CN112510120B - 一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法 - Google Patents

一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法 Download PDF

Info

Publication number
CN112510120B
CN112510120B CN202011542727.4A CN202011542727A CN112510120B CN 112510120 B CN112510120 B CN 112510120B CN 202011542727 A CN202011542727 A CN 202011542727A CN 112510120 B CN112510120 B CN 112510120B
Authority
CN
China
Prior art keywords
layer
cigs
solar cell
evaporation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011542727.4A
Other languages
English (en)
Other versions
CN112510120A (zh
Inventor
胡煜霖
刘宽菲
任宇航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Still More Photoelectric Polytron Technologies Inc
Original Assignee
Still More Photoelectric Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Still More Photoelectric Polytron Technologies Inc filed Critical Still More Photoelectric Polytron Technologies Inc
Priority to CN202011542727.4A priority Critical patent/CN112510120B/zh
Publication of CN112510120A publication Critical patent/CN112510120A/zh
Application granted granted Critical
Publication of CN112510120B publication Critical patent/CN112510120B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法,包括以下步骤:(1)在衬底上沉积Mo背电极;(2)在Mo背电极上共蒸法沉积CIGS光吸收层;(3)在CIGS光吸收层上沉积缓冲层;(4)在缓冲层上磁控溅射沉积高阻i‑ZnO层或ZnxMg(1‑x)O层,以及ITO层或AZO层;(5)利用气氛炉对铜铟镓硒太阳能电池进行退火;(6)制备CIGS柔光电池的上电极,获得弱光型铜铟镓硒太阳能电池;(7)对弱光型铜铟镓硒太阳能电池进行切割、封装,最终获得成品。本发明制备的弱光型铜铟镓硒太阳能电池在较低的光照度下具有良好的光电性能,属于环境友好型产品,非常适合作为室内弱光太阳能电池进行使用。

Description

一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法
技术领域
本发明涉及太阳能电池生产技术领域,特别涉及一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法。
背景技术
随着物联网技术的发展与5G应用的普及,越来越多的无线传感器与接收器被应用于日常生活中,如穿戴式传感器、RFID电子标签、低功耗Lora&数据采集与传输、自动驾驶技术等,如何给这些器件提供稳定持久地进行供电成了一个问题。
为了解决更多室内小型器件的供电问题,弱光太阳能电池开始崭露头角。弱光太阳能电池是指在室内光线条件下可以发电的光伏产品,一般用于在室内或光照强度不高的环境下使用的小型电子产品,例如计算器、电子手表、摇摆器、光电焊接面罩、电子体重计、电子速度计、汽车防盗器、传感器等。室内与室外应用时最大的区别在于光源的光照强度不同与光源的波长范围不同。室外光源为太阳光,太阳光的波长氛围为150nm—4000nm,其中可见光波长范围为380nm—780nm,户外使用的太阳能电池主要吸收波长为300nm—1100nm部分利用光生伏特效应进行发电,太阳光的光照度根据天气情况在5000lx-100000lx中变化;室内光源主要为白炽灯光源及LED光源,其中白炽灯的波长范围为400nm—780nm,LED光源根据颜色的不同波长范围为400nm—700nm,室内根据情况的不同光照度在2lx-1000lx中变化。
目前可用的室内弱光太阳能电池主要分为以下几种类型:(1)非晶硅弱光太阳能电池(2)砷化镓弱光太阳能电池(3)碲化镉弱光太阳能电池(4)铜铟镓硒弱光太阳能电池(5)钙钛矿弱光太阳能电池。这些室内弱光太阳能电池或多或少都存在一些应用上的缺陷:碲化镉弱光太阳能电池由于含镉元素危害环境,不适用于室内场所;钙钛矿弱光太阳能电池难以进行大规模生产,实际应用受到限制;砷化镓弱光太阳能电池制造成本太高,难以大范围推广;非晶硅弱光太阳能电池存在发电不稳定的问题,长时间使用后光衰现象明显,在一些器件的使用上会受到限制。
铜铟镓硒弱光太阳能电池具有质量轻、弱光性能好、光电转好效率高的特点,十分适合用作室内弱光太阳能电池,目前铜铟镓硒太阳能电池在室内的应用有以下几个问题需要解决:
1、目前主流的铜铟镓硒太阳能电池的带隙在1.12ev附近,为了更好地吸收400nm—780nm短波长的可见光,需要对铜铟镓硒太阳能电池的带隙进行调节使之增加在短波长下光的吸收,满足于在室内环境下的应用。
2、在室内条件下光照度较弱,目前主流的铜铟镓硒太阳能电池器件结构,在较弱的光强下无法对光子进行有效收集,光生载流子内部复合严重,造成电池在弱光条件下的光电转换效率较低。
发明内容
本发明的目的在于提供一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法,通过该制备方法制备的弱光型铜铟镓硒太阳能电池在较低的光照度下具有良好的光电性能,属于环境友好型产品,非常适合作为室内弱光太阳能电池进行使用。
本发明解决其技术问题所采用的技术方案是:
一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法,包括以下步骤:
(1)使用直流磁控溅射法在玻璃衬底或柔性衬底上沉积Mo背电极;
(2)在Mo背电极上共蒸法沉积CIGS光吸收层;
(3)使用化学水浴法、磁控溅射法或MOCVD法在CIGS光吸收层上沉积缓冲层;
(4)在缓冲层上磁控溅射沉积高阻i-ZnO层或ZnxMg(1-x)O层,以及ITO 层或AZO层;
(5)利用气氛炉对铜铟镓硒太阳能电池进行退火,钝化内部缺陷;
(6)通过丝网印刷、金属热蒸发、铜网压印或内串联激光划线,制备CIGS柔光电池的上电极,获得弱光型铜铟镓硒太阳能电池;
(7)对弱光型铜铟镓硒太阳能电池进行切割、封装,最终获得成品。
作为优选,步骤(1)中,Mo背电极厚度为450-550 nm。
作为优选,步骤(2)中,在Mo背电极上先沉积NaF预置层,然后再沉积CIGS光吸收层。
作为优选,沉积NaF预置层具体为:在真空度为1-3×10-3Pa的共蒸发腔中将衬底温度升到150-300℃,于Mo背电极表面共蒸发一层NaF,NaF蒸发源温度为760-800℃,蒸发时间为10-20min。
作为优选,步骤(2)中,共蒸法沉积CIGS光吸收层包括如下步骤:
第一步:共蒸发铜、铟、镓、硒金属源,形成高Ga掺杂高载流子浓度的P型CIGS光吸收层;
第二步:共蒸发铜、铟、镓、硒、银金属源,形成低载流子浓度的I型CIGS光吸收层。
作为优选,第一步具体参数设置为:将衬底温度升到450-550℃,In蒸发源温度为930-1020℃,Ga蒸发源温度为1055-1200℃,Cu蒸发源温度为1240-1400℃,Se蒸发源温度为450-500℃,蒸发时间为15-30min;蒸发过程中保持金属源蒸发比例Cu/(Ga+In)为0.80-0.95,Ga/(Ga+In)为0.40-0.45。
作为优选,第二步具体参数设置为:将衬底温度保持在500-550℃,In蒸发源温度为930-980℃,Ga蒸发源温度为1070-1180℃,Cu蒸发源温度为1200-1370℃,Ag蒸发源温度为1060-1140℃,Se蒸发源温度为450-500℃,蒸发时间为15-30min;蒸发过程中保持金属源蒸发比例Cu/(Ga+In)为0.80-0.85,Ga/(Ga+In)为0.65-0.70,Ag/(Ag+Cu)为0.4-0.6。
作为优选,步骤(3)中,所述缓冲层为ZnS缓冲层或In2S3缓冲层;所述缓冲层的厚度为30-50nm。本发明使用ZnS缓冲层或In2S3缓冲层替代传统的CdS缓冲层,可以做到产品的无镉化,更利于产品在室内环境下使用,同时使缓冲层禁带宽度从2.4eV提高至3.0eV以上,提高弱光电池的弱光利用率。
作为优选,步骤(4)中,i-ZnO层或ZnxMg(1-x)O层的沉积厚度为160-250nm,其中x的值为0.2-0.5;ITO 层或AZO层的沉积厚度为50-70nm。i-ZnO层或ZnxMg(1-x)O层少界面光生载流子的复合;沉积高光透、高电导率的AZO(ITO)层提高电子的收集能力。
作为优选,步骤(5)中,退火温度为180-230℃,退火时间为24-72h。
本发明的有益效果是:
1、本发明在铜铟镓硒太阳能电池的吸收层制备阶段,通过控制Ga含量调控吸收层的整体禁带宽度使其更加匹配室内的光谱,使CIGS电池在室内条件下外量子效率更好。
2、在光吸收层的制备过程中通过Ga含量的提高以及Ag掺杂提高了铜铟镓硒太阳能电池的带隙,提高铜铟镓硒太阳能电池在弱光条件下对短波长可见光的吸收,增加对光子的有效收集,提升光电转换效率。
3、通过在光吸收层掺杂Ag,有效修饰吸收层内部的铜空位缺陷,降低CIGS电池的缺陷密度,使CIGS结区载流子浓度接近于I型半导体,使得CIGS电池由原本的PN结转变为PIN结,这种结构在CIGS电池生产领域形成了CIGS电池器件结构新型的PIN结,使其PN结的内建电场更加强,使其光生载流子快速漂移,有效降低器件的内部复合,显著改善器件的室内发电效率,使CIGS弱光电池的室内光转换效率从2%提高到15%。
4、本发明通过增加窗口层中高阻i-ZnO(ZnxMg(1-x)O)层的厚度使得制备的弱光型太阳能电池具有较大的方阻,有效降低了表面复合,提高了短波效应,增加了对短波长可见光的吸收和利用,提高了铜铟镓硒太阳能电池在弱光条件下的光电性能。
附图说明
图1 为常规的CIGS电池结构图。
图2是本发明弱光型铜铟镓硒太阳能电池结构图。
图3为普通CIGS电池与弱光型CIGS禁带宽度与表面方阻分布图。
图4为在200流明照射下普通CIGS电池与弱光型CIGS的IV测试曲线。
图5为在标准测试环境下普通CIGS电池与弱光型CIGS的IV测试曲线。
图中:1、衬底,2、Mo背电极,3、高掺杂高空穴载流子浓度的P型CIGS光吸收层,4、CdS缓冲层,5、i-ZnO或ZnxMg(1-x)O 窗口层,6、ITO 或AZO导电层,7、低掺杂低空穴载流子浓度的I型CIGS光吸收层;8、ZnS或In2S3缓冲层。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步的具体说明。
本发明中,若非特指,所采用的原料和设备等均可从市场购得或是本领域常用的。下述实施例中的方法,如无特别说明,均为本领域的常规方法。
一种室内应用的弱光型铜铟镓硒太阳能电池(图2),其结构由下至上依次为:衬底1,Mo背电极2,高掺杂高空穴载流子浓度的P型CIGS光吸收层3,低掺杂低空穴载流子浓度的I型CIGS光吸收层7,ZnS或In2S3缓冲层8,i-ZnO或ZnxMg(1-x)O 窗口层5,ITO 或AZO导电层6。
现有技术中常规的铜铟镓硒太阳能电池结构由下至上依次为:衬底1,Mo背电极2,高掺杂高空穴载流子浓度的P型CIGS光吸收层3, CdS缓冲层4,i-ZnO或ZnxMg(1-x)O 窗口层5,ITO 或AZO导电层6(图1)。
总实施方案:
一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法,包括以下步骤:
(1)使用直流磁控溅射法在玻璃衬底或柔性衬底上沉积Mo背电极;Mo背电极厚度为450-550 nm。
(2)在Mo背电极上先沉积NaF预置层,然后再沉积CIGS光吸收层。沉积NaF预置层具体为:在真空度为1-3×10-3Pa的共蒸发腔中将衬底温度升到150-300℃,于Mo背电极表面共蒸发一层NaF,NaF蒸发源温度为760-800℃,蒸发时间为10-20min。
共蒸法沉积CIGS光吸收层包括如下步骤:
第一步:共蒸发铜、铟、镓、硒金属源,形成高Ga掺杂高载流子浓度的P型CIGS光吸收层;具体参数设置为:将衬底温度升到450-550℃,In蒸发源温度为930-1020℃,Ga蒸发源温度为1055-1200℃,Cu蒸发源温度为1240-1400℃,Se蒸发源温度为450-500℃,蒸发时间为15-30min;蒸发过程中保持金属源蒸发比例Cu/(Ga+In)为0.80-0.95,Ga/(Ga+In)为0.40-0.45,沉积厚度控制在1.0μm-1.3μm。
第二步:共蒸发铜、铟、镓、硒、银金属源,形成低载流子浓度的I型CIGS光吸收层;具体参数设置为:将衬底温度保持在500-550℃,In蒸发源温度为930-980℃,Ga蒸发源温度为1070-1180℃,Cu蒸发源温度为1200-1370℃,Ag蒸发源温度为1060-1140℃,Se蒸发源温度为450-500℃,蒸发时间为15-30min;蒸发过程中保持金属源蒸发比例Cu/(Ga+In)为0.80-0.85,Ga/(Ga+In)为0.65-0.70,Ag/(Ag+Cu)为0.4-0.6,沉积厚度控制在0.5-0.8μm。
(3)使用化学水浴法、磁控溅射法或MOCVD法在CIGS光吸收层上沉积ZnS缓冲层或In2S3缓冲层;缓冲层的厚度为30-50nm。
(4)在缓冲层上磁控溅射沉积高阻i-ZnO层或ZnxMg(1-x)O层,以及ITO 层或AZO层;i-ZnO层或ZnxMg(1-x)O层的沉积厚度为160-250nm,其中x的值为0.2-0.5;ITO 层或AZO层的沉积厚度为50-70nm。
(5)利用气氛炉对铜铟镓硒太阳能电池进行退火,钝化内部缺陷;退火温度为180-230℃,退火时间为24-72h。
(6)通过丝网印刷、金属热蒸发、铜网压印或内串联激光划线,制备CIGS柔光电池的上电极,获得弱光型铜铟镓硒太阳能电池;
(7)对弱光型铜铟镓硒太阳能电池进行切割、封装,最终获得成品。
实施例1
利用直流磁控溅射法在钠钙硅玻璃衬底上沉积一层厚度为500nm的Mo背电极。
在真空度为1×10-3Pa的共蒸发腔抽中将衬底温度升到270℃,于Mo背电极表面共蒸发一层NaF层,NaF蒸发源温度为775℃,蒸发时间为10min。
第一步共蒸发:将衬底温度升到500℃,In蒸发源温度为1020℃,Ga蒸发源温度为1160℃,Cu蒸发源温度为1360℃,Se蒸发源温度为480℃,蒸发时间为20min。蒸发过程中保持金属源蒸发比例Cu/(Ga+In)为0.88,Ga/(Ga+In)为0.42,蒸发厚度控制在1.2μm。
第二步共蒸发:保持衬底温度500℃,In蒸发源温度为960℃,Ga蒸发源温度为1140℃,Cu蒸发源温度为1320℃,Ag蒸发源温度为1090℃,Se蒸发源温度为470℃,蒸发时间为15min。蒸发过程中保持金属源蒸发比例Cu/(Ga+In)为0.82,Ga/(Ga+In)为0.70,Ag/(Ag+Cu)为0.45,蒸发厚度控制在0.6μm,吸收层总厚度为1.8μm。
使用化学水浴法在衬底上沉积一层厚度为40nm的ZnS缓冲层。
使用直流磁控溅射法在薄膜上分别沉积厚度为180nm的i-ZnO层与厚度为60nm的ITO层制备成电池。
将电池放置于气氛炉中,将炉膛升温至200℃,保温48小时对电池进行退火,退火完成后进行自然降温并将电池片取出。
对电池片进行丝网印刷、切割、封装,最终得到弱光型太阳能电池。
实施例2
利用直流磁控溅射法在不锈钢衬底上沉积一层厚度为550nm的Mo背电极。
在真空度为1×10-3Pa的共蒸发腔抽中将衬底温度升到300℃,于Mo层表面共蒸发一层NaF层,NaF蒸发源温度为760℃,蒸发时间为15min。
第一步共蒸发:将衬底温度升到520℃,In蒸发源温度为1000℃,Ga蒸发源温度为1175℃,Cu蒸发源温度为1375℃,Se蒸发源温度为470℃,蒸发时间为23min。蒸发过程中保持金属源蒸发比例Cu/(Ga+In)为0.87,Ga/(Ga+In)为0.45,蒸发厚度控制在1.3μm。
第二步共蒸发:保持衬底温度520℃,In蒸发源温度为970℃,Ga蒸发源温度为1160℃,Cu蒸发源温度为1350℃,Ag蒸发源温度为1115℃,Se蒸发源温度为475℃,蒸发时间为17min。蒸发过程中保持金属源蒸发比例Cu/(Ga+In)为0.85,Ga/(Ga+In)为0.70,Ag/(Ag+Cu)为0.55,蒸发厚度控制在0.7μm,吸收层总厚度为2.0μm。
使用直流磁控溅射法在衬底上沉积一层厚度为45nm的In2S3缓冲层。
使用直流磁控溅射法在薄膜上分别沉积厚度为190nm的Zn0.7Mg0.3O层与厚度为55nm的AZO层制备成电池。
将电池放置于气氛炉中,将炉膛升温至230℃,保温24小时对电池进行退火,退火完成后进行自然降温并将电池片取出。
对电池片进行丝网印刷、切割、封装,最终得到弱光型太阳能电池。
图3为普通CIGS电池与弱光型CIGS(本发明)禁带宽度与表面方阻分布图,图3显示普通CIGS电池拥有较低的带隙宽度与较低的表面方阻;弱光型CIGS电池拥有较高的带隙宽度与较高的表面方阻。图4为在200流明照射下普通CIGS电池与弱光型CIGS的IV测试曲线,图4显示普通CIGS电池在弱光条件下其开路电压较低导致其光电转换效率较低;弱光型CIGS电池在弱光条件下拥有较高的开路电压与电流,其光电转换效率可达15%。图5为在标准测试环境下普通CIGS电池与弱光型CIGS的IV测试曲线,图5显示普通CIGS电池在标准条件下拥有较好的光电转换效率;弱光型CIGS电池在标准条件下短路电流密度低、光电转换效率低、不适宜用在标准条件下。
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (9)

1.一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法,其特征在于,包括以下步骤:
(1)使用直流磁控溅射法在玻璃衬底或柔性衬底上沉积Mo背电极;
(2)在Mo背电极上共蒸法沉积CIGS光吸收层;
(3)使用化学水浴法、磁控溅射法或MOCVD法在CIGS光吸收层上沉积缓冲层;
(4)在缓冲层上磁控溅射沉积高阻i-ZnO层或ZnxMg(1-x)O层,以及ITO 层或AZO层;
(5)利用气氛炉对铜铟镓硒太阳能电池进行退火,钝化内部缺陷;
(6)通过丝网印刷、金属热蒸发、铜网压印或内串联激光划线,制备CIGS柔光电池的上电极,获得弱光型铜铟镓硒太阳能电池;
(7)对弱光型铜铟镓硒太阳能电池进行切割,最终获得成品;
步骤(2)中,共蒸法沉积CIGS光吸收层包括如下步骤:
第一步:共蒸发铜、铟、镓、硒金属源,形成高Ga掺杂高载流子浓度的P型CIGS光吸收层;
第二步:共蒸发铜、铟、镓、硒、银金属源,形成低载流子浓度的I型CIGS光吸收层。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,Mo背电极厚度为450-550nm。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,在Mo背电极上先沉积NaF预置层,然后再沉积CIGS光吸收层。
4.根据权利要求3所述的制备方法,其特征在于,沉积NaF预置层具体为:在真空度为1-3×10-3Pa的共蒸发腔中将衬底温度升到150-300℃,于Mo背电极表面共蒸发一层NaF,NaF蒸发源温度为760-800℃,蒸发时间为10-20min。
5.根据权利要求1所述的制备方法,其特征在于,第一步具体参数设置为:将衬底温度升到450-550℃,In蒸发源温度为930-1020℃,Ga蒸发源温度为1055-1200℃,Cu蒸发源温度为1240-1400℃,Se蒸发源温度为450-500℃,蒸发时间为15-30min;蒸发过程中保持金属源蒸发比例Cu/(Ga+In)为0.80-0.95,Ga/(Ga+In)为0.40-0.45。
6.根据权利要求1所述的制备方法,其特征在于,第二步具体参数设置为:将衬底温度保持在500-550℃,In蒸发源温度为930-980℃,Ga蒸发源温度为1070-1180℃,Cu蒸发源温度为1200-1370℃,Ag蒸发源温度为1060-1140℃,Se蒸发源温度为450-500℃,蒸发时间为15-30min;蒸发过程中保持金属源蒸发比例Cu/(Ga+In)为0.80-0.85,Ga/(Ga+In)为0.65-0.70,Ag/(Ag+Cu)为0.4-0.6。
7.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述缓冲层为ZnS缓冲层或In2S3缓冲层;所述缓冲层的厚度为30-50nm。
8.根据权利要求1所述的制备方法,其特征在于,步骤(4)中,i-ZnO层或ZnxMg(1-x)O层的沉积厚度为160-250nm,其中x的值为0.2-0.5;ITO 层或AZO层的沉积厚度为50-70nm。
9.根据权利要求1所述的制备方法,其特征在于,步骤(5)中,退火温度为180-230℃,退火时间为24-72h。
CN202011542727.4A 2020-12-23 2020-12-23 一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法 Active CN112510120B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011542727.4A CN112510120B (zh) 2020-12-23 2020-12-23 一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011542727.4A CN112510120B (zh) 2020-12-23 2020-12-23 一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法

Publications (2)

Publication Number Publication Date
CN112510120A CN112510120A (zh) 2021-03-16
CN112510120B true CN112510120B (zh) 2022-03-18

Family

ID=74923119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011542727.4A Active CN112510120B (zh) 2020-12-23 2020-12-23 一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法

Country Status (1)

Country Link
CN (1) CN112510120B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110030794A1 (en) * 2009-08-10 2011-02-10 Edward Teng Apparatus And Method For Depositing A CIGS Layer
US10043921B1 (en) * 2011-12-21 2018-08-07 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic cell with high efficiency cigs absorber layer with low minority carrier lifetime and method of making thereof
CN102544138A (zh) * 2012-02-08 2012-07-04 南开大学 一种设置AlN薄膜层的铜铟镓硒薄膜太阳电池
CN102751387B (zh) * 2012-07-18 2016-01-06 深圳大学 一种薄膜太阳能电池吸收层Cu(In,Ga)Se2薄膜的制备方法
CN106298995B (zh) * 2016-11-03 2017-12-22 中国科学院兰州化学物理研究所 一种银掺杂铜锌锡硫硒光吸收层薄膜材料及其在太阳能电池中的应用
CN107623047A (zh) * 2017-09-01 2018-01-23 苏州罗格特光电科技有限公司 一种非晶碳CZTS‑Ag复合双层薄膜的制备方法及其应用
CN111223758A (zh) * 2018-11-27 2020-06-02 北京铂阳顶荣光伏科技有限公司 铜铟镓硒薄膜太阳能电池及其制备方法
US20200194609A1 (en) * 2018-12-18 2020-06-18 Beijing Apollo Ding rong Solar Technology Co., Ltd Solar cell with zinc containing buffer layer and method of making thereof by sputtering without breaking vacuum between deposited layers

Also Published As

Publication number Publication date
CN112510120A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
Chu et al. Recent progress in thin‐film cadmium telluride solar cells
US9583655B2 (en) Method of making photovoltaic device having high quantum efficiency
US8283187B2 (en) Photovoltaic device and method for making
US20100243043A1 (en) Light Absorbing Layer Of CIGS Solar Cell And Method For Fabricating The Same
CN110429145A (zh) 一种硒化锑薄膜太阳电池及其制备方法
WO2010065360A1 (en) Improved thin-film photovoltaic devices
JP2005228975A (ja) 太陽電池
Gessert et al. 1.19-cadmium telluride photovoltaic thin film: CdTe
US9691927B2 (en) Solar cell apparatus and method of fabricating the same
KR101848853B1 (ko) 반투명 cigs 태양전지 및 이의 제조방법 및 이를 구비하는 건물일체형 태양광 발전 모듈
Mazur et al. Solar cells based on CdTe thin films: Array
KR101415251B1 (ko) 다중 버퍼층 및 이를 포함하는 태양전지 및 그 생산방법
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: a review on high throughput processed methods
CN104617183A (zh) 一种cigs基薄膜太阳电池及其制备方法
CN112510120B (zh) 一种室内应用的弱光型铜铟镓硒太阳能电池的制备方法
CN210200747U (zh) Pn接面及包含其的半导体薄膜组件
TWI751520B (zh) Pn接面及其製備方法及用途
Compaan The status of and challenges in CdTe thin-film solar-cell technology
KR101584072B1 (ko) 확산방지막으로서의 탄소층을 이용한 비진공 박막 형성방법
US20150249171A1 (en) Method of making photovoltaic device comprising i-iii-vi2 compound absorber having tailored atomic distribution
KR20120043315A (ko) 화합물 반도체 광 흡수층을 구비한 태양전지
US20120080306A1 (en) Photovoltaic device and method for making
CN111463307A (zh) 薄膜太阳能电池及其制备方法
Ding et al. Fabrication of Buffer-Window Layer System for Cu (In, Ga) Se2 Thin Film Devices by Chemical Bath Deposition and Sol–Gel Methods
CN113013340B (zh) 一种异质结太阳能电池及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: Room 211, Building 3, No. 399 Xingguo Road, Linping Street, Linping District, Hangzhou City, Zhejiang Province, 311103

Patentee after: Still more photoelectric Polytron Technologies Inc.

Address before: Room 603, building 1, Shangyue Green Valley Center, 1999 yuhangtang Road, Wuchang Street, Yuhang District, Hangzhou City, Zhejiang Province

Patentee before: Still more photoelectric Polytron Technologies Inc.

CP02 Change in the address of a patent holder