CN115101610B - 一种硒薄膜/碲薄膜室内光伏器件及其制备方法 - Google Patents

一种硒薄膜/碲薄膜室内光伏器件及其制备方法 Download PDF

Info

Publication number
CN115101610B
CN115101610B CN202210861576.1A CN202210861576A CN115101610B CN 115101610 B CN115101610 B CN 115101610B CN 202210861576 A CN202210861576 A CN 202210861576A CN 115101610 B CN115101610 B CN 115101610B
Authority
CN
China
Prior art keywords
film
tellurium
selenium
thickness
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210861576.1A
Other languages
English (en)
Other versions
CN115101610A (zh
Inventor
薛丁江
胡劲松
闫彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN202210861576.1A priority Critical patent/CN115101610B/zh
Publication of CN115101610A publication Critical patent/CN115101610A/zh
Application granted granted Critical
Publication of CN115101610B publication Critical patent/CN115101610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种硒薄膜/碲薄膜室内光伏器件,结构为导电玻璃/电子传输层/碲薄膜/硒薄膜/金电极。所述碲薄膜的厚度0.5‑5nm,硒薄膜的厚度为0.5‑3μm。本发明成功的展示了硒薄膜在室内光伏领域的应用,制备的硒薄膜室内光伏器件具有较高的能量转化效率,在室内光下表现出了较好的稳定性。有利的推动了硒薄膜在室内光伏的发展,并且在物联网领域的应用表现出了巨大的发展前景。

Description

一种硒薄膜/碲薄膜室内光伏器件及其制备方法
技术领域
本发明属于光电材料及薄膜太阳能电池制备领域,具体涉及一种硒薄膜/碲薄膜室内光伏器件及其制备方法。
背景技术
物联网(Internet of Things,IoT)技术是实现智慧建筑、智慧工厂、智慧城市的重要支撑技术。这类产品通常在室内使用,具有低功耗、分布广等特点。室内光伏器件(Indoor photovoltaics,IPV)为物联网器件供能表现出了巨大的潜力,可提供连续、离线型能源,大大减少了电池的使用。常见的人工照明设备包括白炽灯、荧光灯和发光二极管灯等,其光谱范围较窄,主要集中在400-700nm之间,与标准太阳光光谱(300-1000nm)相差较大,这就要求合适的室内光伏器件吸收层材料具有较宽的带隙(~1.9eV);此外,室内光的强度通常小于1mW/cm2,而标准太阳光强为100mW/cm2。目前,商业化的硅太阳能电池在太阳能光下拥有较高的效率,但在室内光下光生载流子密度较低,器件中的缺陷态导致复合效应显著,性能较差。此外,由于室内光伏器件是在室内使用,其毒性也是不得不考虑的问题。
现有技术中多以成熟的钙钛矿作为室内光伏器件,比如CN114583063A,CN113346025A中报道。钙钛矿光伏器件带隙可调,结构简单,大面积,柔性的特性都适合作为室内光伏器件。但是一般钙钛矿光伏器件都含有铅这种毒性物质,极大限制了其进入室内光伏器件市场。考虑到室内光伏器件除了光电性能,对安全性的考量也非常重要。此外,还有复杂的有机分子合成的室内光伏器件,但是其合成复杂,原料成本高昂,距离产业化的生产和应用还有很远的距离。
硒具有较宽的带隙(~1.9eV),室内光理论转换效率达到55%;此外还具有较大的吸收系数、低毒、价格低廉等特点,非常适合作为室内光伏器件吸收层材料。硒太阳能电池是最早的太阳能电池,随着硅太阳能电池的迅速发展硒太阳能电池发展趋于缓慢。室内光伏的集中研究近几年刚刚开始,大部分研究主要是基于钙钛矿,也有少部分是基于光敏染料。室内光伏本身属于小众方向,而硒在标准太阳光中的研究就相对少很多,目前缺乏对硒在室内光伏领域的机理、应用进行系统的研究。
发明内容
硒太阳电池是首次报道的太阳电池,但是较宽的带隙(1.9eV)导致单结电池在太阳光下的最高理论效率仅为23%。常用的室内光源如发光二极管(LED)和荧光灯(FL)的发射光谱范围为400至700nm,因此确定室内光吸收材料的最佳带隙为1.8-1.9eV。因此较宽的带隙限制了硒在太阳能电池中的应用,而在室内光源最高理论效率达到55%。此外,硒材料的室内光伏器件还有一点在于其安全性。硒已被公认为对人体免疫系统有益的必需元素。这满足了室内光伏(IPV)应用的要求,其中用于制造物联网产品的材料其中有害物质会受到严格管制。随着IPV的发展,申请人重新审视了硒这种古老材料,认为其实有潜力的室内光伏器件。
本发明的目的在于提供一种硒薄膜室内光伏器件及其制备方法,特别是为硒薄膜室内光伏器件提供了一套完整的制备策略,解决了目前室内光伏器件含有有毒元素、稳定性差或生产复杂等问题,为高性能硒薄膜室内光伏器件提供了技术指导。
本发明提供了以下的技术方案:
一种硒薄膜/碲薄膜室内光伏器件,结构为导电玻璃/电子传输层/碲薄膜/硒薄膜/金电极。
优选地,所述导电玻璃为FTO(氟掺杂二氧化锡)玻璃。更优选地,所述FTO玻璃平均透过率为75-85%,耐高温500-550℃,方阻6-14Ωsq-1,雾度0.6-11%。
优选地,所述电子传输层为TiO2层,选择环境友好的TiO2作为电子传输层,实现了无毒光伏器件的制备,对于室内环境是极为重要的。
进一步地,所述碲薄膜的厚度0.5-5nm,硒薄膜的厚度为0.5-3μm;优选地,所述碲薄膜的厚度为0.5-2.5nm。
硒和碲薄膜均为采用热蒸发蒸镀,通过膜厚仪测量薄膜厚度,到达需要的厚度即停止蒸镀,即得所需要的厚度。
更进一步地,所述电子传输层的厚度为5-80nm,金电极为厚度为50-120nm。
本发明还提供了上述硒薄膜室内光伏器件的制备方法,包括以下步骤:
(1)将导电玻璃进行紫外臭氧处理,用喷涂法在导电玻璃上制备电子传输层,退火,自然冷却后取出备用;
(2)碲薄膜的制备:在步骤(1)得到的电子传输层上采用热蒸发法蒸镀碲薄膜;
(3)硒薄膜的制备:在步骤(2)得到的碲薄膜上采用热蒸发法蒸镀硒薄膜;
(4)电极的制备:在步骤(3)得到的硒薄膜上采用热蒸发法蒸镀电极;
(5)器件退火:步骤(4)得到的器件在热台上退火,自然冷却后取出备用。
优选地,步骤(2)至步骤(4)中,热蒸发的真空度控制在5×10-4Pa以下。
优选地,步骤(2)所述的碲薄膜以碲粉或碲丸作为蒸发源,碲的纯度为99.999%,厚度为0.5-5nm,热蒸发法蒸镀速率为0.05-0.1nm s-1,衬底的温度为常温。
优选地,步骤(3)所述的硒薄膜以硒粉或硒丸作为蒸发源,硒的纯度为99.999%,厚度为500-3000nm,热蒸发法蒸镀速率为0.1-1nm s-1,衬底的温度为常温。
优选地,步骤(4)所述的金电极为厚度为50-120nm,电极的面积为0.09-2.25cm2,热蒸发法蒸镀速率为0.05-0.1nm s-1,衬底的温度为常温。
优选地,步骤(5)热台的退火温度为180-220℃,退火时间为1-30min,优选2-5min。
本发明所述的制备方法制得的高性能硒薄膜室内光伏器件。
总体而言,通过本发明构思的以上技术方案,能够取得下列有益效果:
本发明采用喷涂法制备了二氧化钛电子传输层,调控碲薄膜的厚度、硒薄膜的厚度、器件退火的时间与温度,最终成功得到了一套硒薄膜室内光伏器件的其制备方法,该方法制备简单,器件整体不含有毒物质,并且有利于大面积器件的制备。
本发明成功了制备了硒薄膜室内光伏器件,成功的展示了硒薄膜在室内光伏领域的应用,制备的硒薄膜室内光伏器件具有较高的能量转化效率,在室内光下表现出了较好的稳定性。有利的推动了硒薄膜在室内光伏的发展,并且在物联网领域的应用表现出了巨大的发展前景。
附图说明
图1为分别在标准太阳光、发光二极管(LED,1000lux)以及荧光灯(FL,1000lux)下带隙和SQ极限的关系;
图2为硒薄膜的吸收系数;
图3为本发明硒薄膜室内光伏器件的结构示意图;
图4为本发明是实施例2得到的硒薄膜室内光伏器件的电流-电压曲线;
图5是碲修饰的Se/TiO2界面离域表面缺陷的密度泛函模型图;
图6是0.5nm厚度的碲在二氧化钛衬底的AFM图;
图7是2.5nm厚度的碲在二氧化钛衬底的AFM图;
图8是5nm厚度的碲在二氧化钛衬底的AFM图;
图9是0.5nm和2.5nm厚度的碲器件的C-V和DLCP测试结果图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合图例及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,应该理解,在阅读了本发明所记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的范围。
随着物联网技术的快速发展,设备所需的功耗逐渐减少,可由室内光伏持续供能的节点和数量不断增加。室内人工光源主要有发光二极管(LED)以及荧光灯(FL)等,光源光谱强度集中在400-700nm,而太阳光光谱范围为300-1000nm,相差较大。图2可以看到在标准太阳光、发光二极管和荧光灯下带隙和SQ极限的关系,室内光下最高理论效率超过50%,最佳带隙为1.8-1.9eV。硒薄膜带隙在1.9eV左右,是制备室内光伏器件吸收层的理想材料。图3为硒薄膜的吸收系数,可以看到硒薄膜拥有较大的吸收系数,达到105cm-1。碲是硒太阳能能电池中必不可少的,通常认为碲起到粘附层的作用,防止退火时硒膜脱落,但过量的碲会导致泄露电流增大,效率降低。室内光源光强也远远小于太阳光光强,通常认为室内光源光强为太阳光光强的千分之一,室内光下光生载流子密度较低,复合效应显著。硒太阳能电池最高效率的最优条件在室内光伏并不为最高效率,探究在室内光下的最优条件尤为重要。
以下实施例中FTO玻璃平均透过率>80%,耐高温550℃,方阻<10Ωsq-1,雾度>7%;双(乙酰丙酮基)二异丙氧基钛(75%的异丙醇溶液)购自阿拉丁,以1:9的体积比配制成乙醇溶液,采用喷涂法制备二氧化钛薄膜;碲粉购自Alfa Aesar,纯度为99.999%,将碲粉装在石英坩埚采用热蒸发法蒸镀碲薄膜;硒丸购自Alfa Aesar,纯度为99.999%,将硒丸装在石英坩埚采用热蒸发法蒸镀硒薄膜;金的纯度为99.999%,采用热蒸发法蒸镀金电极。器件的结构为FTO/TiO2/Te/Se/Au,如图3所示。
制备例光伏器件的制备
制备例1
(1)用去离子水,丙酮和异丙醇分别超声清洗FTO玻璃10分钟,用氮气枪吹干,将清洁的玻璃用紫外抽样处理;
(2)双(乙酰丙酮基)二异丙氧基钛(75%的异丙醇溶液)配制成10%的乙醇溶液,FTO玻璃在400℃热台预热,喷涂制备二氧化钛薄膜,随后将温度提高的500℃保温30分钟;
(3)采用热蒸发法蒸镀碲薄膜,热蒸发的真空度控制在5×10-4Pa以下;厚度为0.5nm,热蒸发法蒸镀速率为0.05nm s-1,衬底的温度为常温。
(4)采用热蒸发法蒸镀硒薄膜,热蒸发的真空度控制在5×10-4Pa以下;厚度为1000nm,热蒸发法蒸镀速率为0.1nm s-1,衬底的温度为常温。
(5)采用热蒸发法蒸镀金电极,热蒸发的真空度控制在5×10-4Pa以下;厚度为70nm,电极的面积为0.09cm2,热蒸发法蒸镀速率为0.1nm s-1,衬底的温度为常温。
(6)器件在热台上退火,温度为200℃,退火时间为2min。
测试条件:2700K LED,1000lux;所得到的硒薄膜室内光伏器件的效率为12.5%,开路电压为0.71V,短路电流为0.101mA cm-2,填充因子为53.9%。
制备例2
其他条件和方法与制备例1相同,区别在于步骤(3)中控制碲薄膜的厚度为2.5nm。
制备例3
其他条件和方法与制备例1相同,区别在于步骤(3)中控制碲薄膜的厚度为5nm。
实施例1
对制备例三个器件在模拟阳光下进行性能测试。测试条件:太阳能电池的J-V测试采用的是Newport公司AM 1.5G太阳光模拟器(型号:94023A,Sol3A Class AAA,450W)作为光源,并配备Keithley 2420数字源表收集信号。使用前用购买的经过NREL认证的标准硅电池(VLSI Standards公司,型号SRC-1000-TC-QZ,面积4cm2)进行光强校正。在空气中室温测量。测试时,扫描范围为-1~1V,扫速为100mV/s(步长20mV,间隔时间200ms)。结果如下表1所示:
表1
实施例2
对制备例三个器件进行室内光伏的性能测试。室内光伏光源为2700K LED,光强为1000lux,通过高精度光纤光谱仪测量光照强度和发光光谱。在空气中室温测量。测试时,扫描范围为-1~1V,扫速为100mV/s(步长20mV,间隔时间200ms)。结果如下表2所示:
表2
碲在硒膜和二氧化钛之间起到桥梁作用。硒碲为同族元素,具有相同的一维晶体结构,容易形成硒碲合金。硒碲原子在单螺旋连上通过共价键连接,如图5所示。由于硒(2.55)、碲(2.01)、氧(3.44)的电负性不同,更容易形成Te-O键,而Se-O键难以形成。器件中含有碲时可以形成Se-Te-O键,退火过程器件正常;当无碲时,硒膜难以和二氧化钛中的氧成键,在退火过程中容易脱膜。这就是硒电池需要加入碲的原因。
除此以外,我们认为碲还起到了钝化硒/二氧化钛界面缺陷的作用。室内光伏条件强度通常为标准太阳光下的千分之一,载流子密度较低,器件中的缺陷态导致复合效应显著。碲在表面的覆盖率决定了钝化程度。图6-图8分别为碲的厚度为0.5nm、2.5nm和5.0nm在二氧化钛衬底的AFM图。可以看出,当碲的厚度为0.5nm时,覆盖率为6.9%,呈现为不连续的孤岛状;当碲的厚度增加到2.5nm时,覆盖率为70.4%,相比于厚度为0.5nm时覆盖率提高一个数量级;当碲的厚度增加到5.0nm时,覆盖率为75.8%,但是过多的碲会导致并联电阻减小,器件的性能显著下降。
随后我们采用电容-电压(C-V)和驱动器级别的电容性能分析(DLCP)探究不同碲的厚度(0.5nm和2.5nm)对Se/TiO2界面的钝化程度,如图9所示。C-V测试结果包括自由载流子、材料体缺陷以及界面缺陷的响应;而DLCP只是对自由载流子以及材料的体缺陷有响应。因此,根据C-V和DLCP测试的差值我们可以得到材料的界面缺陷浓度。图9表明碲的厚度为2.5nm器件界面缺陷密度为6.5×1011cm-2,而碲的厚度为0.5nm器件界面缺陷密度为3.9×1012cm-2,更高的覆盖率导致了更好的钝化效果,这也解释了室内光伏下碲的厚度为2.5nm器件具有最佳性能原因。
应用例
采用碲的厚度为2.5nm下制备了大面积的电池(2.25cm2),并将三块电池进行串联,在室内光下进行了测试(2700K LED,1000lux,310.4μW cm-2),单个大面积的电池效率达到了14.0%,串联后(3×2.25cm2)的光电转换效率为11.1%。将电池组和用于定位的RFID标签连接,检测到射频信号,设备成功工作,表明硒电池在物联网领域的应用具有较大的潜力。

Claims (7)

1.一种硒薄膜/碲薄膜器件在室内光伏器件中的应用,其特征在于,所述硒薄膜/碲薄膜器件的结构为导电玻璃/电子传输层/碲薄膜/硒薄膜/金电极;所述碲薄膜的厚度为2.5nm,硒薄膜的厚度为1000nm;所述导电玻璃为FTO玻璃;所述电子传输层为TiO2层所述电子传输层的厚度为5-80 nm,金电极为厚度为50-120 nm;室内光伏光源为2700K LED,光强为1000lux。
2.根据权利要求1所述的应用,其特征在于,所述FTO玻璃平均透过率为75-85%,耐高温500-550℃,方阻6-14 Ω sq-1,雾度0.6-11%。
3.根据权利要求1所述的应用,其特征在于,硒薄膜/碲薄膜器件的制备方法包括以下步骤:
(1)将导电玻璃进行清洗、紫外臭氧处理,采用喷涂法在导电玻璃上制备电子传输层,退火,自然冷却后取出备用;
(2)碲薄膜的制备:在步骤(1)得到的电子传输层上采用热蒸发法蒸镀碲薄膜;
(3)硒薄膜的制备:在步骤(2)得到的碲薄膜上采用热蒸发法蒸镀硒薄膜;
(4)电极的制备:在步骤(3)得到的硒薄膜上采用热蒸发法蒸镀电极;
(5)器件退火:步骤(4)得到的器件在热台上退火,自然冷却后取出备用。
4.根据权利要求3所述的应用,其特征在于,步骤(2)至步骤(4)中,热蒸发的真空度控制在5×10-4 Pa以下。
5. 根据权利要求3所述的应用,其特征在于,步骤(2)所述的碲薄膜以碲粉或碲丸作为蒸发源,碲的纯度为99%以上,厚度为0.5-5 nm,热蒸发法蒸镀速率为0.05-0.1 nm s-1;和/或
步骤(3)所述的硒薄膜以硒粉或硒丸作为蒸发源,硒的纯度为99%以上,厚度为1000nm,热蒸发法蒸镀速率为0.1-1 nm s-1;和/或
步骤(4)所述的金电极为厚度为50-120 nm,电极的面积为0.09-2.25 cm2,热蒸发法蒸镀速率为0.05-0.1 nm s-1
6. 根据权利要求3所述的应用,其特征在于,步骤(5)热台的退火温度为180-220℃,退火时间为1-30 min。
7.根据权利要求6所述的应用,其特征在于,退火时间为2-5 min。
CN202210861576.1A 2022-07-22 2022-07-22 一种硒薄膜/碲薄膜室内光伏器件及其制备方法 Active CN115101610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210861576.1A CN115101610B (zh) 2022-07-22 2022-07-22 一种硒薄膜/碲薄膜室内光伏器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210861576.1A CN115101610B (zh) 2022-07-22 2022-07-22 一种硒薄膜/碲薄膜室内光伏器件及其制备方法

Publications (2)

Publication Number Publication Date
CN115101610A CN115101610A (zh) 2022-09-23
CN115101610B true CN115101610B (zh) 2024-05-28

Family

ID=83299211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210861576.1A Active CN115101610B (zh) 2022-07-22 2022-07-22 一种硒薄膜/碲薄膜室内光伏器件及其制备方法

Country Status (1)

Country Link
CN (1) CN115101610B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117230413A (zh) * 2023-11-13 2023-12-15 中国科学院长春光学精密机械与物理研究所 硒碲合金薄膜及制备方法、自驱动光电探测器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE753246A (fr) * 1969-08-29 1970-12-16 Rca Corp Dispositif semi-conducteur a heterojonction
US4259122A (en) * 1978-12-08 1981-03-31 Exxon Research And Engineering Co. Selenium photovoltaic device
JP2013179133A (ja) * 2012-02-28 2013-09-09 Osaka Gas Co Ltd 簡便に製造可能な光電変換装置
JP2014175472A (ja) * 2013-03-08 2014-09-22 Osaka Gas Co Ltd 有機−無機ナノハイブリッド光電変換装置
JP2020035915A (ja) * 2018-08-30 2020-03-05 日本放送協会 光電変換膜、撮像素子および光電変換素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE753246A (fr) * 1969-08-29 1970-12-16 Rca Corp Dispositif semi-conducteur a heterojonction
US4259122A (en) * 1978-12-08 1981-03-31 Exxon Research And Engineering Co. Selenium photovoltaic device
JP2013179133A (ja) * 2012-02-28 2013-09-09 Osaka Gas Co Ltd 簡便に製造可能な光電変換装置
JP2014175472A (ja) * 2013-03-08 2014-09-22 Osaka Gas Co Ltd 有機−無機ナノハイブリッド光電変換装置
JP2020035915A (ja) * 2018-08-30 2020-03-05 日本放送協会 光電変換膜、撮像素子および光電変換素子

Also Published As

Publication number Publication date
CN115101610A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Ren et al. Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells
CN108447936B (zh) 一种锑基双结叠层太阳电池的制备方法
CN104465844B (zh) 一种MoS2/Si p‑n结太阳能电池器件及其制备方法
CN115101610B (zh) 一种硒薄膜/碲薄膜室内光伏器件及其制备方法
CN112490363B (zh) 一种基于磁控溅射氧化锌/二氧化锡双电子传输层的钙钛矿太阳能电池制备方法
CN112420932B (zh) 一种适用于室内热光源照明环境下光电转换的有机光伏器件及其制备方法
Kanda et al. Facile fabrication method of small-sized crystal silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells
Lai et al. Weatherability of Cu2ZnSnSe4 thin film solar cells on diverse substrates
WO2023115870A1 (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
Kunz et al. 5% efficient evaporated solid‐phase crystallised polycrystalline silicon thin‐film solar cells
Mazur et al. Solar cells based on CdTe thin films: Array
Brémaud Investigation and development of CIGS solar cells on flexible substrates and with alternative electrical back contacts
US20130074921A1 (en) Low-Resistance Back Contact For Photovoltaic Cells
CN109037034B (zh) 硒化锑薄膜及其制备方法、应用其的太阳能电池
KR101591719B1 (ko) 고압 셀렌화 공정을 이용한 비진공 박막 제조방법
Bishop et al. Record efficiencies for selenium photovoltaics and application to indoor solar cells
TWI298548B (en) A design of transparent conducting anti-reflection laminate and solar cell
Petti et al. Thin Films in Photovoltaics
CN112382728A (zh) 一种修饰钙钛矿电池电子传输层的电池方法
Salve State of art of thin film photovoltic cell: A review
CN112510120B (zh) 一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法
KR101706175B1 (ko) 화합물 반도체 태양전지용 광흡수층의 제조방법 및 이에 따라 제조되는 화합물 반도체 태양전지용 광흡수층
TWI751520B (zh) Pn接面及其製備方法及用途
CN107887513A (zh) 一种基于三元无机平板型异质结薄膜的太阳电池及其制备方法
CN112736161B (zh) 一种具有循环类量子阱结构的铜锌锡硫基薄膜前驱体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant