CN115128140A - 一种针状同轴多电极装置及其构建方法 - Google Patents

一种针状同轴多电极装置及其构建方法 Download PDF

Info

Publication number
CN115128140A
CN115128140A CN202210671152.9A CN202210671152A CN115128140A CN 115128140 A CN115128140 A CN 115128140A CN 202210671152 A CN202210671152 A CN 202210671152A CN 115128140 A CN115128140 A CN 115128140A
Authority
CN
China
Prior art keywords
needle
insulating layer
shaped conductor
layer
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210671152.9A
Other languages
English (en)
Inventor
戴志晖
王雷
王兆寅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN202210671152.9A priority Critical patent/CN115128140A/zh
Publication of CN115128140A publication Critical patent/CN115128140A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation

Abstract

本发明公开了一种针状同轴多电极装置及其构建方法,包括针状导电体,所述针状导电体经过多次旋转溅射和化学处理,其表面依次镀有第一绝缘层、铂电极层、第二绝缘层、银/氯化银电极层;所述第一绝缘层、第二绝缘层采用二氧化硅或三氧化二铝绝缘层。本发明有效解决多根电极对生物体组织的损伤和生物体不同位置生物化学环境不同带来的干扰问题,且低成本、易于操作、高度集成化。

Description

一种针状同轴多电极装置及其构建方法
技术领域
本发明涉及电化学测试领域,具体涉及一种针状同轴多电极装置及其构建方法。
背景技术
作为电化学测试最常用的测试体系,三电极体系通常包括工作电极,对电极和参比电极。所谓的三电极体系,是为了排除电极电势因极化电流而产生的较大误差而设计的;它在普通的两电极体系(工作电极与对电极)的基础上引入了用以稳定工作电极的参比电极。
尽管三电极测试体系在溶液电化学中被广泛应用,但是对于生物活体组织或病变组织的小范围分析仍然面临挑战。首先,多根电极分析势必需要对活体组织导入三根不同电极,对组织伤害较大;与此同时,三根电极插入组织的位置对分析结果影响较大,难以保证三根电极在完全一样的生物体环境中。因此,开发一种低成本、易于操作、高度集成化的单根三电极体系是非常迫切的。
发明内容
发明目的:本发明的第一目的在于提供一种针状同轴多电极装置,该装置低成本、易于操作、高度集成化,有效解决多根电极对生物体组织的损伤和生物体不同位置生物化学环境不同带来的干扰问题;本发明的第二目的在于提供一种针状同轴多电极装置的构建方法,该方法工艺简单、可重复性强,适用于生物组织的微创、原位电化学分析。
技术方案:本发明的针状同轴多电极装置,包括针状导电体,所述针状导电体经过多次旋转溅射和化学处理,其表面依次镀有第一绝缘层,铂电极层,第二绝缘层,银/氯化银电极层;所述第一绝缘层、第二绝缘层采用二氧化硅或三氧化二铝绝缘层。
所述针状导电体采用不锈钢针、银针、金针、激光拉制的石英毛细管中的一种。
所述第二绝缘层和银/氯化银电极层之间设置金电极层和第三绝缘层;所述第三绝缘层采用二氧化硅或三氧化二铝绝缘层。此时可以形成铂-金-银/氯化银三电极体系或不锈钢-金-银--银/氯化银三电极体系或更多的组合方式,可以适应更多不同的电化学检测手段和方法。
所述绝缘层、铂电极层、绝缘层、银/氯化银电极层的厚度为50-300nm,层厚尤其是绝缘层厚度低于50nm时,容易在外加测试电压的方法下被击穿,导致短路。层厚超过300nm时,则整体电极过粗,容易对生物组织产生过大伤害。
所述针状导电体的长度为2~6cm,长度低于2cm时,引出电极设计空间较小,工艺精度要求太高,长度超过6cm时则容易超过溅射仪器均匀溅射的范围,容易导致中间厚,两端薄的结果。
本发明还包括一种针状同轴多电极装置的构建方法,包括以下步骤:
S1、在磁控溅射仪中安装水平旋转的电机;
S2:将针状导电体两端用保护套罩住,水平安装至电机上;
S3:开启电机使针状导电体在水平方向连续旋转,抽真空,溅射具有厚度的硅或金属铝,形成硅层或铝层;对溅射完成的针状导电体进行加热氧化处理,形成二氧化硅或三氧化二铝绝缘层;
S4:将步骤S3中镀上绝缘层的针状导电体两端用保护套罩住,两端各向内移动,水平安装到至电机上;开启电机使针状导电体在水平方向连续旋转,抽真空,溅射具有厚度的铂,形成铂电极层;
S5:将步骤S4中镀上铂电极层的针状导电体两端用保护套罩住,两端各向内移动,水平安装到电机上;开启电机使针状导电体在水平方向连续旋转,抽真空,溅射具有厚度的硅或金属铝,形成硅层或铝层,对溅射完成的电极加热氧化处理,形成二氧化硅或三氧化二铝绝缘层;
S6:将步骤S5中镀上绝缘层的针状导电体两端用保护套罩住,两端各向内移动,水平安装到电机上;开启电机使针状导电体在水平方向连续旋转,抽真空,溅射具有厚度的金属银,将针状导电体在次氯酸钠溶液中静置用超纯水清洗,烘干得到银/氯化银电极层。
有益效果:本发明的技术方案与现有技术相比,其有益效果在于:(1)该装置低成本、易于操作、高度集成化,有效解决多根电极对生物体组织的损伤和生物体不同位置生物化学环境不同带来的干扰问题;(2)该方法利用溅射仪,通过连续旋转,在针状导电体表面均匀地溅射镀膜,工艺简单、可程序化、可重复性强,适用于各种材质的针表面镀多层膜。
附图说明
图1为本发明所述针状同轴多电极装置的结构示意图;
图2为本发明所述同轴多电极装置的剖视图;
图3为本发明中安装了旋转马达的磁控溅射仪示意图;
图4为将针状导电体安装于磁控溅射仪时的安装示意图;
图5为本发明实施例5中所述针状同轴多电极装置的结构示意图;
图6为截面扫描电子显微镜图像,单层厚度测量值为99.82nm。
具体实施方式
下面结合具体实施方式和说明书附图对本发明的技术方案进行详细描述。
如图1至4所示,本发明的针状同轴多电极装置包括针状导电体1,所述针状导电体1表面依次镀有第一绝缘层2,铂电极层3,第二绝缘层4、银/氯化银电极层5;针状导电体1采用不锈钢针、银针、金针、激光拉制的石英毛细管中的一种。针状导电体1的长度为2~6cm,本实施中,直径为8mm,长度为5cm。如图6所示,第一绝缘层2、铂电极层3、第二绝缘层4、银/氯化银电极层5的厚度为50-300nm。第一绝缘层2、第二绝缘层4采用二氧化硅或三氧化二铝绝缘层。
使用时,将针状同轴多电极装置插入待分析的生物组织或感兴趣区域,利用导线从尾部连接到电化学工作站即可对生物组织进行电化学分析。
本发明还包括一种针状同轴多电极装置的构建方法,包括以下步骤:
S1:如图3所示,在磁控溅射仪中按照水平旋转的电机;
S2:如图4所示,将针状导电体两端用保护套罩住,水平安装到步骤S1的电机上;
S3:开启电机使针状导电体在水平方向连续旋转,抽真空,溅射100nm厚度的硅或金属铝,形成硅层或铝层,将溅射完成的针状导电体在马弗炉中加热氧化处理,形成二氧化硅或三氧化二铝绝缘层;
S4:将步骤S3中镀上绝缘层的针状导电体两端用保护套罩住,两端各向内移动,水平安装到电机上;开启电机使针状导电体在水平方向连续旋转,抽真空,溅射100nm厚度的铂,形成铂电极层;
S5:将步骤S4中镀上铂电极层的不锈钢针两端用保护套罩住,两端各向内移动,水平安装到电机上;开启电机使钢针在水平方向连续旋转,抽真空,溅射100nm厚度的硅或金属铝,形成硅层或铝层,将溅射完成的电极在马弗炉中加热氧化处理,形成二氧化硅或三氧化二铝绝缘层;
S6:将步骤S5中镀上铂电极层的不锈钢针两端用保护套罩住,两端各向内移动,水平安装到电机上;开启电机使针状导电体在水平方向连续旋转,抽真空,溅射100nm厚度的金属银,将针状导电体在次氯酸钠溶液中静置,然后用超纯水清洗,烘干得到银/氯化银层。
下面结合实施例对以上方案详细介绍。
实施例1不锈钢-铂-银/氯化银同轴三电极的制备。
在不锈钢针两端套上保护套,放入溅射仪旋转溅射厚度为100nm的硅或金属铝,并氧化成二氧化硅或三氧化二铝绝缘层绝缘层,保护套两端向内推进,旋转溅射100nm厚度的铂,保护套两端向内推进,旋转溅射厚度为100nm的硅或金属铝,并氧化成二氧化硅或三氧化二铝绝缘层绝缘层,保护套两端向内推进,旋转溅射厚度为100nm的银,并氯化成银/氯化银层,单层截面厚度测量如图6所示。
实施例2:毛细管基底上金-铂-银/氯化银同轴三电极的制备
在激光拉制备的毛细管两端套上保护套,放入溅射仪旋转溅射厚度为100nm的金,保护套两端向内推进,旋转溅射100nm厚度的硅或金属铝,并氧化成二氧化硅或三氧化二铝绝缘层绝缘层,保护套两端向内推进,旋转溅射厚度为100nm的铂,保护套两端向内推进,旋转溅射厚度为100nm的硅或金属铝,并氧化成二氧化硅或三氧化二铝绝缘层绝缘层,保护套两端向内推进,旋转溅射厚度为100nm的银,并氯化成银/氯化银层。
实施例3:银/氯化银-铂-金同轴三电极的制备
在银针两端套上保护套,放入溅射仪旋转溅射厚度为100nm的硅或金属铝,并氧化成二氧化硅或三氧化二铝绝缘层绝缘层,保护套两端向内推进,旋转溅射厚度为100nm的铂,保护套两端向内推进,旋转溅射厚度为100nm的硅或金属铝,并氧化成二氧化硅或三氧化二铝绝缘层绝缘层,保护套两端向内推进,旋转溅射厚度为100nm的金,最后将暴露的银针针尖氯化成银/氯化银电极。
实施例4:金-铂-银/氯化银同轴三电极的制备
在金针两端套上保护套,放入溅射仪旋转溅射厚度为100nm的硅或金属铝,并氧化成二氧化硅或三氧化二铝绝缘层绝缘层,保护套两端向内推进,旋转溅射厚度为100nm的铂,保护套两端向内推进,旋转溅射厚度为100nm的硅或金属铝,并氧化成二氧化硅或三氧化二铝绝缘层绝缘层,保护套两端向内推进,旋转溅射厚度为100nm的银,并氯化成银/氯化银电极。
实施例5:不锈钢-铂-金-银/氯化银同轴四电极的制备
如图5所示,在不锈钢针两端套上保护套,放入溅射仪旋转溅射厚度为100nm的硅或金属铝,并氧化成二氧化硅或三氧化二铝绝缘层绝缘层,保护套两端向内推进,旋转溅射100nm厚度的铂,保护套两端向内推进,旋转溅射厚度为100nm的硅或金属铝,并氧化成二氧化硅或三氧化二铝绝缘层绝缘层,保护套两端向内推进,旋转溅射厚度为100nm的金,形成金电极层7,保护套两端向内推进,旋转溅射厚度为100nm的硅或金属铝,并氧化成二氧化硅或三氧化二铝绝缘层绝缘层,该绝缘层为第三绝缘层6,保护套两端向内推进,旋转溅射厚度为100nm的银,并氯化成银/氯化银层。

Claims (6)

1.一种针状同轴多电极装置,其特征在于:包括针状导电体(1),所述针状导电体(1)经过多次旋转溅射和化学处理,其表面依次镀有第一绝缘层(2)、铂电极层(3)、第二绝缘层(4)、银/氯化银电极层(5);所述第一绝缘层(2)、第二绝缘层(4)采用二氧化硅或三氧化二铝绝缘层。
2.根据权利要求1所述的针状同轴多电极装置,其特征在于:所述针状导电体(1)采用不锈钢针、银针、金针、激光拉制的石英毛细管中的一种。
3.根据权利要求1所述的针状同轴多电极装置,其特征在于:所述第二绝缘层(4)和银/氯化银电极层(5)之间设置金电极层(7)和第三绝缘层(6);所述第三绝缘层(6)采用二氧化硅或三氧化二铝绝缘层。
4.根据权利要求1所述的针状同轴多电极装置,其特征在于:所述第一绝缘层(2)、铂电极层(3)、第二绝缘层(4)、银/氯化银电极层(5)的厚度为50-300nm。
5.根据权利要求1所述的针状同轴多电极装置,其特征在于:所述针状导电体(1)的长度为2~6cm。
6.一种关于权利要求1所述针状同轴多电极装置的构建方法,其特征在于,包括以下步骤:
S1:在磁控溅射仪中安装水平旋转的电机;
S2:将针状导电体(1)两端用保护套罩住,水平安装至电机上;
S3:开启电机使针状导电体(1)在水平方向连续旋转,抽真空,溅射具有厚度的硅或金属铝,形成硅层或铝层;对溅射完成的针状导电体(1)进行加热氧化处理,形成二氧化硅或三氧化二铝绝缘层;
S4:将步骤S3中镀上绝缘层的针状导电体(1)两端用保护套罩住,两端各向内移动,水平安装到至电机上;开启电机使针状导电体(1)在水平方向连续旋转,抽真空,溅射具有厚度的铂,形成铂电极层(3);
S5:将步骤S4中镀上铂电极层的针状导电体(1)两端用保护套罩住,两端各向内移动,水平安装到电机上;开启电机使针状导电体(1)在水平方向连续旋转,抽真空,溅射具有厚度的硅或金属铝,形成硅层或铝层,对溅射完成的电极加热氧化处理,形成二氧化硅或三氧化二铝绝缘层;
S6:将步骤S5中镀上绝缘层的针状导电体(1)两端用保护套罩住,两端各向内移动,水平安装到电机上;开启电机使针状导电体(1)在水平方向连续旋转,抽真空,溅射具有厚度的金属银,将针状导电体(1)在次氯酸钠溶液中静置用超纯水清洗,烘干得到银/氯化银电极层(5)。
CN202210671152.9A 2022-06-15 2022-06-15 一种针状同轴多电极装置及其构建方法 Pending CN115128140A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210671152.9A CN115128140A (zh) 2022-06-15 2022-06-15 一种针状同轴多电极装置及其构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210671152.9A CN115128140A (zh) 2022-06-15 2022-06-15 一种针状同轴多电极装置及其构建方法

Publications (1)

Publication Number Publication Date
CN115128140A true CN115128140A (zh) 2022-09-30

Family

ID=83378155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210671152.9A Pending CN115128140A (zh) 2022-06-15 2022-06-15 一种针状同轴多电极装置及其构建方法

Country Status (1)

Country Link
CN (1) CN115128140A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380422A (en) * 1991-07-18 1995-01-10 Agency Of Industrial Science And Technology Micro-electrode and method for preparing it
CN1945300A (zh) * 2006-09-30 2007-04-11 深圳清华大学研究院 电化学超微电极组合方法及其超微组合电极和制备工艺
CN101105469A (zh) * 2007-08-03 2008-01-16 厦门大学 一种纳米环-盘电极的制备方法
US20120282644A1 (en) * 2009-04-24 2012-11-08 The Trustees Of The University Of Pennsylvania Multiple-electrode and metal-coated probes
US20130324820A1 (en) * 2010-12-01 2013-12-05 Pinnacle Technology, Inc. Tissue implantable microbiosensor
CN103829938A (zh) * 2012-11-26 2014-06-04 中国科学院电子学研究所 微电极阵列植入式芯片及其制备方法
WO2014128643A1 (fr) * 2013-02-25 2014-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme de stockage et de transport d'energie, notamment pour un dispositif implantable, et son procede de fabrication.
CN110623655A (zh) * 2019-09-24 2019-12-31 中国科学院电子学研究所 模拟失重大鼠的植入式微纳电极阵列芯片及其制备方法
CN211179623U (zh) * 2019-12-17 2020-08-04 华东数字医学工程研究院 植入式生物传感器
CN111591953A (zh) * 2020-05-07 2020-08-28 南京航空航天大学 针状微电极及其制备方法
CN114460147A (zh) * 2022-02-11 2022-05-10 深圳市溢鑫科技研发有限公司 一种直立石墨烯电化学微电极结构

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380422A (en) * 1991-07-18 1995-01-10 Agency Of Industrial Science And Technology Micro-electrode and method for preparing it
CN1945300A (zh) * 2006-09-30 2007-04-11 深圳清华大学研究院 电化学超微电极组合方法及其超微组合电极和制备工艺
CN101105469A (zh) * 2007-08-03 2008-01-16 厦门大学 一种纳米环-盘电极的制备方法
US20120282644A1 (en) * 2009-04-24 2012-11-08 The Trustees Of The University Of Pennsylvania Multiple-electrode and metal-coated probes
US20130324820A1 (en) * 2010-12-01 2013-12-05 Pinnacle Technology, Inc. Tissue implantable microbiosensor
CN103829938A (zh) * 2012-11-26 2014-06-04 中国科学院电子学研究所 微电极阵列植入式芯片及其制备方法
WO2014128643A1 (fr) * 2013-02-25 2014-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme de stockage et de transport d'energie, notamment pour un dispositif implantable, et son procede de fabrication.
CN110623655A (zh) * 2019-09-24 2019-12-31 中国科学院电子学研究所 模拟失重大鼠的植入式微纳电极阵列芯片及其制备方法
CN211179623U (zh) * 2019-12-17 2020-08-04 华东数字医学工程研究院 植入式生物传感器
CN111591953A (zh) * 2020-05-07 2020-08-28 南京航空航天大学 针状微电极及其制备方法
CN114460147A (zh) * 2022-02-11 2022-05-10 深圳市溢鑫科技研发有限公司 一种直立石墨烯电化学微电极结构

Similar Documents

Publication Publication Date Title
JP4283880B2 (ja) 電気化学測定用電極板、およびこの電極板を有する電気化学測定装置、ならびにこの電極板を用いて目的物質を定量する方法
Shahrokhian et al. Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination
EP3992142A1 (en) Silicon nanowire chip and silicon nanowire chip-based mass spectrum detection method
US7857963B2 (en) Electrode plate for electrochemical measurements
Hepel et al. Electrochemical characterization of electrodes with submicrometer dimensions
CN107202823A (zh) 一种喷墨印刷制备微电极阵列传感器的方法及其应用
US10006880B2 (en) Test strips having ceria nanoparticle electrodes
Wu et al. High performance EGFET-based pH sensor utilizing low-cost industrial-grade touch panel film as the gate structure
US20190380635A1 (en) Dual-Sided Biomorphic Polymer-based Microelectrode Array and Fabrication Thereof
Rocha et al. 3D-printing for forensic chemistry: voltammetric determination of cocaine on additively manufactured graphene–polylactic acid electrodes
US20120285837A1 (en) Analytical test strip with an electrode having electrochemically active and inert areas of a predetermined size and distribution
Rehacek et al. Bismuth-coated diamond-like carbon microelectrodes for heavy metals determination
CN115128140A (zh) 一种针状同轴多电极装置及其构建方法
CH632341A5 (de) Messsonde.
CN103492876B (zh) 具有含钽和铌的基层的传感器元件及其制备方法
JP3194090B2 (ja) 電気化学的センサー
JP6404069B2 (ja) 合金ナノ粒子含有カーボン電極、当該電極を含む装置、及び、当該電極の製造方法
WO2018200731A1 (en) Sensor for lead detection
Al-Hardan et al. Calcium ion-selective electrode based on the facile synthesis of CuO over Cu wires
Petiti et al. Optimisation of the setup of LPR and EIS measurements for the onsite, non-invasive study of metallic artefacts
Noureldin et al. Green and cost-effective voltammetric assay for spiramycin based on activated glassy carbon electrode and its applications to urine and milk samples
KR102295057B1 (ko) 전기화학적 혈당센서 및 그 제조방법
Lotfi Choobbari et al. Design and fabrication of a rapid conductometric pH sensor based on metal-oxide technology
US20230176003A1 (en) Arsenic detector and method of use
de Oliveira et al. Cost-effective electrodes for dopamine monitoring based on 3D-printed support combined with composite material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination