TWI298548B - A design of transparent conducting anti-reflection laminate and solar cell - Google Patents

A design of transparent conducting anti-reflection laminate and solar cell Download PDF

Info

Publication number
TWI298548B
TWI298548B TW095110625A TW95110625A TWI298548B TW I298548 B TWI298548 B TW I298548B TW 095110625 A TW095110625 A TW 095110625A TW 95110625 A TW95110625 A TW 95110625A TW I298548 B TWI298548 B TW I298548B
Authority
TW
Taiwan
Prior art keywords
solar cell
film layer
transparent conductive
conductive anti
reflection
Prior art date
Application number
TW095110625A
Other languages
Chinese (zh)
Other versions
TW200737532A (en
Inventor
Han Chang Pan
Hung Pin Chen
Chien Nan Hsiao
Kou Nan Lee
Original Assignee
Nat Applied Res Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Applied Res Laboratories filed Critical Nat Applied Res Laboratories
Priority to TW095110625A priority Critical patent/TWI298548B/en
Publication of TW200737532A publication Critical patent/TW200737532A/en
Application granted granted Critical
Publication of TWI298548B publication Critical patent/TWI298548B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

1298548 九、發明說明: 【發明所屬之技術領域】 本發明係由透明導電抗反射膜層組成成分與成長方式 以調整折射係數,使得透明導電抗反射膜的折射係數低於矽 基太陽電池基板,符合光學干涉原理達到抗反射作用,可減 少入射光的反射損失以增加太陽電池其光電轉換效率。另外 透明導電抗反射膜層具有高透光性、高導電率與高化學穩定 性,分別可達到太陽電池全照射面收光面積、減少阻抗損失 與增加耐候性。本設計發明可以以單層形式直接應用於矽基 太陽電池,因此可簡化習用矽基太陽電池採用氮化矽抗反射 層時,後續銀電極所需之塗佈、有機溶劑燒除與金屬化等複 雜製作流程。 【先前技術】 隨著全世界環保意識的高漲與地球溫室效應所造成的 自然災害日益嚴重,積極地推動再生能源開發與利用已是作 為環保潔淨能源與溫室氣體減量的無悔策略,因此,對於能 源使用的多兀化及提高自產能源比例,將可以達成能源安 王、環境保護與經濟發展的多重目標。目前,世界各國多以 風力發電與太陽光電為主要再生能源發展,相對地,風力發 電與太陽光電不像核能發電、火力發電與天然氣發電方法會 在產生電力過程產生污染,而火力與天然氣發電更是會加速 1298548 消耗地球的有限資源。而由於太陽光不僅可以孕育萬物,亦 是地球上源源不絕的潔淨能源’因此,在太陽光電的使用過 程中不會產生任何的環境污染,亦可以降低地球溫室效應與 環境污染。 世界各先進國家大量的投入研製和開發太陽電池,製作 太陽電池主要是以半導體材料為基礎’其工作原理是利用如 摻雜型石夕晶、III.V族與II_VI族等類半導體材料,這類材料 在吸收太陽光的能量後提升結構内原+外層t子位能,使該 電子從原子中發生游離作用,游離出來的電子具有負電荷, 而游離出電子後的原子’則形成帶有正電荷的電洞,此時分 離電子與電洞即形成電能而發生光電轉換反應。 根據太陽電池使用材料的不同,太陽能電池可分為:i 矽基太陽能電池、2.砷化鎵(AsGa)III_v族化合物、碲化鎘 (CdTe)、銅銦硒(CuIn(Se)2)等無機鹽多元化合物的太陽電 池、3.功能性小分子材料製備的太陽電池(m〇lecular s〇lar cells)與4·—氧化鈦(Tic>2)奈米晶色染增感太陽能電池 (dye-sensitized solar cells)#。不論以何種材料來製作電池, 對太陽電池材料的特性要求有:i•半導體材料本身有較窄能 隙(energy gap)、2.需有較高的光電轉換效率、3•材料本身對 %境不造成污染與4·材料便於工業化生產且材料特性穩 定。在太陽電池種類中,族半導體太陽電池具有最高的 1298548 光電轉換效率,然而其產品生產成本高,因此僅侷限應用於 太空係ί星方面,而族半導體太陽電池的量產技術則尚 未成熟。在考量太陽電池材料的基本性質要求時,矽為最理 想的太陽電池材料。目前太陽電池市場中主要型態為結晶矽 及非晶矽太陽能電池,其中結晶矽類產其生產技術成熟,光 電轉換效率(12%〜17%)高於非晶矽產品(8%〜13%),故市場 以結晶石夕類產品為主’根據全球市場調查資料報導,各約有 84.6%屬結晶矽類太陽能電池。 目則市場應用主流的結晶矽太陽電池製造技術其基本 製程如下所示: 1·拉晶:主要的原料為二氧化矽,以cz長晶方式,利 用晶種在控制良妤的溫度與轉速條件中於拉晶爐中成長出 所需尺寸的單晶矽碇。1298548 IX. Description of the Invention: [Technical Field] The present invention relates to a composition and a growth mode of a transparent conductive anti-reflective film layer to adjust a refractive index such that a refractive index of a transparent conductive anti-reflective film is lower than that of a germanium-based solar cell substrate. It conforms to the principle of optical interference to achieve anti-reflection effect, which can reduce the reflection loss of incident light to increase the photoelectric conversion efficiency of solar cells. In addition, the transparent conductive anti-reflective film layer has high light transmittance, high electrical conductivity and high chemical stability, and can respectively reach the light-receiving area of the solar cell full-illumination surface, reduce impedance loss and increase weather resistance. The design invention can be directly applied to the ruthenium-based solar cell in a single layer form, thereby simplifying the coating, organic solvent burning and metallization required for the subsequent silver electrode when the ruthenium nitride antireflection layer is used for the conventional ruthenium-based solar cell. Complex production process. [Prior Art] With the increasing awareness of environmental protection around the world and the increasing natural disasters caused by the global warming effect, actively promoting the development and utilization of renewable energy is a no-regret strategy for environmentally clean energy and greenhouse gas reduction. Therefore, The diversification of energy use and the increase in the proportion of self-produced energy will achieve multiple goals of energy security, environmental protection and economic development. At present, most countries in the world rely on wind power generation and solar photovoltaic as the main renewable energy development. In contrast, wind power generation and solar photovoltaics do not produce nuclear power generation, thermal power generation and natural gas power generation methods, which generate pollution in the process of generating electricity, while firepower and natural gas power generation It will accelerate the limited resources of 1298548 to consume the earth. Because sunlight can not only breed everything, but also clean energy from the earth. Therefore, it will not cause any environmental pollution during the use of solar photovoltaics, and it can also reduce the global warming and environmental pollution. A large number of advanced countries in the world have invested in the development and development of solar cells. The production of solar cells is based on semiconductor materials. The working principle is to use semiconductor materials such as doped type Shi Xijing, III.V and II_VI. After absorbing the energy of sunlight, the material enhances the original + outer t-sub-pot energy in the structure, causing the electron to free from the atom, the free electron has a negative charge, and the atom after the electron is released is formed with a positive A hole in charge, at which point the separation of electrons and holes forms electrical energy and a photoelectric conversion reaction occurs. According to the materials used in solar cells, solar cells can be divided into: i-based solar cells, 2. gallium arsenide (AsGa) III_v compounds, cadmium telluride (CdTe), copper indium selenide (CuIn (Se) 2), etc. Solar cells with inorganic salt multi-component compounds, solar cells prepared by functional small molecular materials, and titanium oxide (Tic > 2) nanocrystalline dye-sensitized solar cells (dye) -sensitized solar cells)#. Regardless of the material used to make the battery, the characteristics of the solar cell material are: i • the semiconductor material itself has a narrow energy gap, 2. requires a higher photoelectric conversion efficiency, 3 • the material itself is % The environment does not cause pollution and materials are easy to industrialize and the material properties are stable. Among the solar cell types, the family semiconductor solar cell has the highest photoelectric conversion efficiency of 1298548. However, its production cost is high, so it is limited to the space system, and the mass production technology of the family semiconductor solar cell is not yet mature. When considering the basic properties of solar cell materials, it is the most ideal solar cell material. At present, the main types in the solar cell market are crystalline germanium and amorphous germanium solar cells, in which the production technology of crystalline germanium is mature, and the photoelectric conversion efficiency (12%~17%) is higher than that of amorphous germanium products (8%~13%). Therefore, the market is dominated by crystalline stone ceremonies. According to global market research data, about 84.6% of them are crystalline bismuth solar cells. The basic process of the market for the application of mainstream crystallization solar cell manufacturing technology is as follows: 1. Pulling crystal: The main raw material is cerium oxide, using cz crystal growth mode, using seed crystals to control the temperature and speed conditions of Liangzhu A single crystal crucible of a desired size is grown in a crystal pulling furnace.

2·修角:—般半導體產業所用的石夕晶圓(锻㈣,為直接 把單晶矽碇依切片而成,但對於太陽電池應用而言,單一太 陽電池其產生電流或電壓均過小,通常需將多個太陽電池以 並聯及串聯形式整併成為電池陣列’以形成較大的電流或電 壓,因此太陽電池在實際應用上’為達成單位面積内緊密的 陣列排列’大部分都先將單晶石夕石定修角成四方形。 日日石夕破切成依所需規袼的 曰曰片其厚度約為250微米 3 ·切片:係利使用切片機將單 晶圓厚度’ 一^曼常使用的4忖的梦 1298548 (μ m)。 4.钮刻1刻的目的為消除切片過程中於石夕晶片内所造 成的殘留應力層。 5. 粗紋化:此製程步驟是為了提高電池的效力,為使用 化學姓刻液將太陽電池表面敍刻成金字塔狀或多角錐狀的 顆粒形狀’粗紋化處理可使得太陽電池在照光過程中,保留 住因矽晶片表面過於平整而某些要反射掉的太陽光,以增加 •太陽光電轉換效應。 6. 清洗:使用潔淨的去離子水清洗前幾各過程中在石夕晶 片表面的殘留的化學溶液與雜質污染物。 7·擴散或沉積:一般太陽電池均採用p型石夕基板2,傳 統製作太陽過程中係利用高溫熱擴散處理,使得p型矽基板 2上形成-層N型半導”薄膜層3。目前太陽電池的製作 修方法則以電漿辅助化學氣相沉積⑽贿,—化⑽― vapor deposition,PECVD)方法,於p型矽基板2上成長n型 矽薄膜層3,使得太陽電池成為具有N_p的空乏區接面。 8.抗反射模層4 ·此抗反射模層4相同以電漿辅助化學 4相沉積法基板上成長氮切(Si3N4)薄膜,抗反射膜的 作用在於減少太陽光因反射現象而造成的光損失。 9·銀上電極5製作··為使用網版印刷方式將銀膠印刷於 半完成的太陽矽晶片上,在矽晶片兩個表面製作導電的銀底 8 1298548 圖一所示 電極1與銀上電極5,經過前述各製程即可完成如圖一 矽基太陽電池。 前述的石夕基太陽電池製作過程中’抗反射層其目的在於 減少入射太陽光於石夕基太陽電池基板表面所產生反射現 象,其實際製作方法為在已完成N_p型接面的半導體太陽晶 片表面成長氮化石夕薄膜,在後續製作電極印製過程中,由於 印刷於氮切膜層表面的銀電極沒有和底層的N_p接面石夕晶 片直接接觸,再者氮化石夕薄膜材料具有極高的電氣絕緣特 性,因此銀電極與太陽石夕晶片之間無法產生電性導通,為 此,在目前石夕基太陽電池製程過程中,在銀電極印刷於石夕晶 片上,皆需將太陽電池晶片放置於高溫爐進行約赠加 熱,以去除銀膠内的有機溶劑添加物,接著再以快速退火方 式使得絲在5崎加熱成為金屬銀,此加熱㈣m 屬同時受加熱作用以擴散形式穿透過氮切抗反射膜層到 達底層的N_P接时晶#,使得整個太㈣晶#表層銀極電 路與石夕晶片完成電子傳輪迴路,而形成完整的太陽電池。 由前述的太陽電池製作流程可知,石夕基太陽電池基板為 了改善入射太陽光其反射損失,而增加成長氮切薄膜,同 時又因氮切材料本身的電氣絕緣特性,使得後續印 電極必須使用兩段式古、、w、ρ卜制i 、、艰 弋呵/皿退火製程,除了將銀膠内有機溶 燒除外’銀膠仍需要古、、w人s D而要回溫金屬化,同時在高溫過程中以擴散 1298548 形式穿透過氮化〜物而與底層_基板形成電性導通迴 2因此在太陽電池製作流程中,銀電極材料的有機添加物 :除、金屬化燒結與高溫擴散等過程,除了增加製程設備投 貝成本與電能消耗外,銀膠中所添加的有機溶劑在燒除過程 則將造成增加環境汙染與現場卫作人員的呼吸器官的危宝 等:安問題。由此可見’現有的石夕基太陽電池製程存在有製 私複雜與環境與作業人員的卫安危害等問題而待加以解 決。本案發明人即根據前述問題,經過長期研究,以材料科 學與光學設計原理,終能完成本項以透明導電抗反射膜層設 計與太陽電池。 【發明内容】 本發明之主要目的在於提供具有低折射係數的透明導 電乳化物膜層設計。係將透明導電抗反射膜層成長於N_p接 面石夕基基板,藉由透明導電抗反射膜層成分組成與成長方式 以調整折射係數’使得透明導電抗反射膜層其折射係數低於 底層矽基板,符合光學干涉原理達到抗反射作用,可減少入 射光的反射損失以增加太陽電池的光電轉換效率。 本發明之另一目的在提供同時具有高透光性、高導電率 與咼化學穩定性的透明導電膜層,分別可達到太陽電池全照 射面收光面積、減少阻抗損失與增加耐候性,以增加矽基太 陽電池有效工作面積以提高光電效能轉換率與使用壽命。 1298548 由於習时基太陽電池採以氮切作為抗反射膜層,而 針對氮切膜層本身的電性絕緣特性,必須將线♦晶片上 、'、附的銀電極分成兩段熱處理以做為有機溶劑燒除與金 屬化製私,如此製作流程才可完成完整矽基太陽電池元件。 為了改善習用太陽電池採用電性絕緣氮化石夕膜層所衍生的 複雜製作程序,本發明以單層透明導電抗反射膜層設計,可 ♦以將其直接沉積於N_P接面〜日片,完成♦基太陽電池的製 作’本發明巾透明導電抗反射膜層可作為導電與抗反射膜層 、雙項功用’且簡化習用太陽電池其抗反射層沉積、金屬電 極塗佈有機溶劑燒除與金屬化等複雜製作流程,以減少生 產設備投資與電能消耗等生產成本資出,另外更減少銀電極 在至屬化加熱過程有害有機氣體揮發對環境與現場操作人 員等工安危害問題。 【實施方式】 目刚矽基太陽電池皆有因沉積電性絕緣的氮化矽抗反 射膜層所仿生的複雜製程、生產成本增加與環境及操作人 員工安危害等問題’藉由本發明可以有效解決這些問題。 本透明導電抗反射膜層設計與太陽電池的發明;如圖二 所不’其包括有一透明導電抗反射膜層6、n型矽薄膜層3、 P型矽基板2及銀底電極丨。該透明導電抗反射膜層6成長 於N型砍薄膜層3與p型矽基板2組合的N_p接面矽晶片表 11 1298548 面’該矽晶片背面印製有銀底電極1。 當太陽光由空氣入射到一般太陽電池矽晶片表面,由光 在傳導路徑中所經媒介的折射率(refractive index,n)可知, 光傳導由折射率為n一的空氣進入折射率為η一的太陽電 池矽晶片,此時空氣與矽晶片間兩者折射率無法匹配而產生 ^射現象,如此將造成接近三分之—太陽光的光損失,也就 .疋僅有二分之二的太陽光進行光電轉換效率。 透明導電抗反射膜層的製鍍方面,採用濺鍍系統 (sputtering system)成長摻雜百分之十重量比wt. 氧化 錫(Sn〇)的銦錫氧化物(Sn0_In2〇3)高純絲材,將欲成長透 明導電抗反射膜層的矽晶麵榀系_Μ > .2. 修角: The Shixi wafer used in the semiconductor industry (forging (4) is formed by directly slicing single crystals, but for solar cell applications, the current or voltage generated by a single solar cell is too small. It is usually necessary to integrate a plurality of solar cells into a battery array in parallel and in series to form a large current or voltage. Therefore, in practical applications, the solar cells are arranged in a tight array in a unit area. The single crystal stone is fixed into a square shape. The day of the day is cut into the thickness of the slab. The thickness of the slab is about 250 microns. 3. Slice: The thickness of the single wafer is used by the slicer. The commonly used 4忖 dream 1298548 (μm). 4. The purpose of the button engraving is to eliminate the residual stress layer caused by the stone in the chip process. 5. Roughening: This process step is to improve The effectiveness of the battery is to use the chemical surname to engrave the surface of the solar cell into a pyramid shape or a polygonal pyramid shape. The roughening treatment can keep the solar cell surface too flat during the illumination process. And some of the sunlight to be reflected to increase the solar photoelectric conversion effect. 6. Cleaning: Clean the residual chemical solution and impurity contaminants on the surface of the stone wafer in the previous processes using clean deionized water. Diffusion or deposition: Generally, the solar cells are made of p-type lithography substrate 2, and the conventional solar process is performed by high-temperature thermal diffusion treatment, so that a p-type yttrium substrate 2 is formed with a layer of N-type semi-conductive film layer 3. The fabrication method of the solar cell is to grow the n-type germanium film layer 3 on the p-type germanium substrate 2 by means of plasma-assisted chemical vapor deposition (10), vapor deposition (PE), so that the solar cell becomes N_p. 8. The anti-reflective mold layer 4. The anti-reflective mold layer 4 is the same as the plasma-assisted chemical 4-phase deposition method on the substrate to form a nitrogen-cut (Si3N4) film. The anti-reflection film acts to reduce the solar light. Light loss caused by reflection phenomenon 9. Preparation of silver upper electrode 5 · Printing silver paste on a semi-finished solar enamel wafer by screen printing, and making a conductive silver base on both surfaces of the enamel wafer 8 1298548 One The electrode 1 and the silver upper electrode 5 can complete the solar cell as shown in Fig. 1 through the foregoing various processes. The anti-reflection layer in the preparation process of the aforementioned Shi Xiji solar cell aims to reduce the incident sunlight on the Shi Xiji solar cell. The reflection phenomenon generated on the surface of the substrate is actually formed by growing a nitride film on the surface of the semiconductor solar wafer on which the N_p junction is completed. In the subsequent electrode printing process, the silver electrode is printed on the surface of the nitrogen film layer. There is no direct contact with the underlying N_p junction surface, and the nitride film material has extremely high electrical insulation properties, so there is no electrical conduction between the silver electrode and the solar stone wafer. For this reason, in the current stone During the process of Xiji solar cell process, the silver electrode is printed on the Shixi wafer, and the solar cell wafer is placed in a high temperature furnace for heating to remove the organic solvent additive in the silver paste, followed by rapid annealing. The wire is heated to a metallic silver at 5 s, and the heating (four) m is simultaneously heated to diffuse through the nitrogen-cut anti-reflection film layer. And up to contact the underlying crystal N_P #, # so that the entire grain surface silver too iv circuit electrode Xi and the stone to complete the electronic wafer transfer cycle path, to form a complete solar cell. According to the foregoing solar cell manufacturing process, the Shi Xiji solar cell substrate increases the growth loss of the incident solar light, and increases the growth of the nitrogen cut film. At the same time, due to the electrical insulating properties of the nitrogen cut material itself, the subsequent printed electrodes must use two Segmental ancient, w, ρ, i, 弋 弋 皿 / dish annealing process, in addition to the organic melting in the silver paste except 'silver glue still needs ancient, w people s D and want to warm metallization, at the same time In the high temperature process, the diffusion of 1298548 penetrates through the nitridation material to form electrical conduction back with the bottom layer _ substrate. Therefore, in the solar cell production process, the organic additive of the silver electrode material: addition, metallization sintering and high temperature diffusion, etc. In addition to increasing the cost of the process equipment and the power consumption of the process equipment, the organic solvent added in the silver paste will cause environmental pollution and the dangerous parts of the respiratory organs of the on-site guardians in the burning process: safety issues. It can be seen that the existing Shihji solar cell process has problems such as the complexity of the manufacturing and the environmental and safety of the workers and the problems to be solved. According to the above problems, the inventor of the present invention has completed the design of the transparent conductive anti-reflective film layer and the solar cell through long-term research and material science and optical design principles. SUMMARY OF THE INVENTION A primary object of the present invention is to provide a transparent conductive emulsion film layer design having a low refractive index. The transparent conductive anti-reflection film layer is grown on the N_p junction surface substrate, and the refractive index is adjusted by the composition and growth mode of the transparent conductive anti-reflection film layer so that the transparent conductive anti-reflection film layer has a lower refractive index than the bottom layer. The substrate conforms to the principle of optical interference to achieve anti-reflection effect, which can reduce the reflection loss of incident light to increase the photoelectric conversion efficiency of the solar cell. Another object of the present invention is to provide a transparent conductive film layer having high light transmittance, high electrical conductivity and chemical stability, which can respectively achieve a light-receiving area of a solar cell full-illumination surface, reduce impedance loss, and increase weather resistance. Increase the effective working area of the 矽-based solar cell to improve the photoelectric efficiency conversion rate and service life. 1298548 Since the time-based solar cell adopts nitrogen cutting as the anti-reflection film layer, and for the electrical insulation property of the nitrogen-cut film layer itself, the silver electrode on the wire ♦ wafer must be divided into two heat treatments as The organic solvent is burned out and metallized, so that the production process can complete the complete bismuth-based solar cell component. In order to improve the complicated fabrication process derived from the conventional solar cell using an electrically insulating nitride nitride layer, the invention is designed with a single layer of transparent conductive anti-reflection film layer, which can be directly deposited on the N_P junction to the Japanese film. ♦Major solar cell fabrication 'The transparent conductive anti-reflective film layer of the invention can be used as a conductive and anti-reflective film layer, dual-function' and simplify the deposition of anti-reflective layer of solar cell, metal electrode coating organic solvent burning and metal Such complex production processes, in order to reduce the production cost of production equipment investment and power consumption, and reduce the safety hazard of the organic electrode volatilization of the silver electrode in the process of heating to the environment and on-site operators. [Embodiment] The solar cell of the gangue-based solar cell has a complicated process of depositing an electrically insulating yttrium nitride anti-reflective film layer, an increase in production cost, and environmental and operator safety hazards, etc. solve these problems. The transparent conductive anti-reflection film layer design and the invention of the solar cell; as shown in Fig. 2, there is a transparent conductive anti-reflection film layer 6, an n-type germanium film layer 3, a P-type germanium substrate 2, and a silver bottom electrode. The transparent conductive anti-reflection film layer 6 is grown on the N-p junction surface of the N-type chopped film layer 3 and the p-type germanium substrate 2, and the silver-base electrode 1 is printed on the back surface of the wafer. When sunlight is incident on the surface of a general solar cell wafer by air, the refractive index (n) of the medium passing through the conduction path of light can be known that the light is conducted by the air having a refractive index of n and the refractive index is η. The solar cell 矽 wafer, when the refractive index between the air and the ytterbium wafer can not be matched to produce a phenomenon, which will cause nearly three-way light loss of sunlight, that is, only two-thirds Solar light performs photoelectric conversion efficiency. In the plating of the transparent conductive anti-reflection film layer, a high-purity wire of indium tin oxide (Sn0_In2〇3) doped with a weight ratio of wt. tin oxide (Sn〇) is grown by a sputtering system. The crystal surface of the transparent conductive anti-reflective film layer to grow _ Μ >

提高透明導電抗反射膜層其導電性與光學穿透率。此外,透 增加矽晶片溫度,以獲得較 質’增加所沉積的透明導電 明導電抗反射膜層成長過程中,增办 佳的透明導電抗反射膜層結晶品質, 12 1298548 抗反射膜層其導電性與光學穿透率等重要光電性質。 而本發明採用透明導電抗反射膜層設計(transparent conducing anti_renecti〇n丨細丨崎,tcar) ’其折射係數為 nTCAR2,因此在矽基太陽電池製作成為具有n型矽薄膜層3 與P㈣基板2的組合時,切基太陽電池表面上成長透明 導電抗反射膜6’此時折射率為ητ⑽2的透明導電抗反射膜 ό和底層折射率為η一时基板其折射率相互匹配且滿足透 >明導電抗反射膜層6設計,可以降低太陽光經過空氣與透明 導電抗反射膜層6時的反射現象,而透明導電抗反射膜6同 時在光波長為400〜700奈米(nm)之間具有高於9〇%透光率, 該波長範圍的太陽光正是矽基太陽電池可以被利用以進行 光電轉換’因此可以使得太陽光經過透明導電抗反射膜6到 達底層矽基太陽電池晶片時不受到光強度損失,仍具有極高 的太陽光強度而進行光電轉換作用。 本發明裝置與方法同時具有以下三項優點·· (1)高光電轉換效率: 因該設計發明係同時具有高透光率、傳導電極與抗反射 膜等功用的透明導電抗反射膜層6。因此本透明導電抗反射 膜層6可以使得太陽光透過時,到達底層矽基板時不受到光 強度損失,且仍具有極高的太陽光強度以進行光電轉換作 用。另外將本透明導電抗反射膜6發明設計成長於石夕美太陽 13 1298548 電池表面此時折射率為恥⑽。的透明導電抗反射膜和底 層折射率為nSi=4的;^基板其折射率相互匹配且滿足抗反射 膜層°又计如圖二所示,經設計後的透明導電抗反射膜層6, 一、長為400〜7〇〇奈米(nm)之間,相較於習用氮化矽抗 反射膜石夕基太陽電池具有更低的反射率,因此可以有效降低 太%光、、、二過二軋與透明導電抗反射膜層6時的反射損失。 另外,本透明導電抗反射膜層6發明,如圖四所示,在 光波長為400〜700奈米(nm)之間具有高於90%透光率,使 知入射太陽光到達底層N_p接面矽晶片時,仍具有極高的光 強度同時透明導電抗反射膜6亦可增加太陽電池的有效工 作面積’其為本發明可以改善習用銀膠電極因不透光的特 险而使得太陽電池表面有6%不照光面積的光電轉換損失。 (2) 簡化製程與降低成本: 本設計發明可以單層形式直接應用於矽基太陽電池,因 4用秒基太電池採用氮化石夕抗反射膜的複雜製 程,可有效降低設備及製造成本。 (3) 減少工安問題: 因本設計發明之單層透明導電抗反射膜層6同時具有高 透光率、傳導電極與抗反射膜等功用,其製程單純無工安顧 慮。而習用矽基太陽能電池採用電性絕緣的氮化矽抗反射 曰而為了達到導電作用,必須將印製在氮化石夕膜層上的銀 1298548 電極進行燒除有機㈣、 溫過程中,銀膠中的有機、㈣心擴^⑽製程’在此高 的呼吸器官刺激,並弓,起急 厫重 从由,, |又〖生中毒,影響和危害人體 健康。此外,當操作環 、曲 ^ 、々丨L不良時’累積的有機溶劑 浪度過南,更容易引起爆炸 谷易造成各種工安問題。 上列詳細說明係 只a之一可行實施例之具體說The conductivity and optical transmittance of the transparent conductive anti-reflective film layer are improved. In addition, by increasing the temperature of the germanium wafer to obtain a better quality, the crystal quality of the transparent conductive anti-reflective film layer is increased during the growth process of the transparent conductive conductive anti-reflective film layer, and the 12 1298548 anti-reflective film layer is electrically conductive. Important optoelectronic properties such as sex and optical transmittance. However, the present invention adopts a transparent conductive anti-reflective film layer design (transparent conducing anti-renecti〇n丨fine 丨, tcar), which has a refractive index of nTCAR2, and thus is fabricated in a ruthenium-based solar cell with an n-type ruthenium film layer 3 and a P (four) substrate 2 When the combination is made, the transparent conductive anti-reflective film 6' on the surface of the dicing solar cell grows. The transparent conductive anti-reflective film 折射率 having a refractive index of ητ(10) 2 and the refractive index of the underlying layer of η are matched to each other and satisfy the transparency. The conductive anti-reflection film layer 6 is designed to reduce the reflection phenomenon when sunlight passes through the air and the transparent conductive anti-reflection film layer 6, and the transparent conductive anti-reflection film 6 has a wavelength between 400 and 700 nm (nm) at the same time. Above 9〇% transmittance, the sunlight in this wavelength range is the 矽-based solar cell that can be utilized for photoelectric conversion' so that sunlight can pass through the transparent conductive anti-reflection film 6 to the underlying silicon-based solar cell wafer without being subjected to The light intensity loss still has an extremely high solar light intensity for photoelectric conversion. The device and method of the present invention have the following three advantages: (1) High photoelectric conversion efficiency: The design invention is a transparent conductive anti-reflection film layer 6 having high light transmittance, a conductive electrode and an anti-reflection film. Therefore, the transparent conductive anti-reflective film layer 6 can prevent the light intensity from being lost when it reaches the underlying germanium substrate through the passage of sunlight, and still has an extremely high solar light intensity for photoelectric conversion. In addition, the transparent conductive anti-reflection film 6 was invented and designed to grow on the surface of the Shi Ximei Sun 13 1298548. The refractive index of the battery surface is shame (10). The transparent conductive anti-reflection film and the underlying layer have a refractive index of nSi=4; the substrate has a refractive index that matches each other and satisfies the anti-reflection film layer. The transparent conductive anti-reflection film layer 6 is designed as shown in FIG. 1. The length is between 400 and 7 nanometers (nm). Compared with the conventional antimony nitride anti-reflective film, the Shih-Xi solar cell has lower reflectivity, so it can effectively reduce too much light, and Reflection loss when the film and the transparent conductive anti-reflection film layer 6 are passed twice. In addition, the transparent conductive anti-reflective film layer 6 is invented, as shown in FIG. 4, having a light transmittance higher than 90% between light wavelengths of 400 to 700 nanometers (nm), so that the incident sunlight reaches the bottom layer N_p. When the wafer is wafer-finished, it still has a very high light intensity, and the transparent conductive anti-reflection film 6 can also increase the effective working area of the solar cell. The present invention can improve the solar cell electrode due to the special risk of opacity. The surface has a photoelectric conversion loss of 6% of the unilluminated area. (2) Simplifying the process and reducing the cost: The design invention can be directly applied to the ruthenium-based solar cell in a single layer form, and the complicated process of using the nitrite anti-reflection film by the second-base battery can effectively reduce the equipment and manufacturing cost. (3) Reducing the safety problem: Since the single-layer transparent conductive anti-reflection film layer 6 of the present invention has high light transmittance, a conductive electrode and an anti-reflection film at the same time, the process is simple and has no work safety considerations. The conventional ruthenium-based solar cell uses an electrically insulating tantalum nitride anti-reflective ruthenium. In order to achieve the conductive effect, the silver 1298548 electrode printed on the nitriding layer must be burned to remove organic (four), during the temperature process, silver paste In the organic, (four) heart expansion ^ (10) process 'in this high respiratory organ stimulation, and bow, urgency and weight from the cause, and 〗 〖Life poisoning, affecting and endangering human health. In addition, when the operating ring, the music ^, and the 々丨L are poor, the accumulated organic solvent wave is too far south, which is more likely to cause an explosion. The detailed description above is only one of the specific examples of a feasible embodiment.

明’惟該實施例並非用IV _ W 非用以限制本發明之專利範圍,凡未脫離 本發明技藝精神所為之箄对眘 4效實轭或變更,均應包含於本案之 專利範圍中。 圖式簡單說明 請參閱以下有關本發明一較佳實施例之詳細說明及其 附圖’將可進—步瞭解本發明之技術内容及其目的功效;有 關該實施例之附圖為·· 圖一 ··習用矽基太陽電池構造示意圖; 圖二為本發明之透明導電抗反射膜層設計矽基太陽電 池之構造示意圖; 圖三為本發明之透明導電抗反射膜層設計與習用氮化 石夕抗反射膜矽基太陽電池之反射光譜比較圖; 圖四:本發明之透明導電抗反射膜層設計,其在光波長 為400〜700奈米(nm)範圍間之穿透光譜圖。 【主要元件符號說明】 15 1298548 1 銀底電極 2 P型矽基板 3 TV型矽薄膜層 6 透明導電抗反射膜層 4 抗反射模 5 銀上電極It is to be understood that the present invention is not intended to limit the scope of the invention, and that it should be included in the scope of the present invention without departing from the spirit of the invention. Brief Description of the Drawings Please refer to the following detailed description of a preferred embodiment of the invention and the accompanying drawings in which <RTIgt; A schematic diagram of the structure of a conventional solar cell; Fig. 2 is a schematic view showing the structure of a transparent conductive antireflection film layer of the present invention; Fig. 3 is a transparent conductive antireflection film layer of the present invention and a conventional use of nitrided silicon Comparison of reflectance spectra of anti-reflective film bismuth-based solar cells; Figure 4: Transparent conductive anti-reflective film layer design of the present invention, which has a transmission spectrum between light wavelengths ranging from 400 to 700 nanometers (nm). [Main component symbol description] 15 1298548 1 Silver bottom electrode 2 P type 矽 substrate 3 TV type 矽 film layer 6 Transparent conductive anti-reflection film layer 4 Anti-reflection mode 5 Silver upper electrode

Claims (1)

1298548 广、申請專利範圍: • 種具有透明導電抗反射膜層的太陽電池,包括有: 一種透明導電抗反射膜層,係藉由其組成成分與成長方 式以調整折射係數,使得該透明導電抗反射膜的折射係數 低於矽基太陽電池基板(nTCAR &lt; ns j。 2·如申請專利範圍第1項所述具有透明導電抗反射膜層的 太陽電池,其中,該透明導電抗反射膜層成長於N型矽 薄膜層與P型矽基板組合的N_p接面矽晶片表面,該矽 晶片背面印製有銀底電極。 171298548 Wide, patent application scope: • A solar cell with a transparent conductive anti-reflection film layer, comprising: a transparent conductive anti-reflection film layer, by adjusting its refractive index by its composition and growth mode, so that the transparent conductive reactance The refractive index of the reflective film is lower than that of the cerium-based solar cell substrate (nTCAR &lt; ns j. 2) The solar cell having a transparent conductive anti-reflective film layer as described in claim 1, wherein the transparent conductive anti-reflective film layer The N_p junction surface of the N-type tantalum film layer and the P-type germanium substrate are grown on the surface of the wafer, and a silver bottom electrode is printed on the back surface of the germanium wafer.
TW095110625A 2006-03-28 2006-03-28 A design of transparent conducting anti-reflection laminate and solar cell TWI298548B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095110625A TWI298548B (en) 2006-03-28 2006-03-28 A design of transparent conducting anti-reflection laminate and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095110625A TWI298548B (en) 2006-03-28 2006-03-28 A design of transparent conducting anti-reflection laminate and solar cell

Publications (2)

Publication Number Publication Date
TW200737532A TW200737532A (en) 2007-10-01
TWI298548B true TWI298548B (en) 2008-07-01

Family

ID=45069419

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095110625A TWI298548B (en) 2006-03-28 2006-03-28 A design of transparent conducting anti-reflection laminate and solar cell

Country Status (1)

Country Link
TW (1) TWI298548B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219538B2 (en) * 2008-02-12 2013-06-26 大成建設株式会社 Solar cell with photovoltaic thin film directly formed on substrate
CN101924145B (en) * 2009-06-12 2013-01-23 大同大学 Photoelectric conversion device and manufacture method thereof
TWI446036B (en) 2010-05-24 2014-07-21 Univ Nat Central Optical transmission module

Also Published As

Publication number Publication date
TW200737532A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
Chopra et al. Thin‐film solar cells: an overview
TW432144B (en) Electromechanical cylinder lock
US20090242019A1 (en) Method to create high efficiency, low cost polysilicon or microcrystalline solar cell on flexible substrates using multilayer high speed inkjet printing and, rapid annealing and light trapping
CN104518052B (en) The method of photovoltaic device of the manufacture with high-quantum efficiency
TW200929577A (en) Transparent solar cell module
CN104993059B (en) A kind of silicon substrate perovskite heterojunction solar battery and preparation method thereof
TWM432144U (en) Structure and method for high efficiency cis/cigs-based tandem photovoltaic module
TW201203576A (en) Single junction CIGS/CIS solar module
US20140261660A1 (en) TCOs for Heterojunction Solar Cells
CN103681889B (en) Electret-structure-introduced efficient solar cell and preparing method thereof
CN1719621A (en) Silicon solar battery structure and making method
WO2010025291A2 (en) Four terminal multi-junction thin film photovoltaic device and method
CN108899375A (en) A kind of preparation method of silicon based hetero-junction photovoltaic cell
CN107946393A (en) CdTe thin film solar cell based on SnTe as back electrode cushion and preparation method thereof
JP2012004568A (en) Forming method of electrode and manufacturing method of solar cell using the same
Yang et al. Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution
CN209963073U (en) Novel high-efficiency double-sided incident light CdTe perovskite laminated photovoltaic cell
TWI298548B (en) A design of transparent conducting anti-reflection laminate and solar cell
US20120285508A1 (en) Four terminal multi-junction thin film photovoltaic device and method
CN109166972A (en) A kind of double-buffering layer perovskite method for manufacturing solar battery
JP2005064273A (en) Electrode for photoelectromotive force element and photoelectromotive force element employing the same
TW201010115A (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
Angadi et al. A review on different types of materials employed in solar photovoltaic panel
CN114335348B (en) PN heterojunction antimony selenide/perovskite solar cell and preparation method thereof
CN101521248B (en) Method for manufacturing silica-based high-efficiency double-junction solar battery