CN115149028A - 燃料电池系统的运转方法 - Google Patents

燃料电池系统的运转方法 Download PDF

Info

Publication number
CN115149028A
CN115149028A CN202210159255.7A CN202210159255A CN115149028A CN 115149028 A CN115149028 A CN 115149028A CN 202210159255 A CN202210159255 A CN 202210159255A CN 115149028 A CN115149028 A CN 115149028A
Authority
CN
China
Prior art keywords
refrigerant
passage
fuel cell
temperature
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210159255.7A
Other languages
English (en)
Inventor
山野尚纪
田村卓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of CN115149028A publication Critical patent/CN115149028A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供能够在具备多个燃料电池堆的燃料电池系统中抑制多个燃料电池堆的温度的偏差的燃料电池系统的运转方法。一种燃料电池系统的运转方法,其中,所述燃料电池系统具有多个燃料电池堆,且具备第一冷媒通路、第二冷媒通路、第一温度取得部、第二温度取得部、第一冷媒循环路、第一冷媒压送部、第一热交换器以及第一流量调整阀,在多个燃料电池堆停止后,驱动第一冷媒压送部,直到规定的条件成立为止,并且第一流量调整阀基于由第一温度取得部以及第二温度取得部取得的分别在第一冷媒通路以及第二冷媒通路流通的冷媒的温度,来调整向第一冷媒通路流通的冷媒的流量和向第二冷媒通路流通的冷媒的流量。

Description

燃料电池系统的运转方法
技术领域
本发明涉及燃料电池系统的运转方法。
背景技术
以往,已知有具备多个燃料电池堆且各个燃料电池堆的使用方法不同的燃料电池系统(例如,参照国际公开第2014/174982)。
发明内容
当各个燃料电池堆的使用方法不同时,各个燃料电池堆的温度(发热量)也不同。当在不同的燃料电池堆间温度产生差异时,劣化的程度也产生差异。当多个燃料电池堆的劣化的程度不同时,各个燃料电池堆的维护的时期、耐久性也产生差异,因此在管理上耗费工夫。
本发明的方案是考虑这样的情况而完成的,目的之一在于提供能够在具备多个燃料电池堆的燃料电池系统中抑制多个燃料电池堆的温度的偏差的燃料电池系统的运转方法。
为了解决上述课题并达成上述目的,本发明采用了以下的方案。
(1)本发明的一方案的燃料电池系统的运转方法中,所述燃料电池系统具有多个燃料电池堆,且具备:第一冷媒通路,其使冷媒向所述多个燃料电池堆中的第一燃料电池堆流通;第二冷媒通路,其使冷媒向所述多个燃料电池堆中的第二燃料电池堆流通;温度取得部,其在所述第一燃料电池堆以及所述第二燃料电池堆的下游侧的所述第一冷媒通路以及所述第二冷媒通路分别取得所述冷媒的温度;第一冷媒循环路,其使在所述第一冷媒通路以及所述第二冷媒通路流过的所述冷媒向所述第一冷媒通路以及所述第二冷媒通路的上游侧流通;第一冷媒压送部,其设置于所述第一冷媒循环路;第一热交换器,其设置于所述第一冷媒循环路;以及第一流量调整阀,其针对使所述第一冷媒通路和所述第二冷媒通路从所述第一冷媒循环路分支的分支部调整向所述第一冷媒通路流通的所述冷媒的流量和向所述第二冷媒通路流通的所述冷媒的流量,所述第一冷媒通路与所述第二冷媒通路并联设置,在所述多个燃料电池堆停止之后,驱动所述第一冷媒压送部,直到规定的条件成立为止,并且所述第一流量调整阀基于由所述温度取得部取得的分别在所述第一冷媒通路以及所述第二冷媒通路流通的所述冷媒的温度,来调整向所述第一冷媒通路流通的所述冷媒的流量和向所述第二冷媒通路流通的所述冷媒的流量。
(2)在上述(1)的方案的基础上,也可以是,所述规定的条件是所述第一冷媒通路的所述冷媒的温度与所述第二冷媒通路的所述冷媒的温度的温度差为规定以下以及所述第一冷媒通路的所述冷媒的温度与所述第二冷媒通路的所述冷媒的温度中的至少一方为第一温度以下。
(3)在上述(1)或(2)的方案的基础上,也可以是,所述燃料电池系统具备:集合部,其在比所述温度取得部靠下游侧的位置使所述第一冷媒通路与所述第二冷媒通路集合;第二冷媒循环路,其使用第二流量调整阀使所述冷媒从所述集合部或比所述集合部靠下游侧的所述第一冷媒循环路选择性地分支,并使所述冷媒向所述分支部的上游侧的所述第一冷媒循环路返回;第二冷媒压送部,其设置于所述第二冷媒循环路;以及第二热交换器,其设置于所述第二冷媒循环路,在所述规定的条件成立后,停止所述第一冷媒压送部,并且驱动所述第二冷媒压送部而使所述冷媒向所述第二冷媒循环路流通。
(4)在上述(3)的方案的基础上,也可以是,所述燃料电池系统具备取得所述第二冷媒循环路的所述冷媒的温度的冷媒循环温度取得部,在从由所述冷媒循环温度取得部取得的所述第二冷媒循环路的所述冷媒的温度、所述第一冷媒通路的所述冷媒的温度以及所述第二冷媒通路的所述冷媒的温度中选择的至少一个成为第二温度以下的情况下,停止所述第二冷媒压送部。
根据上述(1),在所述多个燃料电池堆停止之后,驱动所述第一冷媒压送部,直到规定的条件成立为止,并且所述第一流量调整阀基于由所述温度取得部取得的分别在所述第一冷媒通路以及所述第二冷媒通路流通的所述冷媒的温度,来调整向所述第一冷媒通路流通的所述冷媒的流量和向所述第二冷媒通路流通的所述冷媒的流量。由此,冷媒在包括多个燃料电池堆的闭回路内循环,能够减小多个燃料电池堆的温度的偏差。
在上述(2)的情况下,所述规定的条件是所述第一冷媒通路的所述冷媒的温度与所述第二冷媒通路的所述冷媒的温度的温度差为规定以下以及所述第一冷媒通路的所述冷媒的温度与所述第二冷媒通路的所述冷媒的温度中的至少一方为第一温度以下。由此,能够减小多个燃料电池堆的温度的偏差。
在上述(3)的情况下,在所述规定的条件成立后,停止所述第一冷媒压送部,并且驱动所述第二冷媒压送部而使所述冷媒向所述第二冷媒循环路流通。由此,能够减小燃料电池系统整体的温度的偏差。
在上述(4)的情况下,在从由所述冷媒循环温度取得部取得的所述第二冷媒循环路的所述冷媒的温度、所述第一冷媒通路的所述冷媒的温度以及所述第二冷媒通路的所述冷媒的温度中选择的至少一个成为第二温度以下的情况下,停止所述第二冷媒压送部。由此,能够减小燃料电池系统整体的温度的偏差。由此,能够在停止时抑制燃料电池系统整体的温度的偏差,因此能够抑制停止中的第一燃料电池堆的离子的溶出量与第二燃料电池堆的离子的溶出量的偏差。因此,能够防止因离子溶出量的不同引起的各燃料电池堆的劣化程度的偏差。
附图说明
图1是示出本发明的实施方式中的燃料电池系统的示意图。
图2是示出本发明的实施方式中的燃料电池系统的运转方法的系统流程的一例。
图3是示出本发明的实施方式中的燃料电池系统的示意图。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。
图1是示出实施方式中的燃料电池系统10的示意图。燃料电池系统10例如能够搭载于车辆。车辆除了具备燃料电池系统10以外,例如也可以具备蓄电装置、电机、散热器、冷媒箱等装置。车辆也可以具备燃料电池系统10以及控制其他装置的控制装置100。车辆的控制装置100也可以与燃料电池系统10的控制部(控制装置(FC控制装置))30相互收发信号。
燃料电池系统10具备第一燃料电池(FC)堆11、第二燃料电池(FC)堆12、第一冷媒通路13、第二冷媒通路14、第一温度取得部15、第二温度取得部16、第一冷媒循环路17、第一冷媒压送部18、第一热交换器19、分支部20、第一流量调整阀21以及作为控制部的一例的FC控制装置30。FC控制装置30通过信号线而与燃料电池系统10的各构成部件连接。在燃料电池系统10中,形成包括第一冷媒通路13、第二冷媒通路14、第一温度取得部15、第二温度取得部16、第一冷媒循环路17、第一冷媒压送部18、第一热交换器19、分支部20以及第一流量调整阀21的冷却系回路。燃料电池系统10也可以具备集合部22、第二流量调整阀23、第二冷媒循环路24、第二冷媒压送部25、第二热交换器26以及IPU27。
第一燃料电池堆11以及第二燃料电池堆12例如是固体高分子型燃料电池。固体高分子型燃料电池例如具备层叠的多个燃料电池单体、以及将多个燃料电池单体的层叠体夹入的一对端板。燃料电池单体具备电解质电极构造体、以及将电解质电极构造体夹入的一对分隔件。电解质电极构造体具备固体高分子电解质膜、以及将固体高分子电解质膜夹入的燃料极及氧极。固体高分子电解质膜具备阳离子交换膜等。燃料极(阳极)具备阳极催化剂以及气体扩散层等。氧极(阴极)具备阴极催化剂以及气体扩散层等。在第一燃料电池堆11以及第二燃料电池堆12,通过从燃料箱向阳极供给的燃料气体与从气泵向阴极供给的包含氧的空气等氧化剂气体之间的催化剂反应而发电。向燃料电池堆供给而未被使用的剩余的气体成分等通过规定的流路而被排出。第一燃料电池堆11与第二燃料电池堆12并联设置。燃料电池系统10例如在搭载于车辆的情况下,第二燃料电池堆12的输出通过油门操作来调节。
第一冷媒通路13与第一燃料电池堆11连接,并使冷媒向第一燃料电池堆11流通。第二冷媒通路14与第二燃料电池堆12连接,并使冷媒向第二燃料电池堆12流通。第一冷媒通路13与第二冷媒通路14并联设置。
第一温度取得部15以及第二温度取得部16是温度计等温度测定器。第一温度取得部15设置于第一燃料电池堆11的下游侧的第一冷媒通路13,且在其位置取得冷媒的温度。第二温度取得部16设置于第二燃料电池堆12的下游侧的第二冷媒通路14,且在其位置取得冷媒的温度。
第一冷媒循环路17与第一冷媒通路13以及第二冷媒通路14连接,且使在第一冷媒通路13以及第二冷媒通路14中流通的冷媒向第一冷媒通路13以及第二冷媒通路14的上游侧流通。
第一冷媒压送部18设置于第一冷媒循环路17。
第一热交换器19设置于第一冷媒循环路。
分支部20使第一冷媒通路13和第二冷媒通路14从第一冷媒循环路17分支。
第一流量调整阀21设置于分支部20与第一冷媒通路13以及第二冷媒通路14之间,且调整向第一冷媒通路13流通的冷媒的流量和向第二冷媒通路14流通的冷媒的流量。
集合部22设置于比第一温度取得部15以及第二温度取得部16靠下游侧的位置,且使第一冷媒通路13与第二冷媒通路14集合。
第二流量调整阀23设置于比集合部22靠下游侧的第一冷媒循环路17。第二流量调整阀23使冷媒从第一冷媒循环路17选择性地分支。
第二冷媒循环路24使冷媒返回分支部20的上游侧的第一冷媒循环路17。
第二冷媒压送部25设置于第二冷媒循环路24,且使冷媒向第二冷媒循环路24流通。
第二热交换器26例如是散热器。第二热交换器26设置于第二冷媒循环路24,且与在第二冷媒循环路24流通的冷媒进行热交换。
IPU(Intelligent Power Unit)27是电源回路控制装置的一种。IPU27设置于第二冷媒循环路24。
对燃料电池系统10的运转方法进行说明。
在燃料电池系统10中,在第一燃料电池堆11和第二燃料电池堆12停止之后,驱动第一冷媒压送部18,直到规定的条件成立为止,并且第一流量调整阀21基于由第一温度取得部15取得的分别在第一冷媒通路13以及第二冷媒通路14流通的冷媒的温度,来调整向第一冷媒通路13流通的冷媒的流量和向第二冷媒通路14流通的冷媒的流量。所述规定的条件是第一冷媒通路13的冷媒的温度与第二冷媒通路14的冷媒的温度的温度差为规定以下以及第一冷媒通路13的冷媒的温度与第二冷媒通路14的冷媒的温度中的至少一方为第一温度以下。进而,在所述规定的条件成立后,停止第一冷媒压送部18,并且驱动第二冷媒压送部25而使冷媒向第二冷媒循环路24流通。
说明燃料电池系统10的运转方法的具体例。
图2是示出燃料电池系统10的运转方法的系统流程的一例。
在T0~T1,第一燃料电池堆11以及第二燃料电池堆12进行发电。第一燃料电池堆11的发电量比第二燃料电池堆12的发电量多。因此,第一燃料电池堆11的温度比第二燃料电池堆12的温度高。第一流量调整阀21打开着,第二流量调整阀23关闭着。第一冷媒压送部18起动着,第二冷媒压送部25停止着。第二流量调整阀23关闭着,第二冷媒压送部25停止着,因此冷媒在包括第一燃料电池堆11、第二燃料电池堆12以及第一热交换器19的闭回路内循环。即,在由集合部22集合了的第一冷媒通路13和第二冷媒通路14流通的冷媒经由第一冷媒循环路17而向第一冷媒通路13以及第二冷媒通路14的上游侧返回。由此,能够减小第一燃料电池堆11与第二燃料电池堆12的温度的偏差。
在T2,在所述规定的条件成立后,停止第一冷媒压送部18,并且驱动第二冷媒压送部25,打开第二流量调整阀23,而使冷媒向第二冷媒循环路24流通。在第二冷媒循环路24流通的冷媒在第二热交换器26进行热交换。由此,降低燃料电池系统10整体的温度。在T2~T3,第一燃料电池堆11的温度的变化率(减小率)与第二燃料电池堆12的温度的变化率(减小率)大致同等。即,能够减小燃料电池系统10整体的温度的偏差。
如上所述,实施方式的燃料电池系统的运转方法在第一燃料电池堆11和第二燃料电池堆12停止之后,驱动第一冷媒压送部18,直到规定的条件成立为止,并且第一流量调整阀21基于由第一温度取得部15以及第二温度取得部16取得的分别在第一冷媒通路13以及第二冷媒通路14流通的冷媒的温度,来调整向第一冷媒通路13流通的冷媒的流量和向第二冷媒通路14流通的冷媒的流量。由此,冷媒在包括第一燃料电池堆11和第二燃料电池堆12的闭回路内循环,能够减小第一燃料电池堆11与第二燃料电池堆12的温度的偏差。所述规定的条件是第一冷媒通路13的冷媒的温度与第二冷媒通路14的冷媒的温度的温度差为规定以下以及第一冷媒通路13的冷媒的温度与第二冷媒通路14的冷媒的温度中的至少一方为第一温度以下。由此,能够减小第一燃料电池堆11与第二燃料电池堆12的温度的偏差。在所述规定的条件成立后,停止第一冷媒压送部18,并且驱动第二冷媒压送部25而使冷媒向第二冷媒循环路24流通。由此,能够减小燃料电池系统10整体的温度的偏差。
(其他例子)
图3是示出实施方式中的燃料电池系统200的示意图。
在燃料电池系统200中,对于与所述燃料电池系统10中的构成要素相同的部分,标注相同的附图标记,并省略其说明,仅对不同的点进行说明。
燃料电池系统200也可以除了燃料电池系统10的结构以外,还具备冷媒循环温度取得部201。
冷媒循环温度取得部201设置于第二冷媒循环路24,且取得在第二冷媒循环路24流通的冷媒的温度。
对燃料电池系统200的运转方法进行说明。
在燃料电池系统200中,在从由冷媒循环温度取得部201取得的第二冷媒循环路24的冷媒的温度、第一冷媒通路13的冷媒的温度以及第二冷媒通路14的冷媒的温度中选择的至少一个成为第二温度以下的情况下,停止第二冷媒压送部25。由此,能够减小燃料电池系统200整体的温度的偏差,并安全地停止燃料电池系统200。由此,能够在停止时抑制燃料电池系统200整体的温度的偏差,因此能够抑制停止中的第一燃料电池堆11的离子的溶出量与第二燃料电池堆12的离子的溶出量的偏差。因此,能够防止因离子溶出量的不同引起的各燃料电池堆的劣化程度的偏差。
在上述的实施方式中,说明了燃料电池系统搭载于将在燃料电池中发出的电力用作行驶用的电力或车载设备的动作用的电力的燃料电池车辆的例子,但该系统也可以搭载于二轮、三轮、四轮等机动车、其他移动体(例如,船舶、飞行体、机器人),还可以搭载于固定设置型的燃料电池系统。
本发明的实施方式作为例子而提示出,并不意在限定发明的范围。这些实施方式能够以其他各种各样的形态实施,在不脱离发明的主旨的范围内,能够进行各种省略、置换、变更。这些实施方式、其变形包含于发明的范围、主旨,同样也包含于技术方案所记载的发明及其均等的范围。

Claims (4)

1.一种燃料电池系统的运转方法,其中,
所述燃料电池系统具有多个燃料电池堆,且具备:
第一冷媒通路,其使冷媒向所述多个燃料电池堆中的第一燃料电池堆流通;
第二冷媒通路,其使冷媒向所述多个燃料电池堆中的第二燃料电池堆流通;
温度取得部,其在所述第一燃料电池堆以及所述第二燃料电池堆的下游侧的所述第一冷媒通路以及所述第二冷媒通路分别取得所述冷媒的温度;
第一冷媒循环路,其使在所述第一冷媒通路以及所述第二冷媒通路流过的所述冷媒向所述第一冷媒通路以及所述第二冷媒通路的上游侧流通;
第一冷媒压送部,其设置于所述第一冷媒循环路;
第一热交换器,其设置于所述第一冷媒循环路;以及
第一流量调整阀,其针对使所述第一冷媒通路和所述第二冷媒通路从所述第一冷媒循环路分支的分支部调整向所述第一冷媒通路流通的所述冷媒的流量和向所述第二冷媒通路流通的所述冷媒的流量,
所述第一冷媒通路与所述第二冷媒通路并联设置,
在所述多个燃料电池堆停止之后,驱动所述第一冷媒压送部,直到规定的条件成立为止,并且
所述第一流量调整阀基于由所述温度取得部取得的分别在所述第一冷媒通路以及所述第二冷媒通路流通的所述冷媒的温度,来调整向所述第一冷媒通路流通的所述冷媒的流量和向所述第二冷媒通路流通的所述冷媒的流量。
2.根据权利要求1所述的燃料电池系统的运转方法,其中,
所述规定的条件是所述第一冷媒通路的所述冷媒的温度与所述第二冷媒通路的所述冷媒的温度的温度差为规定以下以及所述第一冷媒通路的所述冷媒的温度与所述第二冷媒通路的所述冷媒的温度中的至少一方为第一温度以下。
3.根据权利要求1或2所述的燃料电池系统的运转方法,其中,
所述燃料电池系统具备:
集合部,其在比所述温度取得部靠下游侧的位置使所述第一冷媒通路与所述第二冷媒通路集合;
第二冷媒循环路,其使用第二流量调整阀使所述冷媒从所述集合部或比所述集合部靠下游侧的所述第一冷媒循环路选择性地分支,并使所述冷媒向所述分支部的上游侧的所述第一冷媒循环路返回;
第二冷媒压送部,其设置于所述第二冷媒循环路;以及
第二热交换器,其设置于所述第二冷媒循环路,
在所述规定的条件成立后,停止所述第一冷媒压送部,并且驱动所述第二冷媒压送部而使所述冷媒向所述第二冷媒循环路流通。
4.根据权利要求3所述的燃料电池系统的运转方法,其中,
所述燃料电池系统具备取得所述第二冷媒循环路的所述冷媒的温度的冷媒循环温度取得部,
在从由所述冷媒循环温度取得部取得的所述第二冷媒循环路的所述冷媒的温度、所述第一冷媒通路的所述冷媒的温度以及所述第二冷媒通路的所述冷媒的温度中选择的至少一个成为第二温度以下的情况下,停止所述第二冷媒压送部。
CN202210159255.7A 2021-03-31 2022-02-21 燃料电池系统的运转方法 Pending CN115149028A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061777 2021-03-31
JP2021061777A JP2022157510A (ja) 2021-03-31 2021-03-31 燃料電池システムの運転方法

Publications (1)

Publication Number Publication Date
CN115149028A true CN115149028A (zh) 2022-10-04

Family

ID=83405638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210159255.7A Pending CN115149028A (zh) 2021-03-31 2022-02-21 燃料电池系统的运转方法

Country Status (3)

Country Link
US (1) US11670785B2 (zh)
JP (1) JP2022157510A (zh)
CN (1) CN115149028A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024125804A1 (en) * 2022-12-16 2024-06-20 Volvo Truck Corporation A system for a vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494735B2 (en) * 2002-08-29 2009-02-24 General Motors Corporation Fuel cell stack design and method of operation
JP5074669B2 (ja) * 2005-04-22 2012-11-14 トヨタ自動車株式会社 燃料電池システム
JP4872333B2 (ja) * 2005-12-09 2012-02-08 株式会社デンソー 燃料電池システム
JP2008071539A (ja) * 2006-09-12 2008-03-27 Toyota Motor Corp 燃料電池システム及び燃料電池スタックの流体配分方法
JP2011008916A (ja) * 2009-06-23 2011-01-13 Toyota Motor Corp 燃料電池冷却システム
JP6069718B2 (ja) 2013-04-26 2017-02-01 日産自動車株式会社 イオン交換器及び冷却装置並びに冷却装置の制御方法
JP7006506B2 (ja) * 2018-05-24 2022-02-10 トヨタ自動車株式会社 燃料電池システム
FR3101483B1 (fr) * 2019-09-27 2021-10-29 Airbus Système de piles à combustible pour un aéronef
KR102387889B1 (ko) * 2020-06-16 2022-04-18 현대모비스 주식회사 차량용 연료전지 시스템
KR102550728B1 (ko) * 2021-07-01 2023-07-04 현대모비스 주식회사 연료전지 시스템에서 결함에 대처하기 위한 방법
KR102600177B1 (ko) * 2021-07-07 2023-11-09 현대모비스 주식회사 연료전지 시스템에서 결함에 대처하기 위한 방법

Also Published As

Publication number Publication date
US11670785B2 (en) 2023-06-06
US20220320550A1 (en) 2022-10-06
JP2022157510A (ja) 2022-10-14

Similar Documents

Publication Publication Date Title
CN106941183B (zh) 燃料电池系统和燃料电池车辆
CN100521339C (zh) 燃料电池组件及其操作方法和用于燃料电池组件的流场板
US8263279B2 (en) Apparatus for optimized cooling of a drive unit and a fuel cell in a fuel cell vehicle
US6663993B2 (en) Cooling device for a fuel cell
CN112635793B (zh) 一种双堆双循环的燃料电池系统
CN107394232B (zh) 燃料电池的动力系统与交通工具
US9397362B2 (en) Modular fuel cell power system
US9653744B2 (en) Method of starting fuel cell system for vehicle and fuel cell system
US20040001985A1 (en) Fuel cell cooling system
CN110649283A (zh) 燃料电池系统及其低温启动方法
CN104160538A (zh) 燃料电池系统及其控制方法
EP3926722A1 (en) Fuel cell system for vehicle
US11296335B2 (en) Fuel cell system and method of operating same
CN115149028A (zh) 燃料电池系统的运转方法
CN102201584B (zh) 用于阀控制的冷却剂旁通路径的诊断原理
US7465508B2 (en) Fuel cell stack temperature control system and method
CN107394235B (zh) 燃料电池辅助系统
US11811113B2 (en) Operating method of fuel cell system
JP2002110205A (ja) 燃料電池用冷却装置
US11637303B2 (en) Fuel cell system
CN215496807U (zh) 热管理系统
US9029031B2 (en) Variable air utilization increases fuel cell membrane durability
EP4068437A1 (en) Coolant system for a fuel cell system
CN220041926U (zh) 燃料电池热管理系统
US20230101923A1 (en) Systems and methods for liquid heating balance of plant components of a fuel cell module

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination