CN113121764A - 一种支化聚芳醚离子交换膜及其制备方法 - Google Patents

一种支化聚芳醚离子交换膜及其制备方法 Download PDF

Info

Publication number
CN113121764A
CN113121764A CN202110412946.9A CN202110412946A CN113121764A CN 113121764 A CN113121764 A CN 113121764A CN 202110412946 A CN202110412946 A CN 202110412946A CN 113121764 A CN113121764 A CN 113121764A
Authority
CN
China
Prior art keywords
exchange membrane
ion exchange
branched
membrane
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110412946.9A
Other languages
English (en)
Inventor
陈金泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Fisher Artificial Intelligence Technology Co ltd
Original Assignee
Guangzhou Fisher Artificial Intelligence Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Fisher Artificial Intelligence Technology Co ltd filed Critical Guangzhou Fisher Artificial Intelligence Technology Co ltd
Priority to CN202110412946.9A priority Critical patent/CN113121764A/zh
Publication of CN113121764A publication Critical patent/CN113121764A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种支化聚芳醚离子交换膜及其制备方法,包括:(1)制备支化聚芳醚为核;(2)以支化聚芳醚为大分子引发剂,引发甲基丙烯酸二甲氨基乙酯、丙烯酰胺进行原子转移自由基聚合;(3)将步骤(2)产物季铵化和交联,制备得到阴离子交换膜;该膜有明显的微相分离结构,具有良好的尺寸稳定性、耐碱性和机械性能,有良好潜在应用前景。

Description

一种支化聚芳醚离子交换膜及其制备方法
技术领域
本发明属于燃料电池材料技术领域,具体涉及一种支化聚芳醚离子交换膜及其制备方法。
背景技术
随着全球环境与能源问题的日益严峻,燃料电池作为一种新型发电装置,因其燃料来源广泛、高效率、低甚至零排放等优势受到了人们的广泛关注。碱性阴离子交换膜燃料电池是燃料电池中的一种,相比于目前研究比较成熟的质子交换膜燃料电池,碱性阴离子交换膜燃料电池有着氧化速度快、燃料渗透速度低、有利于水平衡、成本相对低等优势。成本低的优势源自于碱性阴离子交换膜燃料电池可以使用非贵金属作为催化剂。
碱性阴离子交换膜(AEMs)是碱性阴离子交换膜燃料电池的核心部件,起到选择性传递氢氧根离子并且分隔两极室的作用。在碱性工作条件下,AEMs的离子基团和主链结构容易受到降解破坏,因此需要强度刚度较大的聚合物骨架以保持材料的热、化学稳定。另外,构建高效的离子传输通道是提高膜材料电导率的重要途径,一方面可以提高AEMs的离子交换容量(IEC),另一方面是通过分子结构设计,对微相扑拓结构进行调控。但离子基团的数量过多会影响膜的含水量,从而导致膜溶胀,影响AEMs的结构稳定性。
现有技术中膜聚合物的分子结构设计方案大多采用具有不同亲疏水性的主链和侧链、或不同亲疏水性的聚合物进行嵌段,由此诱导聚合物成型时进行微相分离,亲水部成为离子通道,而疏水部作为聚合物的机械强度来源,维持膜的尺寸稳定。孙坤(孙坤,陈芳,马晓燕,张杰,张帆,管兴华.含咪唑聚离子液体的星型POSS嵌段共聚物基阴离子交换膜的制备与性能[J].高分子材料科学与工程,2017,33(03):128-132.)合成了一种以聚甲基丙烯酸甲酯嵌段聚乙烯基咪唑为臂,低聚倍半硅氧烷(POSS)为核的星型嵌段共聚物作为基膜材料,而后经过季铵化和离子交换得到AMEs;该AMEs的尺寸稳定性较差,吸水率为25.81%时,厚度方向的溶胀率为35.45%;另外膜的耐碱性也较差,在60℃强碱液中浸泡120h,电导率下降近30%,是由于咪唑季铵盐的耐碱性较差,容易降解;再者膜表面和断面形貌的SEM照片中,未明显观察到微相分离扑拓结构,是由于作为支臂的聚合物为甲基丙烯酸甲酯(具有疏水性)和乙烯基咪唑(具有亲水性)的无规共聚物,亲水单元和疏水单元未形成连续相难以微观分离。
发明内容
针对上述缺陷,本发明提供一种支化聚芳醚离子交换膜,以支化聚芳醚为核,以丙烯酰胺和甲基丙烯酸二甲氨基乙酯无规共聚物为臂,季铵化反应中部分采用二官能度卤代烃进行交联,大大提高了膜的机械强度。
上述支化聚芳醚离子交换膜的结构如式(I)所示:
Figure BDA0003024645950000031
式中,x、m、n、r均取值整数。
上述支化聚芳醚离子交换膜的反应流程及制备方法如下:
1.制备支化聚芳醚(bPAE-Br)
以Na2CO3为催化剂,甲苯为溶剂,间苯三酚依次与间三氟苯、对苯二酚反应制备内核,继续加入4,4'-二氟二苯砜、联苯二酚进行缩合并以4-氟苄溴封端,得到支化聚芳醚(bPAE-Br),作为第2步的大分子引发剂。
2.原子转移自由基聚合制备PAE-P(AAM-co-DMAEMA)
在溴化亚铜(CuBr)、五甲基二乙烯三胺(PMDETA)催化体系中,以bPAE-Br为大分子引发剂,甲基丙烯酸二甲氨基乙酯(DMAEMA)、丙烯酰胺(AAM)为聚合单体进行原子转移自由基聚合,得到支化聚合物PAE-P(AAM-co-DMAEMA)。
3.PAE-P(AAM-co-DMAEMA)季铵化反应制备阴离子交换膜
以N,N-二甲基甲酰胺为溶剂,PAE-P(AAM-co-DMAEMA)依次与碘甲烷、1,4-二溴丁烷进行季铵化反应制备阴离子交换膜,反应液过滤后浇注在玻璃板内,置于真空干燥箱干燥,最后将所得膜浸泡于NaOH溶液进行离子交换后保存于去离子水中。
本发明具有如下优点和有益效果:
本发明制备的支化聚芳醚离子交换膜,以刚性疏水的PAE为核,以疏水P(AAM-co-DMAEMA)为支臂,成型过程中,核和臂能够自组装成微相分离结构,构建出有效的离子通道,AFM图中能观察到样品膜形成明显的微相分离结构。另外,二官能度的卤代烷烃对分子间进行交联,使得膜具有良好的尺寸稳定性和机械强度。
附图说明
图1为实施例2制备的PAE-P(AAM-co-DMAEMA)的1H-NMR谱图
图2为实施例3制备的AEMs的AFM相图。
图3为支化聚芳醚离子交换膜的分子结构图。
具体实施方式
下面结合具体实施例对本发明做进一步详细说明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
本发明测试:
含水量(WU)和溶胀率(SR)测试:裁取1cm×4cm的膜浸入指定温度的去离子水中24h,测量湿膜的质量mw和长度lw.将膜置于60℃下真空干燥至恒重,测量干膜质量md和长度ld根据下式计算WU或SR的值:
Figure BDA0003024645950000051
Figure BDA0003024645950000052
离子交换容量(IEC)测试:利用莫尔滴定法测定,完全干燥的样品膜,称重记为Wdry,在室温下浸入1mol/L NaCl溶液中24h进行离子交换,取出膜用去离子水洗涤,以除去游离的Cl-,然后将膜浸入0.5mol/L Na2SO4水溶液中24h进行离子交换,以完全释放Cl-。然后以K2CrO4为指示剂,用0.01mol/L AgNO3水溶液滴定溶液。IEC值根据下式计算:
Figure BDA0003024645950000053
离子电导率测试:使用Princeton VersaSTAT 4电化学综合测试系统测量阴离子交换膜的阻抗,频率范围在1MHz~1Hz。根据下式计算膜的离子电导率(σ,mS/cm)
Figure BDA0003024645950000054
式中,L指两铜电极之间的距离,cm;A指在两电极间的膜横截面积,cm2;R为膜的阻抗值,KΩ。
耐碱性测试:将膜浸于60℃、2mol/L的KOH溶液,间隔一段时间取样,测定膜的离子电导率。
机械性能测试:采用Instron3343型万能试验机测试样品膜的拉伸强度和断裂伸长率。测试条件为:室温,拉伸速率为0.2mm/s,测试前将膜在去离子水中浸泡24h。
实施例1
制备支化聚芳醚。
(1)制备1,3,5-三(3,5-二氟苯氧基)苯(TDFBOB)
在磁力搅拌器上安装带有回流装置、分水装置、恒压滴液漏斗和氮气保护装置的三口烧瓶,并将烧瓶置于油浴锅中。往烧瓶中加入10.02g间苯三酚、29.45g碳酸钠、50mL N-甲基吡咯烷酮和150mL甲苯;往恒压滴液漏斗中加入35.68g间三氟苯。通入氮气,升温到150℃,开始滴加间三氟苯,滴完后恒温回流4h。然后取下分水装置,降低氮气流量,升高温度至180℃,反应16h。冷却至室温,将反应液倒入500mL去离子水中,产物沉淀析出,用去离子水冲洗后,干燥并在丙酮中重结晶获得1,3,5-三(3,5-二氟苯氧基)苯(TDFBOB),产率为79.2%。
所得1,3,5-三(3,5-二氟苯氧基)苯具有如下分子结构:
Figure BDA0003024645950000061
(2)制备支化聚芳醚(bPAE-Br)
在磁力搅拌器上安装带有回流装置、分水装置和氮气保护装置的三口烧瓶,并将烧瓶置于油浴锅中。依次往烧瓶中加入1,3,5-三(3,5-二氟苯氧基)苯(TDFBOB)、4,4'-二氟二苯砜、联苯二酚、碳酸钠、50mL N-甲基吡咯烷酮,并加入N,N-二甲基乙酰胺和甲苯的混合溶剂(V/V=2/1),充分搅拌溶解后,通入氮气并升温至120℃进行缩合恒温回流12h后加入4-氟苄溴进行封端,继续保温反应12h结束反应。反应液冷却至室温后倒入甲醇中析出絮状聚合物,洗涤3次,真空干燥处理后得到产物,产率88.5%。
各反应物投料质量比例列于表1。
表1
Figure BDA0003024645950000071
实施例2
原子转移自由基聚合制备PAE-P(AAM-co-DMAEMA)。
在装有冷凝装置和氮气保护装置的反应瓶中加入bPAE-Br、甲基丙烯酸二甲氨基乙酯(DMAEMA)、丙烯酰胺(AAM)、溴化亚铜(CuBr)、五甲基二乙烯三胺(PMDETA)和甲苯,开启氮气保护,加热至70℃进行搅拌溶解;溶解充分后升温至100℃反应6h,加入四氢呋喃(THF)终止反应,混合物过中性氧化铅柱除催化剂,然后加入去离子水和甲醇的混合溶剂(V/V=3:1)萃取3遍后旋蒸除去溶剂得到PAE-P(AAM-co-DMAEMA),各反应物投料质量比例列于表2。
表2
Figure BDA0003024645950000072
实施例3
季铵化反应制备阴离子交换膜。
将PAE-P(AAM-co-DMAEMA)、1,4-二溴丁烷溶于N,N-二甲基甲酰胺中并放入装有恒压滴液漏斗和回流装置的反应瓶中,升温至80℃h避光反应12h后,开始滴加碘甲烷的乙醇溶液,继续保温回流36h结束反应,反应溶液用孔径为0.45μm的PTFE滤头过滤后浇注在玻璃板上,置于60℃真空干燥箱干燥24h,最后将所得膜浸泡于1mol/L的NaOH溶液中进行离子交换24h后,保存于去离子水中,得到双阳离子梳型聚芳醚离子交换膜。
各反应物投料质量比例列于表3和样品膜的测试结果列于表4。
表3
Figure BDA0003024645950000081
由表4测试结果可知,对比样品1-1-1和2-1-1,随着聚芳醚核的分子量越大,膜的机械性能越好,含水量与溶胀率之比越高;x-x-2比x-x-1有更高的交联度,对比三组x-x-1和x-x-2的数据可知,在IEC相近的情况下,当交联度越高,膜的机械性能、尺寸稳定性和离子电导率更优。另外,对比2-2-2和2-1-2,两者具有相同分子结构的聚芳醚核,但2-2-2样品膜中丙烯酰胺的含量较2-1-2高,因而该膜的交联密度较低,但出现了机械强度与膜2-1-2相近的情况,是由于丙烯酰胺单元形成了较多的氢键结构,对膜起到增强的作用。对样品膜进行耐碱性测试,结果显示膜2-1-2浸于60℃、2mol/L的KOH溶液360h后,电导率仍维持在80%以上。参阅附图2为样品膜的AFM相图,从图中可以看出样品膜具有明显的微相分离,图中暗色区域为亲水区,1-1-2相较于2-2-2和2-1-2暗色区域较小较为分散,而膜2-2-2微相分离最为明显,是由于季铵基团比酰胺的亲水性更强,与上述溶胀实验结果相吻合,因此本发明提供的方法和产品能通过调控分子结构来调控膜的微相结构以获得预期的效果,具有良好的应用前景。
表4
Figure BDA0003024645950000091
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种支化聚芳醚离子交换膜,其特征在于,所述支化聚芳醚离子交换膜具有式(I)结构:
Figure FDA0003024645940000011
式中,x、m、n、r均取值整数。
2.根据权利要求1所述的一种支化聚芳醚离子交换膜,其特征在于,所述m/n=1/1~7/3。
3.根据权利要求1所述的一种支化聚芳醚离子交换膜,其特征在于,所述(m+n)/r=1/4~1/8。
4.根据权利要求1所述的一种支化聚芳醚离子交换膜,其特征在于,所述x=15~30。
5.一种支化聚芳醚离子交换膜的制备方法,其特征在于,包括以下步骤:
(1)制备支化聚芳醚(bPAE-Br)
以Na2CO3为催化剂,甲苯为溶剂,间苯三酚依次与间三氟苯、对苯二酚反应制备内核,继续加入4,4'-二氟二苯砜、联苯二酚进行缩合并以4-氟苄溴封端,得到支化聚芳醚(bPAE-Br),作为第(2)步的大分子引发剂;
(2)原子转移自由基聚合制备PAE-P(AAM-co-DMAEMA)
在溴化亚铜(CuBr)、五甲基二乙烯三胺(PMDETA)催化体系中,以bPAE-Br为大分子引发剂,甲基丙烯酸二甲氨基乙酯(DMAEMA)、丙烯酰胺(AAM)为聚合单体进行原子转移自由基聚合,得到支化聚合物PAE-P(AAM-co-DMAEMA);
(3)PAE-P(AAM-co-DMAEMA)季铵化反应制备阴离子交换膜
以N,N-二甲基甲酰胺为溶剂,PAE-P(AAM-co-DMAEMA)依次与碘甲烷、1,4-二溴丁烷进行季铵化反应制备阴离子交换膜,反应液过滤后浇注在玻璃板内,置于真空干燥箱干燥,最后将所得膜浸泡于NaOH溶液进行离子交换后保存于去离子水中。
CN202110412946.9A 2021-04-16 2021-04-16 一种支化聚芳醚离子交换膜及其制备方法 Withdrawn CN113121764A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110412946.9A CN113121764A (zh) 2021-04-16 2021-04-16 一种支化聚芳醚离子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110412946.9A CN113121764A (zh) 2021-04-16 2021-04-16 一种支化聚芳醚离子交换膜及其制备方法

Publications (1)

Publication Number Publication Date
CN113121764A true CN113121764A (zh) 2021-07-16

Family

ID=76776957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110412946.9A Withdrawn CN113121764A (zh) 2021-04-16 2021-04-16 一种支化聚芳醚离子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113121764A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713206A (zh) * 2022-03-15 2022-07-08 沈阳工业大学 咪唑离子液体功能化星型嵌段聚合物固定相的制备及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114713206A (zh) * 2022-03-15 2022-07-08 沈阳工业大学 咪唑离子液体功能化星型嵌段聚合物固定相的制备及应用
CN114713206B (zh) * 2022-03-15 2023-11-14 沈阳工业大学 咪唑离子液体功能化星型嵌段聚合物固定相的制备及应用

Similar Documents

Publication Publication Date Title
CN110903449B (zh) 一种靛红芳烃共聚物、制备方法及应用
CN110862516B (zh) 一种含Cardo结构靛红芳烃共聚物、制备方法及应用
Yang et al. Hyperbranched poly (arylene ether ketone) anion exchange membranes for fuel cells
Oh et al. Profile of extended chemical stability and mechanical integrity and high hydroxide ion conductivity of poly (ether imide) based membranes for anion exchange membrane fuel cells
Si et al. Alkaline stable imidazolium-based ionomers containing poly (arylene ether sulfone) side chains for alkaline anion exchange membranes
Lai et al. Benzylmethyl-containing poly (arylene ether nitrile) as anion exchange membranes for alkaline fuel cells
Zhang et al. Novel fluoropolymer anion exchange membranes for alkaline direct methanol fuel cells
Wang et al. Stable poly (arylene ether sulfone) s anion exchange membranes containing imidazolium cations on pendant phenyl rings
Tang et al. Long side-chain quaternary ammonium group functionalized polybenzimidazole based anion exchange membranes and their applications
CN113801300B (zh) 一种阴离子交换聚合物、其制备方法及应用
Lin et al. Thermoplastic interpenetrating polymer networks based on polybenzimidazole and poly (1, 2-dimethy-3-allylimidazolium) for anion exchange membranes
Zhang et al. Bis-imidazolium functionalized self-crosslinking block polynorbornene anion exchange membrane
CN114276505B (zh) 含有聚乙二醇柔性亲水侧链的聚亚芳基哌啶共聚物及制备方法、阴离子交换膜及应用
CN108148213B (zh) 氮化碳掺杂型阴离子交换膜的制备方法
Xiao et al. Preparation of anion exchange membrane with branch polyethyleneimine as main skeleton component
CN109390617A (zh) 交联型聚苯并咪唑碱性阴离子交换膜及其制备和应用
CN113583279A (zh) 一种含强刚性结构的阴离子交换膜及制备方法和应用
CN115594807A (zh) 一种基于聚亚芳基哌啶共聚物的穴醚交联型阴离子交换膜制备方法及其应用
Liu et al. Preparation and characterization of high conductivity comb polymer anion exchange membranes
Sinirlioglu et al. Investigation of perfluorinated proton exchange membranes prepared via a facile strategy of chemically combining poly (vinylphosphonic acid) with PVDF by means of poly (glycidyl methacrylate) grafts
Liu et al. Preparation and investigation of 1-(3-aminopropyl) imidazole functionalized polyvinyl chloride/poly (ether ketone cardo) membranes for HT-PEMFCs
CN108659243A (zh) 一种支化型聚醚醚酮阴离子交换膜及其制备方法
Song et al. Imidazolium-functionalized anion exchange polymer containing fluorine group for fuel cell application
CN105566884A (zh) 一种包含占吨结构的阴离子交换膜及其制备方法与应用
CN113121764A (zh) 一种支化聚芳醚离子交换膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20210716

WW01 Invention patent application withdrawn after publication