CN115110110B - 一种钌-镧系金属复合催化剂及其制备方法 - Google Patents

一种钌-镧系金属复合催化剂及其制备方法 Download PDF

Info

Publication number
CN115110110B
CN115110110B CN202210797710.6A CN202210797710A CN115110110B CN 115110110 B CN115110110 B CN 115110110B CN 202210797710 A CN202210797710 A CN 202210797710A CN 115110110 B CN115110110 B CN 115110110B
Authority
CN
China
Prior art keywords
ruthenium
metal
lanthanide
nitrate
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210797710.6A
Other languages
English (en)
Other versions
CN115110110A (zh
Inventor
王峰
张正平
刘彤彤
陈亚男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202210797710.6A priority Critical patent/CN115110110B/zh
Publication of CN115110110A publication Critical patent/CN115110110A/zh
Application granted granted Critical
Publication of CN115110110B publication Critical patent/CN115110110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/259Oxyhalides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种钌‑镧系金属复合催化剂及其制备方法,以钌和镧系系列金属盐作为前驱体溶于水,再加入水溶性有机物作为燃料,陈化形成凝胶,之后通过点燃凝胶一步制备复合催化剂。所述的催化剂中钌物种以纳米颗粒的形式均匀分布在镧系金属氯氧化物上。本发明所提供的制备方法工艺简单,高效,对于钌与镧系各种金属具有普适性,制备所得到的系列催化剂可广泛应用于碱性介质中的电催化氢析出反应。

Description

一种钌-镧系金属复合催化剂及其制备方法
技术领域
本发明属于能源材料领域,尤其是电化学材料制备技术领域,具体涉及一种钌-镧系金属复合催化剂及其制备方法。
背景技术
随着中国发展进入新时代,中国能源发展也进入新的时代,随着“碳达峰、碳中和”的战略目标被确立以来,风能、太阳能等可再生能源从原来能源电力的消费的增量补充变为能源电力消费总量的主体,氢能作为一种公认的清洁二次能源,可通过电解池在可再生能源供应和消耗之间循环,因此,电解水技术的发展是其中的关键点之一。氢气析出反应(Hydrogen evolution reaction, HER)作为电解水的阴极反应,是一个涉及到三相反应的关键反应。在热力学理想的情况下,理论上反应发生的电位为0 V,但在实际过程中,电极反应的动力学迟缓,以及需要考虑反应过程中活性物质的吸附、转换、脱附等过程,因此需要施加更负的阴极电位才能驱动反应的发生,由此造成额外的能耗。特别针对于碱性介质的HER,反应的第一步涉及到水的解离过程,贵金属铂基催化剂目前仍无法被替代,但由于其有限的性能表现和昂贵的价格被限制大规模的应用,因此,寻找可替代的电催化析氢材料对于电解水制氢技术的发展具有重要意义。钌基催化材料由于具有优异的水解离能力,对于催化第一步涉及到水解离的HER过程具有先天的优势,其优异的水解离能力来源于对氧的强吸附能力,相对的,其对氢的吸附较弱,在实际的反应过程中,尽管能快速进行第一步的水解离过程,但其对氢的弱吸附则限制了其单一组分的性能表现,因此,钌基复合催化材料的被广泛研究,通过加入第二金属组元,来改善氢的吸附,丰富氢中间产物的转移路径,从而实现催化性能的提升。
钌基复合催化材料通常通过负载的方式制备得到,主要是首先制备第二组元金属化合物载体,之后通过向体系中加入钌盐,通过还原的方法实现钌的负载,但是这种方法通过涉及到两步甚至多步的反应流程,为了保证纳米颗粒的分布,还需要添加表面活性剂等添加剂,后续会牵扯这类添加剂的去除,且到得到的钌纳米颗粒基底的结合力较弱,在长期的电催化反应过程当中可能会发生团聚,从而影响最终的应用。
发明内容
本发明的目的在于解决现有技术问题,提供了一种钌-镧系金属复合催化剂及其制备方法,采用溶胶凝胶-自蔓延法一步制备,所得催化剂中,钌以纳米颗粒的形式存在,镧系金属以氯氧化物的形式存在,且整个材料富含介孔,在碱性介质中表现出优异的析氢催化活性和稳定性,前景广阔,可广泛用于涉及析氢反应的电解装置。且本发明的制备方法工艺简单,对于各金属种类具有普适性,有望实现大规模生产。
本发明的技术方案如下:一种钌-镧系金属复合催化剂,所述的钌-镧系金属复合催化剂中,钌以纳米颗粒的形式存在,镧系金属以氯氧化物的形式存在,尺寸为2-15纳米,且富含介孔。
在本发明的优选实施方式中,所述的催化剂中,钌以纳米颗粒的形式均匀分布在镧系金属氯氧化物上。
本发明还保护所述的钌-镧系金属复合催化剂的制备方法,采用溶胶凝胶-自蔓延法一步制备得到。
进一步的,以钌和镧系系列金属盐作为前驱体溶于水,加入水溶性有机物作为燃料,陈化形成凝胶,之后通过点燃凝胶一步制备钌-镧系氯氧化物复合催化剂。
更进一步的,所述的制备方法包括如下步骤:
(1)将一定量的具有水溶性有机物溶于水中,然后再加入一定比例的金属钌盐和镧系金属盐,搅拌至完全溶解后,加入一定量的酸;
(2)将步骤(1)中得到溶液烘干陈化,得到干燥的凝胶中间物质;
(3)将步骤(2)中的凝胶点燃,得到蓬松的钌-镧系金属复合催化剂。
在本发明的优选实施方式中,所述的水溶性有机物为柠檬酸、尿素、甘氨酸的一种或几种。
在本发明的优选实施方式中,水溶性有机物与总金属离子之间的摩尔比为6:1~1:1.
在本发明的优选实施方式中,金属钌盐为钌前驱体盐,选自亚硝酰硝酸钌、三氯化钌、醋酸钌中的一种或几种。
在本发明的优选实施方式中,镧系金属盐为硝酸钇、硝酸镧、硝酸铈、硝酸镝、硝酸铒、硝酸钕、硝酸镨中的一种或几种。
在本发明的优选实施方式中,金属钌盐与镧系金属盐的摩尔比为3:1~1:3。
在本发明的优选实施方式中,总金属离子浓度为0.05~0.5 mol L-1,应保证溶液中的硝酸根浓度与总金属离子的浓度相同。
在本发明的优选实施方式中,所加入的酸为硝酸、高氯酸、盐酸中的一种或几种。
在本发明还保护上述钌-镧系金属复合催化剂在碱性介质中电催化氢气析出反应中的应用。
与现有技术相比,本发明具有如下优点:
(1)本发明的制备工艺简单,对多种金属元素具有普适性,利于催化的组分调控,且制备过程中不需要加入表面活性剂等添加剂,无需繁琐的清洗过程,不涉及高温热处理过程。
(2)本发明所制备得到的钌纳米颗粒分布均匀,以嵌入的方式与镧系化合物紧密结合,具有丰富的界面结构,且催化材料具备丰富的介孔结构,利于电解液与活性位点的充分接触,利于传质过程的进行。
(3)本发明所制备得到的系列钌-镧系氯氧化物复合催化剂具有优异的析氢催化性能。
附图说明
下面结合附图对本发明进一步说明:
图1和2是实施例1中得到的催化剂的SEM和TEM图片;
图3是实施例1中所得到的催化剂的XRD图。
图4是实施例1中所得到的催化剂在 1 M KOH溶液中的极化曲线。
图5是实施例2中所得到的催化剂的TEM图。
图6是实施例3中所得到的催化剂在 1 M KOH溶液中的极化曲线。
图7是实施例4中所得到的催化剂的XRD图。
具体实施方式
为了使本发明的目的、技术方案及有益效果更加清楚,本发明用以下具体实施例进行说明,但本发明绝非限于这些例子。
实施例1
制备钌-氯氧化钕复合催化材料,步骤如下:
(1)将0.940 g柠檬酸溶解于10 mL去离子水中,加入0.40 g硝酸镨,0.21 g三氯化钌,以及340 uL高氯酸溶液,超声溶解均匀;
(2)将上述溶液置于80 ℃热台上加热烘干,陈化,得到蓬松的干燥凝胶;
(3)将上述凝胶置于170 ℃热台上加热,凝胶发生燃烧,完全燃烧后得到蓬松的催化剂产物。
钌-氯氧化钕的SEM和TEM照片见图1和图2。可看出钌纳米颗粒的尺寸为2-5 nm,且富含介孔,其XRD见图3。该催化剂具有优异的氢析出催化活性,相比于商业铂炭催化剂,在10 mA cm-2的电流密度下具有更低的过电位见图4。
实施例2
采用实施例1的制备过程,与其不同之处在于,三氯化钌的加入量增加到0.28 g,硝酸钕的加入量为0.27 g,之后,再额外加入330 uL的1 M的硝酸溶液来保证硝酸根的浓度。其形貌基本保持,但Ru纳米颗粒的尺寸大小为4-7 nm,其TEM见图5,说明改变金属元素的比例会改变钌纳米的颗粒的尺寸大小。
实施例3
采用实施例1的制备过程,与其不同之处在于,更换0.4 g的硝酸钕为0.33 g硝酸镨,得到钌-氯氧镨复合催化材料。其同样表现出可媲美商业铂炭的析氢催化活性,见图6。说明了该方法对于不同的金属盐种类的制备具有普适性。
实施例4
采用实施例1的制备过程,与其不同之处在于,更换0.84 g的柠檬酸为0.24 g尿素,得到钌-氯氧钕复合催化材料。其XRD见图7。说明有机物燃料需满足低分解温度的特点。
以上实施例显示和描述了本发明的主要特征和主要优点进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (8)

1.一种钌-镧系金属复合催化剂,其特征在于,所述的钌-镧系金属复合催化剂中,钌以纳米颗粒的形式存在,尺寸为2-15纳米,镧系金属以氯氧化物的形式存在,且富含介孔。
2.根据权利要求1所述的催化剂,其特征在于,钌以纳米颗粒的形式均匀分布在镧系金属氯氧化物上。
3.根据权利要求1或2所述的催化剂的制备方法,其特征在于,采用溶胶凝胶-自蔓延法一步制备得到,以钌和镧系系列金属盐作为前驱体溶于水,加入水溶性有机物作为燃料,陈化形成凝胶,之后通过点燃凝胶一步制备钌-镧系氯氧化物复合催化剂;包括如下步骤:
(1)将一定量的具有水溶性有机物溶于水中,然后再加入一定比例的金属钌盐和镧系金属盐,搅拌至完全溶解后,加入一定量的酸;
(2)将步骤(1)中得到溶液烘干陈化,得到干燥的凝胶中间物质;
(3)将步骤(2)中的凝胶点燃,得到蓬松的钌-镧系金属复合催化剂。
4.根据权利要求3所述的制备方法,其特征在于,所述的水溶性有机物为柠檬酸、尿素、甘氨酸的一种或几种;水溶性有机物与总金属离子之间的摩尔比为6:1~1:1。
5.根据权利要求3所述的制备方法,其特征在于,金属钌盐为钌前驱体盐,选自亚硝酰硝酸钌、三氯化钌、醋酸钌中的一种或几种;镧系金属盐为硝酸钇、硝酸镧、硝酸铈、硝酸镝、硝酸铒、硝酸钕、硝酸镨中的一种或几种;金属钌盐与镧系金属盐的摩尔比为3:1~1:3。
6.根据权利要求3所述的制备方法,其特征在于,总金属离子浓度为0.05~0.5 mol L-1,应保证溶液中的硝酸根浓度与总金属离子的浓度相同。
7.根据权利要求3所述的制备方法,其特征在于,所加入的酸为硝酸、高氯酸、盐酸中的一种或几种。
8.权利要求1或2所述的钌-镧系金属复合催化剂,或是权利要求3-7中任一项所述的制备方法制备得到的钌-镧系金属复合催化剂在碱性介质中电催化氢气析出反应中的应用。
CN202210797710.6A 2022-07-08 2022-07-08 一种钌-镧系金属复合催化剂及其制备方法 Active CN115110110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210797710.6A CN115110110B (zh) 2022-07-08 2022-07-08 一种钌-镧系金属复合催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210797710.6A CN115110110B (zh) 2022-07-08 2022-07-08 一种钌-镧系金属复合催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN115110110A CN115110110A (zh) 2022-09-27
CN115110110B true CN115110110B (zh) 2024-03-26

Family

ID=83331582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210797710.6A Active CN115110110B (zh) 2022-07-08 2022-07-08 一种钌-镧系金属复合催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN115110110B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB721236A (en) * 1951-06-27 1955-01-05 Grace W R & Co Improvements in or relating to catalysts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200406240A1 (en) * 2017-06-15 2020-12-31 Technology Innovation Momentum Fund (Israel) Limited Partnership Lanthanide-supported transition metal catalysts and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB721236A (en) * 1951-06-27 1955-01-05 Grace W R & Co Improvements in or relating to catalysts

Also Published As

Publication number Publication date
CN115110110A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN108671948B (zh) 一种自组装超薄花状镍钴磷化物电催化材料的制备方法
CN109046408B (zh) 一种复合析氢电催化材料及其制备方法和应用
CN110142058B (zh) 一种F127诱导的三维多孔FeNi-NC双功能电催化剂及其制备方法
Kong et al. Atomically dispersed Mn–N 4 electrocatalyst with high oxygen reduction reaction catalytic activity from metal–organic framework ZIF-8 by minimal-water-assisted mechanochemical synthesis
WO2021232751A1 (zh) 一种多孔CoO/CoP纳米管及其制备方法和应用
CN110560141A (zh) 一种电催化功能vn@wn纳米颗粒的制备方法及应用
CN113353989A (zh) 一种红毛丹状Co3O4-N,S掺杂多孔碳复合材料和制备方法
CN108043437B (zh) 一种空心SiC载体型Ir-Ru催化剂的制备方法
CN114203989B (zh) FeP/Fe2P/NC复合材料及其制备方法
CN111883788A (zh) 一种氧化铈基中低温固体氧化物燃料电池关键材料的制备方法
CN114477320A (zh) 一种pem水电解析氧催化剂氧化铱的制备方法
WO2024066179A1 (zh) 一种表面改性的钙钛矿氧化物电催化剂及其制备方法和应用
CN115110110B (zh) 一种钌-镧系金属复合催化剂及其制备方法
CN111359637A (zh) 产氢催化剂二硒化镍纳米颗粒@碳纳米片复合材料及制备方法与应用
CN114941160B (zh) 一种IrOx@Ir复合铱基催化剂及其制备方法
CN114808026B (zh) 一种二维金属有机框架纳米片支撑贵金属单原子催化剂及其制备方法和应用
CN114959772B (zh) 一种长寿命贵金属氧化物析氧反应电催化剂及制备方法和应用
CN114944480B (zh) 一种蜂窝状多孔锡碳复合材料的制备方法
CN115449842A (zh) 铅掺杂低温合成的钌酸钇催化剂及其制备方法和应用
CN106334553B (zh) 一种燃料电池催化剂用掺杂的NbOx铂基催化剂的高效掺杂方法
CN110055555B (zh) 析氧反应催化剂及其制备方法和应用
CN108435178B (zh) 一种六方晶系结构氧化物、制备方法及其在析氧反应中的用途
CN112670525A (zh) 一种固体氧化物燃料电池电极材料
CN115663215B (zh) 负载型电催化剂的制备方法
CN114808020B (zh) 一种长寿命负载型析氧反应电催化剂及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant