比为50:50)混合溶剂中,加入1.64g(0.01mol)偶氮二异丁腈引发剂,在氮气氛围中,65℃下进行预聚反应2h,然后,向其中加入0.325g(0.0025mol)二乙烯基苯后,倾倒在光滑的玻璃水平槽中,在70℃下继续进行原位交联聚合反应,直至聚合物膜从溶液中分离出来(聚合物由于交联剂的高度交联,使得制得的膜在形成过程中在溶剂中的溶解性变差)升高温度至120℃,烘干排出体系溶剂,再依次用0.5mol/L稀硫酸和去离子水洗涤至洗涤液pH值呈中性,晾干,得厚度为50±3um两性离子交换膜。
在本实施例中,苯乙烯基磺酸钠单体与N-(4-乙烯基苄基)-N,N-二甲基胺单体的摩尔比为0.25:1。
实施例2
本实施例与实施例1的区别在于:苯乙烯基磺酸钠单体的质量为4.12g(0.02mol),使苯乙烯基磺酸钠单体与N-(4-乙烯基苄基)-N,N-二甲基胺单体的摩尔比为0.5:1。偶氮二异丁腈引发剂按比例增加到1.968g(0.012mol),交联剂二乙烯基苯按比例增加到0.39g(0.003mol)。
实施例3
本实施例与实施例1的区别在于:苯乙烯基磺酸钠单体的质量为8.24g(0.04mol),使苯乙烯基磺酸钠单体与N-(4-乙烯基苄基)-N,N-二甲基胺单体的摩尔比为1:1。偶氮二异丁腈引发剂按比例增加到2.624g(0.016mol),交联剂二乙烯基苯按比例增加到0.52g(0.004mol)。
实施例4
本实施例与实施例1的区别在于:苯乙烯基磺酸钠单体的质量为16.48g(0.08mol),使苯乙烯基磺酸钠单体与N-(4-乙烯基苄基)-N,N-二甲基胺单体的摩尔比为2:1。偶氮二异丁腈引发剂按比例增加到3.936g(0.024mol),交联剂二乙烯基苯按比例增加到0.78g(0.006mol)。
实施例5
本实施例与实施例1的区别在于:苯乙烯基磺酸钠单体的质量为32.96g(0.16mol),使苯乙烯基磺酸钠单体与N-(4-乙烯基苄基)-N,N-二甲基胺单体的摩尔比为4:1。偶氮二异丁腈引发剂按比例增加到6.560g(0.040mol),交联剂二乙烯基苯按比例增加到1.30g(0.01mol)。
实施例6
本实施例与实施例1的区别在于,使用N-(4-乙烯基苄基)-N,N-二乙基胺单体替换N-(4-乙烯基苄基)-N,N-二甲基胺单体,其质量为1.89g(0.01mol),使苯乙烯基磺酸钠单体与N-(4-乙烯基苄基)-N,N-二乙基胺单体的摩尔比为0.25:1。
实施例7
本实施例与实施例3的区别在于,使用N-(4-乙烯基苄基)-N,N-二乙基胺单体替换N-(4-乙烯基苄基)-N,N-二甲基胺单体,其质量为7.56g(0.04mol),使苯乙烯基磺酸钠单体与N-(4-乙烯基苄基)-N,N-二乙基胺单体的摩尔比为1:1。
实施例8
本实施例与实施例5的区别在于,使用N-(4-乙烯基苄基)-N,N-二乙基胺单体替换N-(4-乙烯基苄基)-N,N-二甲基胺单体,其质量为30.24g(0.16mol),使苯乙烯基磺酸钠单体与N-(4-乙烯基苄基)-N,N-二乙基胺单体的摩尔比为4:1。
对比例1
将10.3g(0.05mol)苯乙烯基磺酸钠溶解在50g乙醇/水(质量比为50:50)混合溶剂中,加入1.64g(0.01mol)偶氮二异丁腈引发剂,在氮气氛围中,65℃下进行预聚反应2h,然后,向其中加入0.325g(0.0025mol)二乙烯基苯后,倾倒在光滑的玻璃水平槽中,在70℃下继续进行原位交联聚合反应,直至聚合物膜从溶液中分离出来(聚合物由于交联剂的高度交联,使得制得的膜在形成过程中在溶剂中的溶解性变差)升高温度至120℃,烘干排出体系溶剂,再依次用0.5mol/L稀硫酸和去离子水洗涤至洗涤液pH值呈中性,晾干,得厚度为50±3um两性离子交换膜。
对比例2
将8.05g(0.05mol)N-(4-乙烯基苄基)-N,N-二甲基胺单体溶解在50g乙醇/水(质量比为50:50)混合溶剂中,加入1.64g(0.01mol)偶氮二异丁腈引发剂,在氮气氛围中,65℃下进行预聚反应2h,然后,向其中加入0.325g(0.0025mol)二乙烯基苯后,倾倒在光滑的玻璃水平槽中,在70℃下继续进行原位交联聚合反应,直至聚合物膜从溶液中分离出来(聚合物由于交联剂的高度交联,使得制得的膜在形成过程中在溶剂中的溶解性变差)升高温度至120℃,烘干排出体系溶剂,再依次用0.5mol/L稀硫酸和去离子水洗涤至洗涤液pH值呈中性,晾干,得厚度为50±3um两性离子交换膜。
对比例3
本对比例与实施例1的区别的地方在于,不加入交联剂二乙烯基苯。
将本发明实施例1-8制备的交联型两性离子交换膜与对比例1-3制备的离子交换膜,以全钒液流电池为例进行性能测试,测试结果如表1所示。
表1实施例1-8及对比例1-3所制备的膜的性能数据
Figure BDA0003703309750000101
从表1可以看出,本发明所制得的离子交换膜具有较好的拉伸强度,即具有较好的机械性能,这是因为本发明所合成的离子交换膜使用二乙烯基苯作为交联剂进行化学增强作用,对提高离子交换膜的机械性能具有良好的帮助,其拉伸强度可以直接通过实施例1和对比例3的数据直接对比。从实施例1-5或实施例6-8可以看出,随着两性离子交换膜中苯乙烯磺酸单元的比例增加,两性离子交换膜的阻钒性能和库仑效率均下降,说明叔胺基团在两性离子交换膜的阻钒作用。与此同时,实施例1-8与对比例1和2的数据对比来看,本发明所制备的两性离子交换膜在钒电池中的综合效率(能量效率)均高于相近方法制备的单一阳离子交换膜或阴离子交换膜。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (9)

1.一种交联型两性离子交换膜,其特征在于,所述两性离子交换膜的分子具有如式I所示的分子结构:
Figure FDA0003703309740000011
其中,R为烷基结构。
2.如权利要求1所述的一种交联型两性离子交换膜,其特征在于,所述的烷基结构为甲基CH3或乙基CH2CH3
3.一种交联型两性离子交换膜的制备方法,其特征在于,包含以下步骤:
(1)使用苯乙烯基磺酸钠和N-(4-乙烯基苄基)-N,N-二烷基胺作为单体在偶氮类热分解型引发剂的作用下,在惰性气体氛围中通过溶液聚合方法进行预聚合,得到预聚体溶液;
(2)在惰性气体氛围中向预聚体溶液加入交联剂二乙烯基苯,将其倒入光滑的水平槽中后,进行原位交联聚合反应,直至反应结束;
(3)蒸发体系中的溶剂,依次用0.5-1mol/L稀硫酸和去离子水洗涤至洗涤液pH值呈中性,常温自然晾干,得两性离子交换膜。
4.如权利要求3所述的一种交联型两性离子交换膜的制备方法,其特征在于,步骤(1)中苯乙烯基磺酸钠单体与N-(4-乙烯基苄基)-N,N-二烷基胺单体的摩尔比为(0.25-4):1;偶氮型热分解型引发剂的摩尔量与苯乙烯基磺酸钠和N-(4-乙烯基苄基)-N,N-二烷基胺的总摩尔量之比为1:5;二乙烯基苯的摩尔量与苯乙烯基磺酸钠和N-(4-乙烯基苄基)-N,N-二烷基胺的总摩尔量之比为1:20。
5.如权利要求3所述的一种交联型两性离子交换膜的制备方法,其特征在于,步骤(1)中所述偶氮类热分解型引发剂为偶氮二异丁腈或偶氮二异庚腈。
6.如权利要求3所述的一种交联型两性离子交换膜的制备方法,其特征在于,所述的步骤(1)和步骤(2)中惰性气体为高纯氮气或氩气。
7.如权利要求3所述的一种交联型两性离子交换膜的制备方法,其特征在于,步骤(2)中所述原位交联聚合反应的反应温度为偶氮类热分解型引发剂的分解温度以上5-10℃。
8.如权利要求3所述的一种交联型两性离子交换膜的制备方法,其特征在于,步骤(3)中所述蒸发体系中的溶剂的温度为100-150℃。
9.一种交联型两性离子交换膜的应用,其特征在于,应用在液流电池体系。
CN202210697552.7A 2022-06-20 2022-06-20 一种交联型两性离子交换膜及其制备方法和应用 Active CN115160476B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210697552.7A CN115160476B (zh) 2022-06-20 2022-06-20 一种交联型两性离子交换膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210697552.7A CN115160476B (zh) 2022-06-20 2022-06-20 一种交联型两性离子交换膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115160476A true CN115160476A (zh) 2022-10-11
CN115160476B CN115160476B (zh) 2023-12-01

Family

ID=83487403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210697552.7A Active CN115160476B (zh) 2022-06-20 2022-06-20 一种交联型两性离子交换膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115160476B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117199465A (zh) * 2023-11-07 2023-12-08 杭州德海艾科能源科技有限公司 一种钒液流电池用高离子选择性离子膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242552A (zh) * 2013-05-23 2013-08-14 北京大学 一种季铵化两性离子交换膜的制备方法
CN112898491A (zh) * 2021-02-03 2021-06-04 陕西福天宝环保科技有限公司 一种两性离子交换膜及其制备方法
US20210197187A1 (en) * 2018-05-24 2021-07-01 Toray Advanced Materials Korea Inc. Micropore-filled double-sided membrane for low vanadium ion permeability and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242552A (zh) * 2013-05-23 2013-08-14 北京大学 一种季铵化两性离子交换膜的制备方法
US20210197187A1 (en) * 2018-05-24 2021-07-01 Toray Advanced Materials Korea Inc. Micropore-filled double-sided membrane for low vanadium ion permeability and method for manufacturing same
CN112898491A (zh) * 2021-02-03 2021-06-04 陕西福天宝环保科技有限公司 一种两性离子交换膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117199465A (zh) * 2023-11-07 2023-12-08 杭州德海艾科能源科技有限公司 一种钒液流电池用高离子选择性离子膜及其制备方法
CN117199465B (zh) * 2023-11-07 2024-02-06 杭州德海艾科能源科技有限公司 一种钒液流电池用高离子选择性离子膜及其制备方法

Also Published As

Publication number Publication date
CN115160476B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
Safronova et al. New cation-exchange membranes based on cross-linked sulfonated polystyrene and polyethylene for power generation systems
Tang et al. Long side-chain quaternary ammonium group functionalized polybenzimidazole based anion exchange membranes and their applications
Pal et al. Homogeneous phase crosslinked poly (acrylonitrile-co-2-acrylamido-2-methyl-1-propanesulfonic acid) conetwork cation exchange membranes showing high electrochemical properties and electrodialysis performance
US20110082222A1 (en) Use of a material imparting proton conductivity in the production of fuel cells
Xu et al. Novel ether-free sulfonated poly (biphenyl) tethered with tertiary amine groups as highly stable amphoteric ionic exchange membranes for vanadium redox flow battery
JP4467227B2 (ja) 高耐久性固体高分子電解質(複合)膜
Yi et al. Hybrid anion-exchange membranes derived from quaternized polysulfone and functionalized titanium dioxide
CN101831023B (zh) 一种燃料电池质子交换膜及其制备方法
US20190181459A1 (en) Cross-linked porous membrane from hydrolysis of ester-containing side chain and preparation method thereof
CN109939572A (zh) 一种具有多重交联结构的阴离子交换膜的制备方法
CN113078339A (zh) 一种含poss和嵌段共聚物的阴离子交换膜及其制备方法
CN115160476B (zh) 一种交联型两性离子交换膜及其制备方法和应用
Kwak et al. Synthesis and characterization of EFFE-g-(VBTAC-co-HEMA) anion exchange membranes prepared by a 60 Co radiation-induced graft copolymerization for redox-flow battery applications
CN117199465B (zh) 一种钒液流电池用高离子选择性离子膜及其制备方法
Dai et al. Amphoteric Nafion membrane with tunable cationic and anionic ratios for vanadium redox flow battery prepared via atom transfer radical polymerization
CN105932317A (zh) 一种钒电池用离子交换膜的制备方法
CN108929407B (zh) 一种基于环糊精交联聚合物的阳离子交换膜及其制备方法和应用
Shin et al. Preparation and characterization of ion-exchange membrane using Sty/HEA/LMA terpolymer via post-sulfonation
Li et al. Trimethyl-ammonium alkaline anion exchange membranes with the vinylbenzyl chloride/acrylonitrile main chain
CN108039441B (zh) 一种含氟二嵌段聚合物阴离子燃料电池膜及制备方法
CN107978769B (zh) 一种钒电池用基于三嗪衍生物隔膜及其制备方法
CN109589809B (zh) 一种具有多重交联结构的阳离子交换膜的制备方法
US11339257B2 (en) Method of preparing chemically modified anion exchange membrane
CN113121764A (zh) 一种支化聚芳醚离子交换膜及其制备方法
CN117164912A (zh) 一种基于磺酸基甜菜碱的离子交换膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant