CN115097556B - Dispersive thin film, optical fiber core insert, dispersive cavity mirror, resonant cavity device and laser - Google Patents

Dispersive thin film, optical fiber core insert, dispersive cavity mirror, resonant cavity device and laser Download PDF

Info

Publication number
CN115097556B
CN115097556B CN202210707056.5A CN202210707056A CN115097556B CN 115097556 B CN115097556 B CN 115097556B CN 202210707056 A CN202210707056 A CN 202210707056A CN 115097556 B CN115097556 B CN 115097556B
Authority
CN
China
Prior art keywords
film
ferrule
fiber
film layer
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210707056.5A
Other languages
Chinese (zh)
Other versions
CN115097556A (en
Inventor
程辉辉
陈可封
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202210707056.5A priority Critical patent/CN115097556B/en
Publication of CN115097556A publication Critical patent/CN115097556A/en
Application granted granted Critical
Publication of CN115097556B publication Critical patent/CN115097556B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/268Optical coupling means for modal dispersion control, e.g. concatenation of light guides having different modal dispersion properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06725Fibre characterized by a specific dispersion, e.g. for pulse shaping in soliton lasers or for dispersion compensating [DCF]

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Lasers (AREA)

Abstract

The present disclosure provides a dispersion film comprising: a plurality of first film layers, the first film layers having a first refractive index; and a plurality of second film layers having a second refractive index; the first film layer and the second film layer are alternately stacked to form a dispersion film; wherein the first refractive index is greater than the second refractive index; the total thickness of the dispersion film is in the micron order; the total thickness of the first film layer is less than the total thickness of the second film layer. The disclosure also provides an optical fiber ferrule, a dispersive cavity mirror with an all-fiber structure, a laser resonant cavity device and a laser.

Description

色散薄膜、光纤插芯、色散腔镜、谐振腔装置及激光器Dispersion film, fiber ferrule, dispersion cavity mirror, resonant cavity device and laser

技术领域technical field

本公开涉及光学薄膜、超快激光技术领域,本公开尤其涉及一种色散薄膜、光纤插芯、色散腔镜、激光谐振腔装置及激光器。The present disclosure relates to the technical fields of optical thin films and ultrafast lasers, and particularly relates to a dispersion film, an optical fiber ferrule, a dispersion cavity mirror, a laser resonant cavity device, and a laser.

背景技术Background technique

GHz重复频率的超快激光在特种材料加工、多光子荧光成像、高速光通信系统以及天文光学频率梳等领域有重要的应用。Ultrafast lasers with a repetition rate of GHz have important applications in the fields of special material processing, multiphoton fluorescence imaging, high-speed optical communication systems, and astronomical optical frequency combs.

在特种材料加工方面,基于“烧蚀冷却”机制,利用该光源可以获得更高的加工精度;在双光子成像方面,利用该光源可以提升成像分辨率,以获得更清晰的微观图像;在天文探测领域,该光源具有高的单齿功率,可以提高测量准确度。目前,基于固体/晶体材料的增益介质构建的高重频激光器兼备高重频、窄脉宽的优势。相比而言,全光纤结构的激光器具有散热好,模式稳定和环境稳定等独特优势,更适合应用在一些特定环境中,但是目前高重频光纤激光仍面临脉冲宽度较宽难以压缩的“瓶颈”问题。In terms of special material processing, based on the "ablation cooling" mechanism, using this light source can obtain higher processing accuracy; in terms of two-photon imaging, using this light source can improve imaging resolution to obtain clearer microscopic images; in astronomy In the field of detection, the light source has high single-tooth power, which can improve the measurement accuracy. At present, high repetition rate lasers based on gain media of solid/crystal materials have the advantages of high repetition rate and narrow pulse width. In comparison, all-fiber lasers have unique advantages such as good heat dissipation, stable mode, and stable environment, and are more suitable for application in some specific environments. However, high-repetition fiber lasers still face the "bottleneck" of wide pulse widths that are difficult to compress. "question.

2017年报道的5GHz掺Yb光纤激光器的脉冲宽度为2.6ps;2018年报道的3GHz掺Yb光纤激光器对应的脉冲宽度为3.4ps;2019年报道的12.5GHz掺Yb光纤激光器中测试的脉冲宽度为1.9ps。The pulse width of the 5GHz Yb-doped fiber laser reported in 2017 was 2.6ps; the corresponding pulse width of the 3GHz Yb-doped fiber laser reported in 2018 was 3.4ps; the pulse width tested in the 12.5GHz Yb-doped fiber laser reported in 2019 was 1.9ps ps.

可以看出,虽然在这些全光纤结构的激光器中实现了GHz重复频率的脉冲输出,但是对应的脉冲宽度集中在ps量级,这一定程度限制了此类光源在上述领域的应用。这个“瓶颈”问题的原因在于:根据锁模原理,要获得GHz量级重复频率的脉冲输出,激光谐振腔的腔长要缩短至厘米量级,短的谐振腔长度使得常用的实施色散管理的啁啾镜对、啁啾光栅等由于体积原因无法设置在腔内而失效,因此难以在如此短的谐振腔内实施色散管理以实现宽光谱和窄脉冲激光输出。It can be seen that although the pulse output of GHz repetition rate is realized in these all-fiber lasers, the corresponding pulse width is concentrated in the ps level, which limits the application of this type of light source in the above-mentioned fields to a certain extent. The reason for this "bottleneck" problem is that according to the mode-locking principle, in order to obtain a pulse output with a repetition rate of GHz level, the cavity length of the laser resonator should be shortened to the order of centimeters. The short cavity length makes the commonly used dispersion management Chirped mirror pairs, chirped gratings, etc. cannot be installed in the cavity due to volume reasons, so it is difficult to implement dispersion management in such a short cavity to achieve wide spectrum and narrow pulse laser output.

一些研究也做了其他尝试,例如在镜片上镀色散管理膜系插入到上述光纤激光器谐振腔内,并引入额外的器件实现空间光耦合,这导致了激光器全光纤化结构的损失,系统变得复杂且不稳定。Some studies have also made other attempts, such as coating the dispersion management film on the lens and inserting it into the above-mentioned fiber laser resonator, and introducing additional devices to achieve spatial optical coupling, which leads to the loss of the laser's all-fiber structure, and the system becomes Complex and unstable.

发明内容Contents of the invention

为了解决上述技术问题中的至少一个,本公开提供一种色散薄膜、光纤插芯、色散腔镜、激光谐振腔装置及激光器。In order to solve at least one of the above technical problems, the present disclosure provides a dispersion film, a fiber ferrule, a dispersion cavity mirror, a laser resonator device, and a laser.

根据本公开的一个方面,提供一种色散薄膜,包括:According to one aspect of the present disclosure, there is provided a dispersion film, comprising:

多个第一膜层,所述第一膜层具有第一折射率;a plurality of first film layers, the first film layers having a first refractive index;

多个第二膜层,所述第二膜层具有第二折射率;a plurality of second film layers having a second refractive index;

所述第一膜层与所述第二膜层交替地堆叠,以形成所述色散薄膜;The first film layer and the second film layer are stacked alternately to form the dispersion film;

其中,所述第一折射率大于所述第二折射率;Wherein, the first refractive index is greater than the second refractive index;

所述色散薄膜的总厚度为微米级;The total thickness of the dispersion film is on the order of microns;

所述第一膜层的总厚度小于所述第二膜层的总厚度。The total thickness of the first film layer is smaller than the total thickness of the second film layer.

根据本公开的至少一个实施方式的色散薄膜,所述第一膜层优选为Ta2O5、Nb2O5、HfO2中的一种,所述第二膜层优选为SiO2According to the dispersion film according to at least one embodiment of the present disclosure, the first film layer is preferably one of Ta 2 O 5 , Nb 2 O 5 , and HfO 2 , and the second film layer is preferably SiO 2 .

根据本公开的至少一个实施方式的色散薄膜,奇数层为第一膜层,偶数层为第二膜层,且所述色散薄膜的底层和顶层均为第一膜层。According to the dispersion film according to at least one embodiment of the present disclosure, the odd-numbered layers are the first film layer, the even-numbered layers are the second film layer, and both the bottom layer and the top layer of the dispersion film are the first film layer.

根据本公开的至少一个实施方式的色散薄膜,所述色散薄膜的总厚度为7.803μm至8.292μm,所述第一膜层为Ta2O5,所述第二膜层为SiO2According to at least one embodiment of the present disclosure, the total thickness of the dispersion film is 7.803 μm to 8.292 μm, the first film layer is Ta 2 O 5 , and the second film layer is SiO 2 ;

所述第一膜层和所述第二膜层的总层数为45层;The total number of layers of the first film layer and the second film layer is 45 layers;

由底层至顶层,各个膜层分别对应的膜层厚度为:From the bottom layer to the top layer, the corresponding film thickness of each film layer is:

132-141nm、244-252nm、141-152nm、194-201nm、136-155nm、203-212nm、145-173nm、210-220nm、138-148nm、197-207nm、130-140nm、192-202nm、129-136nm、173-202nm、134-144nm、205-207nm、140-163nm、204-216nm、132-144nm、220-228nm、169-179nm、217-227nm、141-158nm、202-204nm、127-138nm、197-207nm、139-142nm、204-208nm、135-145nm、200-210nm、135-145nm、211-212nm、153-167nm、235-245nm、137-144nm、188-201nm、136-156nm、202-212nm、147-163nm、223-229nm、144-154nm、196-206nm、131-141nm、275-285nm、160-171nm。132-141nm, 244-252nm, 141-152nm, 194-201nm, 136-155nm, 203-212nm, 145-173nm, 210-220nm, 138-148nm, 197-207nm, 130-140nm, 192-202nm,129- 136nm, 173-202nm, 134-144nm, 205-207nm, 140-163nm, 204-216nm, 132-144nm, 220-228nm, 169-179nm, 217-227nm, 141-158nm, 202-204nm, 127-138nm, 197-207nm, 139-142nm, 204-208nm, 135-145nm, 200-210nm, 135-145nm, 211-212nm, 153-167nm, 235-245nm, 137-144nm, 188-201nm, 136-156nm, 202- 212nm, 147-163nm, 223-229nm, 144-154nm, 196-206nm, 131-141nm, 275-285nm, 160-171nm.

根据本公开的至少一个实施方式的色散薄膜,所述色散薄膜通过作为底层的所述第一膜层设置在光纤插芯的端面上。According to the dispersion film in at least one embodiment of the present disclosure, the dispersion film is disposed on the end surface of the fiber ferrule through the first film layer as a bottom layer.

根据本公开的至少一个实施方式的色散薄膜,所述第一膜层与所述第二膜层的形状均为圆片形状,且所述第一膜层的径向尺寸与所述第二膜层的径向尺寸相同。According to the dispersion film according to at least one embodiment of the present disclosure, the shapes of the first film layer and the second film layer are both disc shapes, and the radial dimension of the first film layer is the same as that of the second film layer. The radial dimensions of the layers are the same.

根据本公开的至少一个实施方式的色散薄膜,基于等离子体溅射的方法实现多个所述第一膜层与多个所述第二膜层的交替堆叠。According to the dispersion film in at least one embodiment of the present disclosure, the alternate stacking of multiple first film layers and multiple second film layers is realized based on plasma sputtering.

根据本公开的另一个方面,提供一种光纤插芯,包括:According to another aspect of the present disclosure, a fiber optic ferrule is provided, including:

光纤插芯本体,所述光纤插芯本体具有第一端和第二端,所述第一端形成端面,所述第二端用于插入光纤;An optical fiber ferrule body, the optical fiber ferrule body has a first end and a second end, the first end forms an end face, and the second end is used for inserting an optical fiber;

本公开任一个实施方式的色散薄膜,所述色散薄膜设置在所述光纤插芯本体的所述端面上。According to any one embodiment of the present disclosure, the dispersion film is arranged on the end surface of the optical fiber ferrule body.

根据本公开的至少一个实施方式的光纤插芯,所述光纤插芯本体的所述端面与所述色散薄膜具有匹配的形状。According to the optical fiber ferrule according to at least one embodiment of the present disclosure, the end surface of the optical fiber ferrule body and the dispersion film have matching shapes.

根据本公开的至少一个实施方式的光纤插芯,所述端面为经过研磨抛光处理的端面。In the optical fiber ferrule according to at least one embodiment of the present disclosure, the end face is a ground and polished end face.

根据本公开的至少一个实施方式的光纤插芯,所述光纤插芯本体为陶瓷材质。According to the fiber optic ferrule in at least one embodiment of the present disclosure, the fiber optic ferrule body is made of ceramic material.

根据本公开的又一个方面,提供一种具有全光纤化结构的色散腔镜,包括:According to yet another aspect of the present disclosure, a dispersive cavity mirror with an all-fiberized structure is provided, including:

本公开任一个实施方式的光纤插芯;The optical fiber ferrule of any embodiment of the present disclosure;

无源光纤,所述无源光纤通过所述光纤插芯本体的所述第二端插入所述光纤插芯本体。A passive optical fiber, the passive optical fiber is inserted into the optical fiber ferrule body through the second end of the optical fiber ferrule body.

根据本公开的又一个方面,提供一种激光谐振腔装置,包括:According to yet another aspect of the present disclosure, a laser resonator device is provided, including:

第一插芯,所述第一插芯具有第一端和第二端,所述第一插芯的所述第一端形成端面;a first ferrule having a first end and a second end, the first end of the first ferrule forming an end face;

第二插芯,所述第二插芯具有第一端和第二端,所述第二插芯的第一端与所述第一插芯的第一端对接;a second ferrule, the second ferrule has a first end and a second end, the first end of the second ferrule is docked with the first end of the first ferrule;

第三插芯,所述第三插芯具有第一端和第二端,所述第三插芯的第一端形成端面;a third ferrule, the third ferrule has a first end and a second end, the first end of the third ferrule forms an end face;

色散薄膜,所述色散薄膜设置在所述第一插芯的所述端面上;a dispersion film, the dispersion film is disposed on the end surface of the first ferrule;

增益光纤,所述增益光纤的两端分别插入所述第二插芯的第二端和所述第三插芯的第二端;a gain fiber, the two ends of the gain fiber are respectively inserted into the second end of the second ferrule and the second end of the third ferrule;

半导体可饱和吸收镜,所述半导体可饱和吸收镜设置在所述第三插芯的所述端面上;a semiconductor saturable absorber mirror, the semiconductor saturable absorber mirror is disposed on the end face of the third ferrule;

其中,所述色散薄膜为本公开任一个实施方式的色散薄膜。Wherein, the dispersion film is the dispersion film of any embodiment of the present disclosure.

根据本公开至少一个实施方式的激光谐振腔装置,所述增益光纤的长度小于等于10cm,所述增益光纤的光纤纤芯中掺杂稀土离子,以实现短光纤长度即满足锁模阈值的光增益要求。According to the laser resonator device of at least one embodiment of the present disclosure, the length of the gain fiber is less than or equal to 10 cm, and the fiber core of the gain fiber is doped with rare earth ions to achieve short fiber length, that is, optical gain that meets the mode-locking threshold Require.

根据本公开至少一个实施方式的激光谐振腔装置,当所述增益光纤的长度小于等于3cm时,取消所述第三插芯,所述第二插芯的第二端形成端面,将所述半导体可饱和吸收镜设置在所述第二插芯的所述端面上。According to the laser resonator device in at least one embodiment of the present disclosure, when the length of the gain fiber is less than or equal to 3 cm, the third ferrule is canceled, the second end of the second ferrule forms an end face, and the semiconductor A saturable absorbing mirror is disposed on the end face of the second ferrule.

根据本公开至少一个实施方式的激光谐振腔装置,所述增益光纤为单模光纤、保偏单模光纤、多模光纤或者双包层光纤。In the laser cavity device according to at least one embodiment of the present disclosure, the gain fiber is a single-mode fiber, a polarization-maintaining single-mode fiber, a multimode fiber or a double-clad fiber.

根据本公开至少一个实施方式的激光谐振腔装置,所述增益光纤为掺杂一种稀土离子的光纤或者掺杂两种以上稀土离子的共掺形式光纤。In the laser cavity device according to at least one embodiment of the present disclosure, the gain fiber is a fiber doped with one kind of rare earth ions or a co-doped fiber with more than two kinds of rare earth ions.

根据本公开至少一个实施方式的激光谐振腔装置,所述稀土离子为Yb3+、Er3+、Tm3+或Ho3+等。According to the laser cavity device according to at least one embodiment of the present disclosure, the rare earth ions are Yb 3+ , Er 3+ , Tm 3+ or Ho 3+ .

根据本公开至少一个实施方式的激光谐振腔装置,还包括:The laser cavity device according to at least one embodiment of the present disclosure further includes:

无源光纤,所述无源光纤插入所述第一插芯的所述第二端。a passive optical fiber inserted into the second end of the first ferrule.

根据本公开至少一个实施方式的激光谐振腔装置,还包括:The laser cavity device according to at least one embodiment of the present disclosure further includes:

陶瓷套管,所述陶瓷套管部分地套设在所述第一插芯上且部分地套设在所述第二插芯上,以固定所述第一插芯与所述第二插芯的对接。a ceramic sleeve, the ceramic sleeve is partially sleeved on the first ferrule and partially sleeved on the second ferrule, so as to fix the first ferrule and the second ferrule docking.

根据本公开的又一个方面,提供一种激光器,包括本公开任一个实施方式的具有全光纤化结构的色散腔镜。According to yet another aspect of the present disclosure, a laser is provided, including the dispersive cavity mirror with an all-fiber structure according to any one embodiment of the present disclosure.

根据本公开的再一个方面,提供一种激光器,包括本公开任一个实施方式的激光谐振腔装置。According to still another aspect of the present disclosure, a laser is provided, including the laser resonator device in any one embodiment of the present disclosure.

附图说明Description of drawings

附图示出了本公开的示例性实施方式,并与其说明一起用于解释本公开的原理,其中包括了这些附图以提供对本公开的进一步理解,并且附图包括在本说明书中并构成本说明书的一部分。The accompanying drawings illustrate exemplary embodiments of the present disclosure and, together with the description, serve to explain the principles of the disclosure, are included to provide a further understanding of the disclosure, and are incorporated in and constitute this specification. part of the manual.

图1是本公开的一个实施方式的色散薄膜的结构示意图。FIG. 1 is a schematic structural view of a dispersion film according to an embodiment of the present disclosure.

图2示出了本公开的一个实施方式的光纤插芯及具有全光纤化结构的色散腔镜。FIG. 2 shows a fiber ferrule and a dispersive cavity mirror with an all-fiberized structure according to an embodiment of the present disclosure.

图3是本公开的一个实施方式的激光谐振腔装置的结构示意图。FIG. 3 is a schematic structural diagram of a laser resonator device according to an embodiment of the present disclosure.

图4为本公开的实施例一中色散腔镜的透过率曲线图。FIG. 4 is a transmittance curve diagram of the dispersive cavity mirror in Embodiment 1 of the present disclosure.

图5为本公开的实施例一中调控厚度时色散腔镜的透过率曲线图。FIG. 5 is a graph of the transmittance of the dispersive cavity mirror when the thickness is adjusted in Embodiment 1 of the present disclosure.

图6为本公开的实施例一中获得的1GHz飞秒激光光谱图。FIG. 6 is a spectrum diagram of a 1 GHz femtosecond laser obtained in Embodiment 1 of the present disclosure.

图7为本公开的实施例一中获得的1GHz飞秒激光自相关曲线图。FIG. 7 is an autocorrelation curve of a 1 GHz femtosecond laser obtained in Embodiment 1 of the present disclosure.

图8为本公开的实施例二中获得的2.2GHz飞秒激光光谱图。FIG. 8 is a spectrum diagram of a 2.2 GHz femtosecond laser obtained in Example 2 of the present disclosure.

图9为本公开的实施例二中获得的2.2GHz飞秒激光自相关曲线图。FIG. 9 is an autocorrelation graph of the 2.2 GHz femtosecond laser obtained in Embodiment 2 of the present disclosure.

图10为本公开的实施例三中获得的3.3GHz飞秒激光光谱图。FIG. 10 is a spectrum diagram of a 3.3 GHz femtosecond laser obtained in Example 3 of the present disclosure.

图11为本公开的实施例三中获得的3.3GHz飞秒激光自相关曲线图。FIG. 11 is an autocorrelation curve of the 3.3 GHz femtosecond laser obtained in Embodiment 3 of the present disclosure.

图12为本公开的实施例三中获得的3.3GHz飞秒激光时域脉冲图。FIG. 12 is a time-domain pulse diagram of a 3.3 GHz femtosecond laser obtained in Embodiment 3 of the present disclosure.

具体实施方式Detailed ways

下面结合附图和实施方式对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施方式仅用于解释相关内容,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分。The present disclosure will be further described in detail below with reference to the drawings and embodiments. It can be understood that the specific implementation manners described here are only used to explain relevant content, rather than to limit the present disclosure. It should also be noted that, for ease of description, only parts related to the present disclosure are shown in the drawings.

需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。下面将参考附图并结合实施方式来详细说明本公开的技术方案。It should be noted that, in the case of no conflict, the implementation modes and the features in the implementation modes in the present disclosure can be combined with each other. The technical solutions of the present disclosure will be described in detail below with reference to the accompanying drawings and in combination with implementation manners.

除非另有说明,否则示出的示例性实施方式/实施例将被理解为提供可以在实践中实施本公开的技术构思的一些方式的各种细节的示例性特征。因此,除非另有说明,否则在不脱离本公开的技术构思的情况下,各种实施方式/实施例的特征可以另外地组合、分离、互换和/或重新布置。Unless otherwise specified, the illustrated exemplary embodiments/embodiments are to be understood as exemplary features providing various details of some manner in which the technical idea of the present disclosure can be implemented in practice. Therefore, unless otherwise stated, the features of various embodiments/embodiments may be additionally combined, separated, interchanged, and/or rearranged without departing from the technical concept of the present disclosure.

在附图中使用交叉影线和/或阴影通常用于使相邻部件之间的边界变得清晰。如此,除非说明,否则交叉影线或阴影的存在与否均不传达或表示对部件的具体材料、材料性质、尺寸、比例、示出的部件之间的共性和/或部件的任何其它特性、属性、性质等的任何偏好或者要求。此外,在附图中,为了清楚和/或描述性的目的,可以夸大部件的尺寸和相对尺寸。当可以不同地实施示例性实施例时,可以以不同于所描述的顺序来执行具体的工艺顺序。例如,可以基本同时执行或者以与所描述的顺序相反的顺序执行两个连续描述的工艺。此外,同样的附图标记表示同样的部件。The use of cross-hatching and/or shading in the figures is generally used to clarify the boundaries between adjacent features. As such, unless stated otherwise, the presence or absence of cross-hatching or shading conveys or indicates no specific material, material properties, dimensions, proportions, commonality between the illustrated components, and/or any other characteristic of the components, Any preferences or requirements for attributes, properties, etc. Also, in the drawings, the size and relative sizes of components may be exaggerated for clarity and/or descriptive purposes. While exemplary embodiments may be implemented differently, a specific process sequence may be performed in an order different from that described. For example, two consecutively described processes may be performed substantially simultaneously or in an order reverse to that described. In addition, the same reference numerals denote the same components.

当一个部件被称作“在”另一部件“上”或“之上”、“连接到”或“结合到”另一部件时,该部件可以直接在所述另一部件上、直接连接到或直接结合到所述另一部件,或者可以存在中间部件。然而,当部件被称作“直接在”另一部件“上”、“直接连接到”或“直接结合到”另一部件时,不存在中间部件。为此,术语“连接”可以指物理连接、电气连接等,并且具有或不具有中间部件。When an element is referred to as being "on" or "over", "connected to" or "coupled to" another element, the element may be directly on, directly connected to, or Or directly bonded to the other component, or intermediate components may be present. However, when an element is referred to as being "directly on," "directly connected to," or "directly coupled to" another element, there are no intervening elements present. To this end, the term "connected" may refer to a physical connection, an electrical connection, etc., with or without intervening components.

为了描述性目的,本公开可使用诸如“在……之下”、“在……下方”、“在……下”、“下”、“在……上方”、“上”、“在……之上”、“较高的”和“侧(例如,在“侧壁”中)”等的空间相对术语,从而来描述如附图中示出的一个部件与另一(其它)部件的关系。除了附图中描绘的方位之外,空间相对术语还意图包含设备在使用、操作和/或制造中的不同方位。例如,如果附图中的设备被翻转,则被描述为“在”其它部件或特征“下方”或“之下”的部件将随后被定位为“在”所述其它部件或特征“上方”。因此,示例性术语“在……下方”可以包含“上方”和“下方”两种方位。此外,设备可被另外定位(例如,旋转90度或者在其它方位处),如此,相应地解释这里使用的空间相对描述语。For descriptive purposes, this disclosure may use terms such as "under", "beneath", "below", "under", "above", "on", "on" ... above", "higher" and "side (e.g., in "side walls")", etc., to describe the relationship between one component and another (other) component as shown in the drawings relation. Spatially relative terms are intended to encompass different orientations of the device in use, operation and/or manufacture in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as "below" or "beneath" other elements or features would then be oriented "above" the other elements or features. Thus, the exemplary term "below" can encompass both an orientation of "above" and "beneath". In addition, the device may be otherwise positioned (eg, rotated 90 degrees or at other orientations), and as such, the spatially relative descriptors used herein are interpreted accordingly.

这里使用的术语是为了描述具体实施例的目的,而不意图是限制性的。如这里所使用的,除非上下文另外清楚地指出,否则单数形式“一个(种、者)”和“所述(该)”也意图包括复数形式。此外,当在本说明书中使用术语“包含”和/或“包括”以及它们的变型时,说明存在所陈述的特征、整体、步骤、操作、部件、组件和/或它们的组,但不排除存在或附加一个或更多个其它特征、整体、步骤、操作、部件、组件和/或它们的组。还要注意的是,如这里使用的,术语“基本上”、“大约”和其它类似的术语被用作近似术语而不用作程度术语,如此,它们被用来解释本领域普通技术人员将认识到的测量值、计算值和/或提供的值的固有偏差。The terminology used herein is for the purpose of describing particular embodiments and is not intended to be limiting. As used herein, the singular forms "a" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. In addition, when the terms "comprising" and/or "comprising" and their variants are used in this specification, it means that the stated features, integers, steps, operations, parts, components and/or their groups exist, but do not exclude One or more other features, integers, steps, operations, parts, components and/or groups thereof are present or in addition. Note also that, as used herein, the terms "substantially," "about," and other similar terms are used as terms of approximation and not as terms of degree, and as such, they are used to explain what one of ordinary skill in the art would recognize. Inherent deviations from measured, calculated and/or supplied values.

图1是本公开的一个实施方式的色散薄膜的结构示意图。FIG. 1 is a schematic structural view of a dispersion film according to an embodiment of the present disclosure.

参考图1,本公开的色散薄膜包括:Referring to Fig. 1, the dispersion film of the present disclosure includes:

多个第一膜层,第一膜层具有第一折射率;a plurality of first film layers, the first film layer has a first refractive index;

多个第二膜层,第二膜层具有第二折射率;a plurality of second film layers, the second film layers have a second refractive index;

第一膜层与第二膜层交替地堆叠,以形成色散薄膜;the first film layer and the second film layer are alternately stacked to form a dispersion film;

其中,第一折射率大于第二折射率;Wherein, the first refractive index is greater than the second refractive index;

色散薄膜的总厚度为微米级;The total thickness of the dispersion film is in the order of microns;

第一膜层的总厚度小于第二膜层的总厚度。The total thickness of the first film layer is smaller than the total thickness of the second film layer.

本公开的色散薄膜,通过上述结构设计,兼备了色散和二色分光功能。The dispersion film of the present disclosure has the functions of dispersion and dichromatic light separation through the above structural design.

参考图1,本公开的色散薄膜可以设置在光纤插芯的端面上,以端面为基底,交替地设置第一薄膜和第二薄膜,图1中以Ta2O5作为第一薄膜,以SiO2作为第二薄膜,形成了本公开优选实施方式的色散薄膜。Referring to Fig. 1, the dispersion film of the present disclosure can be arranged on the end face of the optical fiber ferrule, and the end face is used as the base, and the first film and the second film are alternately arranged. In Fig. 1, Ta2O5 is used as the first film, and SiO 2 As the second film, the dispersion film of the preferred embodiment of the present disclosure was formed.

在本公开的一些实施方式中,第一膜层还可以是Nb2O5、HfO2等,本领域技术人员在本公开技术方案的启示下,对第一膜层的材料和第二膜层的材料进行选择/调整,均落入本公开的保护范围。In some embodiments of the present disclosure, the first film layer can also be Nb 2 O 5 , HfO 2 , etc., those skilled in the art under the inspiration of the technical solution of the present disclosure, the material of the first film layer and the second film layer The selection/adjustment of materials all fall within the protection scope of the present disclosure.

图1中,白色膜层代表第一膜层(高折射率膜层Ta2O5),黑色膜层代表第二膜层(低折射率膜层SiO2)。In FIG. 1 , the white film layer represents the first film layer (high refractive index film layer Ta 2 O 5 ), and the black film layer represents the second film layer (low refractive index film layer SiO 2 ).

参考图1,优选地,本公开的色散薄膜的奇数层为第一膜层,偶数层为第二膜层,且色散薄膜的底层和顶层均为第一膜层。Referring to FIG. 1 , preferably, the odd-numbered layers of the dispersion film of the present disclosure are the first film layer, the even-numbered layers are the second film layer, and both the bottom layer and the top layer of the dispersion film are the first film layer.

对于本公开的色散薄膜,优选地,第一膜层与第二膜层的形状均为圆片形状,且第一膜层的径向尺寸与第二膜层的径向尺寸相同。For the dispersion film of the present disclosure, preferably, both the first film layer and the second film layer are in the shape of a disk, and the radial dimension of the first film layer is the same as that of the second film layer.

参考图1,本公开的色散薄膜能够通过作为底层的第一膜层设置在光纤插芯的端面上。Referring to FIG. 1 , the dispersion film of the present disclosure can be disposed on the end face of the fiber ferrule through the first film layer as the bottom layer.

本公开的色散薄膜,可以基于等离子体溅射的方法实现多个第一膜层与多个第二膜层的交替堆叠。The dispersion thin film of the present disclosure can realize alternate stacking of a plurality of first film layers and a plurality of second film layers based on a plasma sputtering method.

本公开的色散薄膜,可以基于所要获得的色散薄膜的中心波长及群速度延迟色散的具体要求,设定色散量、反射率、带宽目标值参数,进而对第一膜层和第二膜层的材质、层数、膜层随厚度的分布进行设置。For the dispersion film of the present disclosure, based on the central wavelength of the dispersion film to be obtained and the specific requirements of group velocity delay dispersion, the dispersion amount, reflectivity, and bandwidth target value parameters can be set, and then the first film layer and the second film layer The material, the number of layers, and the distribution of the film layer are set according to the thickness.

参考图1,优选地,本公开的色散薄膜的总厚度为7.803μm至8.292μm,第一膜层为Ta2O5,第二膜层为SiO2Referring to FIG. 1 , preferably, the total thickness of the dispersion film of the present disclosure is 7.803 μm to 8.292 μm, the first film layer is Ta 2 O 5 , and the second film layer is SiO 2 ;

第一膜层和第二膜层的总层数为45层;The total number of layers of the first film layer and the second film layer is 45 layers;

由底层至顶层,各个膜层分别对应的膜层厚度为:From the bottom layer to the top layer, the corresponding film thickness of each film layer is:

132-141nm、244-252nm、141-152nm、194-201nm、136-155nm、203-212nm、145-173nm、210-220nm、138-148nm、197-207nm、130-140nm、192-202nm、129-136nm、173-202nm、134-144nm、205-207nm、140-163nm、204-216nm、132-144nm、220-228nm、169-179nm、217-227nm、141-158nm、202-204nm、127-138nm、197-207nm、139-142nm、204-208nm、135-145nm、200-210nm、135-145nm、211-212nm、153-167nm、235-245nm、137-144nm、188-201nm、136-156nm、202-212nm、147-163nm、223-229nm、144-154nm、196-206nm、131-141nm、275-285nm、160-171nm。132-141nm, 244-252nm, 141-152nm, 194-201nm, 136-155nm, 203-212nm, 145-173nm, 210-220nm, 138-148nm, 197-207nm, 130-140nm, 192-202nm,129- 136nm, 173-202nm, 134-144nm, 205-207nm, 140-163nm, 204-216nm, 132-144nm, 220-228nm, 169-179nm, 217-227nm, 141-158nm, 202-204nm, 127-138nm, 197-207nm, 139-142nm, 204-208nm, 135-145nm, 200-210nm, 135-145nm, 211-212nm, 153-167nm, 235-245nm, 137-144nm, 188-201nm, 136-156nm, 202- 212nm, 147-163nm, 223-229nm, 144-154nm, 196-206nm, 131-141nm, 275-285nm, 160-171nm.

其中,第一膜层的总厚度为3.211-3.499μm,第二膜层的总厚度为4.592-4.793μm。Wherein, the total thickness of the first film layer is 3.211-3.499 μm, and the total thickness of the second film layer is 4.592-4.793 μm.

图1中示出的色散薄膜具有以下光学特性:薄膜对泵浦光波长973-980nm透过率T>80%,对于信号光波长反射率R>60%,在1010-1080nm波长范围,群速度色散<-800fs2The dispersion film shown in Figure 1 has the following optical properties: the transmittance T>80% of the film to the pump light wavelength 973-980nm, and the reflectance R>60% to the signal light wavelength, in the wavelength range of 1010-1080nm, the group velocity Dispersion <-800fs 2 .

图4和图5为在单个膜层厚度范围内,微调膜层厚度对应的透过率曲线。Figure 4 and Figure 5 are the transmittance curves corresponding to the fine-tuning of the film thickness within the range of a single film thickness.

如果仅利用本公开的色散薄膜的二色分光功能,其可作为构成激光谐振腔的入射腔镜,来构建全光纤谐振腔结构,如果仅利用色散管理功能,其可作为光学系统中色散调控元件。If only the dichroic light-splitting function of the dispersion film of the present disclosure is used, it can be used as an incident cavity mirror constituting a laser resonator to construct an all-fiber resonator structure; if only the dispersion management function is used, it can be used as a dispersion control element in an optical system .

图2示出了本公开的一个实施方式的具有全光纤化结构的色散腔镜的结构。图2中还示出了光纤插芯。FIG. 2 shows the structure of a dispersive cavity mirror with an all-fiberized structure according to an embodiment of the present disclosure. Also shown in FIG. 2 is a fiber optic ferrule.

参考图2,本公开的光纤插芯包括:光纤插芯本体200和色散薄膜100。Referring to FIG. 2 , the fiber optic ferrule of the present disclosure includes: a fiber optic ferrule body 200 and a dispersion film 100 .

其中,光纤插芯本体200具有第一端和第二端,第一端形成端面,第二端用于插入光纤300;色散薄膜100为本公开上文描述的任一个实施方式的色散薄膜,色散薄膜100设置在光纤插芯本体200的端面上。Wherein, the fiber ferrule body 200 has a first end and a second end, the first end forms an end face, and the second end is used for inserting the optical fiber 300; the dispersion film 100 is the dispersion film of any embodiment described above in the present disclosure, and the dispersion The film 100 is disposed on the end face of the fiber optic ferrule body 200 .

优选地,光纤插芯本体200的端面与色散薄膜100具有匹配的形状。Preferably, the end face of the fiber ferrule body 200 and the dispersion film 100 have matching shapes.

其中,优选地,光纤插芯本体200的第一端的端面为经过研磨抛光处理的端面。Wherein, preferably, the end face of the first end of the fiber optic ferrule body 200 is a ground and polished end face.

本公开描述的光纤插芯的光纤插芯本体200的材质优选为陶瓷材质。The material of the fiber ferrule body 200 of the fiber ferrule described in the present disclosure is preferably a ceramic material.

在本公开的一些实施方式中,可以制作固定光纤插芯本体的镀膜夹具,使之既可与镀膜机操作平台适配以在光纤插芯本体的端面上制备色散薄膜,又可固定本公开上文描述的光纤插芯本体。In some embodiments of the present disclosure, the coating fixture for fixing the fiber ferrule body can be made, so that it can be adapted to the operating platform of the coating machine to prepare a dispersion film on the end face of the fiber ferrule body, and can also be fixed on the fiber optic ferrule body. The fiber optic ferrule body described in this article.

基于等离子体溅射的方法在光纤插芯本体200的端面制备色散薄膜100的过程中,色散薄膜的各层的厚度可以通过控制镀膜时间,使得各个膜层的厚度误差小于0.5nm。In the process of preparing the dispersion film 100 on the end face of the fiber ferrule body 200 based on plasma sputtering, the thickness of each layer of the dispersion film can be controlled by coating time so that the thickness error of each film layer is less than 0.5nm.

其中,等离子体溅射镀膜过程中的厚度误差和不均匀性可以通过控制靶材和光纤插芯本体端面的距离、溅射角度,并结合掩模版来修正。Among them, the thickness error and non-uniformity in the plasma sputtering coating process can be corrected by controlling the distance between the target and the end face of the fiber ferrule body, the sputtering angle, and combining the mask.

优选地,本公开的具有全光纤化结构的色散腔镜包括:上文描述的任一实施方式的光纤插芯以及无源光纤300。Preferably, the dispersive cavity mirror with an all-fiberized structure of the present disclosure includes: the fiber ferrule and the passive optical fiber 300 in any of the above-mentioned embodiments.

参考图2,无源光纤300通过光纤插芯本体200的第二端插入光纤插芯本体200。Referring to FIG. 2 , the passive optical fiber 300 is inserted into the fiber ferrule body 200 through the second end of the fiber ferrule body 200 .

图3示出了本公开的一个实施方式的激光谐振腔装置,包括:FIG. 3 shows a laser resonator device according to an embodiment of the present disclosure, including:

第一插芯201,第一插芯201具有第一端(右端)和第二端(左端),第一插芯201的第一端形成端面(图3中的右端);The first ferrule 201, the first ferrule 201 has a first end (right end) and a second end (left end), the first end of the first ferrule 201 forms an end face (right end in FIG. 3 );

第二插芯202,第二插芯202具有第一端(左端)和第二端(右端),第二插芯202的第一端与第一插芯201的第一端对接;The second ferrule 202, the second ferrule 202 has a first end (left end) and a second end (right end), the first end of the second ferrule 202 is docked with the first end of the first ferrule 201;

第三插芯203,第三插芯203具有第一端(右端)和第二端(左端),第三插芯203的第一端形成端面;The third ferrule 203, the third ferrule 203 has a first end (right end) and a second end (left end), the first end of the third ferrule 203 forms an end face;

色散薄膜100,色散薄膜100设置在第一插芯201的上述端面上;Dispersion film 100, the dispersion film 100 is arranged on the above-mentioned end surface of the first ferrule 201;

增益光纤400,增益光纤400的两端分别插入第二插芯202的第二端和第三插芯203的第二端;A gain fiber 400, the two ends of the gain fiber 400 are respectively inserted into the second end of the second ferrule 202 and the second end of the third ferrule 203;

半导体可饱和吸收镜600,半导体可饱和吸收镜600设置在第三插芯203的上述端面上;a semiconductor saturable absorption mirror 600, the semiconductor saturable absorption mirror 600 is arranged on the above-mentioned end surface of the third ferrule 203;

其中,色散薄膜100为本公开上文描述的任一实施方式的色散薄膜100。Wherein, the dispersion film 100 is the dispersion film 100 of any embodiment described above in the present disclosure.

优选地,本公开的激光谐振腔装置的增益光纤400的长度小于等于10cm,增益光纤400的光纤纤芯中掺杂稀土离子,以实现短光纤长度即满足锁模阈值的光增益要求。Preferably, the length of the gain fiber 400 of the laser resonator device of the present disclosure is less than or equal to 10 cm, and the fiber core of the gain fiber 400 is doped with rare earth ions to achieve a short fiber length that meets the optical gain requirement of the mode-locking threshold.

其中,增益光纤400可以为单模光纤、保偏单模光纤、多模光纤或者双包层光纤等。Wherein, the gain fiber 400 may be a single-mode fiber, a polarization-maintaining single-mode fiber, a multi-mode fiber, or a double-clad fiber.

上文描述的稀土离子可以为Yb3+、Er3+、Tm3+、Ho3+中的一种或共掺形式。The rare earth ions described above can be one of Yb 3+ , Er 3+ , Tm 3+ , Ho 3+ or a co-doped form.

在本公开的一些实施方式中,当增益光纤的长度小于等于3cm时,取消第三插芯203,第二插芯202的第二端形成端面,将半导体可饱和吸收镜600设置在第二插芯202的端面上。In some embodiments of the present disclosure, when the length of the gain fiber is less than or equal to 3 cm, the third ferrule 203 is canceled, the second end of the second ferrule 202 forms an end face, and the semiconductor saturable absorbing mirror 600 is arranged on the second ferrule. The end face of the core 202.

本公开的增益光纤可以为掺杂一种稀土离子的光纤或者掺杂两种以上稀土离子的共掺形式光纤。本领域技术人员在本公开技术方案的启示下,可以对增益光纤400的类型和掺杂的稀土离子种类进行选择/调整,均落入本公开的保护范围。The gain fiber of the present disclosure may be a fiber doped with one kind of rare earth ions or a co-doped fiber doped with more than two kinds of rare earth ions. Under the enlightenment of the technical solution of the present disclosure, those skilled in the art can select/adjust the type of gain fiber 400 and the type of doped rare earth ions, all of which fall within the protection scope of the present disclosure.

优选地,参考图3,本公开的激光谐振腔装置,还包括无源光纤300,无源光纤300插入第一插芯201的第二端。Preferably, referring to FIG. 3 , the laser resonator device of the present disclosure further includes a passive optical fiber 300 inserted into the second end of the first ferrule 201 .

在本公开的一些实施方式中,本公开的激光谐振腔装置,参考图3,还包括陶瓷套管500,陶瓷套管500部分地套设在第一插芯201上且部分地套设在第二插芯202上,以固定第一插芯201与第二插芯202的对接。In some embodiments of the present disclosure, the laser resonator device of the present disclosure, referring to FIG. 3 , further includes a ceramic sleeve 500. The ceramic sleeve 500 is partially sleeved on the first on the second ferrule 202 to fix the connection between the first ferrule 201 and the second ferrule 202 .

由上文描述可知,基于本公开的色散薄膜100,能够构建高重频飞秒光纤激光谐振腔装置。It can be known from the above description that based on the dispersion film 100 of the present disclosure, a high repetition frequency femtosecond fiber laser resonator device can be constructed.

本公开的激光谐振腔装置产生的激光通过无源光纤300熔接的波分复用器(未示出)输出腔外。The laser generated by the laser resonator device of the present disclosure is output out of the cavity through a wavelength division multiplexer (not shown) fused to the passive optical fiber 300 .

在腔外可以实施棱镜对去啁啾,以获得超窄的脉冲输出。Prism pair dechirping can be implemented outside the cavity to obtain ultra-narrow pulse output.

参考图3,本公开的基于色散薄膜构成的腔镜可通过外围套管(即上文描述的陶瓷套管500)固定和连接,与超快光纤谐振腔兼容,保持激光谐振腔的全光纤化结构。Referring to FIG. 3 , the cavity mirror based on the dispersion film of the present disclosure can be fixed and connected through a peripheral sleeve (ie, the ceramic sleeve 500 described above), compatible with the ultrafast fiber resonator, and maintains the full fiberization of the laser resonator structure.

本公开的激光谐振腔装置,在1μm波段,基于全光纤化的整体结构,能够实现以下指标的激光输出:脉冲重复频率为1GHz,最短脉冲宽度为364fs,锁模光谱线宽为7.6nm的脉冲激光输出;脉冲重复频率为2.2GHz,最短脉冲宽度为283fs,锁模光谱线宽为8.25nm的脉冲激光输出;重复频率为3.3GHz,最短脉冲宽度为266fs,锁模光谱线宽为9.6nm的脉冲激光输出。The laser resonator device of the present disclosure, in the 1 μm wave band, based on the overall structure of all-fiber, can realize the laser output of the following indicators: the pulse repetition frequency is 1 GHz, the shortest pulse width is 364 fs, and the mode-locked spectrum line width is 7.6 nm. Laser output; the pulse repetition frequency is 2.2GHz, the shortest pulse width is 283fs, the pulse laser output of the mode-locked spectrum linewidth is 8.25nm; the repetition frequency is 3.3GHz, the shortest pulse width is 266fs, the mode-locked spectrum linewidth is 9.6nm Pulse laser output.

此外,本公开的激光谐振腔装置,不仅能够在厘米量级的超短谐振腔中实现1GHz以上重频激光脉冲输出,激光输出的稳定性也大幅度提升。In addition, the laser resonator device disclosed in the present disclosure can not only realize laser pulse output with repetition frequency above 1 GHz in centimeter-level ultrashort resonator, but also greatly improve the stability of laser output.

通过本公开上文描述的独特的色散薄膜的结构设计,其表现出一定的光学特性,可应用在高重频飞秒光纤激光谐振腔。本公开的色散薄膜首次应用于光纤插芯的端面,兼备了群速度延迟色散和二色分光的功能。Through the structural design of the unique dispersion film described above in the present disclosure, it exhibits certain optical properties and can be applied to high repetition frequency femtosecond fiber laser resonators. The dispersion film of the present disclosure is applied to the end face of an optical fiber ferrule for the first time, and has both the functions of group velocity delay dispersion and dichromatic light splitting.

相比于现有技术中的大尺寸玻璃基片,本公开的色散薄膜应用在激光谐振腔,可以维持谐振腔整体的全光纤化结构,提高飞秒激光运转的可靠性和稳定性,尤其适用于诸如激光手术等对稳定性要求高的应用领域。Compared with the large-size glass substrate in the prior art, the dispersion film of the present disclosure is applied to the laser resonator, which can maintain the overall all-fiber structure of the resonator, improve the reliability and stability of femtosecond laser operation, and is especially suitable for For applications requiring high stability such as laser surgery.

本公开的激光谐振腔装置的尺寸为厘米量级,有助于提高光纤激光器的集成化。The size of the laser resonant cavity device disclosed in the present disclosure is on the order of centimeters, which helps to improve the integration of fiber lasers.

本公开还提供了一种激光器。在本公开的一些实施方式中,本公开的激光器,包括本公开任意一个实施方式的具有全光纤化结构的色散腔镜(参考图2)。在本公开的另一些实施方式中,本公开的激光器,包括本公开任意一个实施方式的激光谐振腔装置(参考图3)。The present disclosure also provides a laser. In some embodiments of the present disclosure, the laser of the present disclosure includes a dispersive cavity mirror with an all-fiber structure in any one of the embodiments of the present disclosure (refer to FIG. 2 ). In other embodiments of the present disclosure, the laser of the present disclosure includes the laser resonator device of any one of the embodiments of the present disclosure (refer to FIG. 3 ).

下文结合更具体的实施例对本公开的色散薄膜、光纤插芯、色散腔镜、激光谐振腔装置及激光器进行说明。The dispersion film, fiber ferrule, dispersion cavity mirror, laser resonator device and laser of the present disclosure will be described below in conjunction with more specific embodiments.

实施例一Embodiment one

首先在纳米氧化锆插芯中装载并固定美国康宁公司型号为Hi1060的无源光纤,插芯端面横截面形状为圆形,内径为125μm,外直径为2.5mm,进一步对插芯端面作研磨抛光处理。First, load and fix the passive optical fiber Hi1060 of the American Corning Company in the nano-zirconia ferrule. The cross-sectional shape of the end face of the ferrule is circular, the inner diameter is 125 μm, and the outer diameter is 2.5 mm. Further, the end face of the ferrule is ground and polished. deal with.

以插芯端面为基底,自基底开始依次为第一层高折射率膜层Ta2O5、第二层低折射率膜层SiO2、第三层高折射率膜层Ta2O5、第四层低折射率膜层SiO2、第五层高折射率膜层Ta2O5、第六层低折射率膜层SiO2、第七层高折射率膜层Ta2O5、第八层低折射率膜层SiO2、第九层高折射率膜层Ta2O5、第十层低折射率膜层SiO2、第十一层高折射率膜层Ta2O5、第十二层低折射率膜层SiO2、第十三层高折射率膜层Ta2O5、第十四层低折射率膜层SiO2、第十五层高折射率膜层Ta2O5、第十六层低折射率膜层SiO2、第十七层高折射率膜层Ta2O5、第十八层低折射率膜层SiO2、第十九层高折射率膜层Ta2O5、第二十层低折射率膜层SiO2、第二十一层高折射率膜层Ta2O5、第二十二层低折射率膜层SiO2、第二十三层高折射率膜层Ta2O5、第二十四层低折射率膜层SiO2、第二十五层高折射率膜层Ta2O5、第二十六层低折射率膜层SiO2、第二十七层高折射率膜层Ta2O5、第二十八层低折射率膜层SiO2、第二十九层高折射率膜层Ta2O5、第三十层低折射率膜层SiO2、第三十一层高折射率膜层Ta2O5、第三十二层低折射率膜层SiO2、第三十三层高折射率膜层Ta2O5、第三十四层低折射率膜层SiO2、第三十五层高折射率膜层Ta2O5、第三十六层低折射率膜层SiO2、第三十七层高折射率膜层Ta2O5、第三十八层低折射率膜层SiO2、第三十九层高折射率膜层Ta2O5、第四十层低折射率膜层SiO2、第四十一层高折射率膜层Ta2O5、第四十二层低折射率膜层SiO2、第四十三层高折射率膜层Ta2O5、第四十四层低折射率膜层SiO2、第四十五层高折射率膜层Ta2O5,各膜层分别对应的膜层厚度为132-141nm、244-252nm、141-152nm、194-201nm、136-155nm、203-212nm、145-173nm、210-220nm、138-148nm、197-207nm、130-140nm、192-202nm、129-136nm、173-202nm、134-144nm、205-207nm、140-163nm、204-216nm、132-144nm、220-228nm、169-179nm、217-227nm、141-158nm、202-204nm、127-138nm、197-207nm、139-142nm、204-208nm、135-145nm、200-210nm、135-145nm、211-212nm、153-167nm、235-245nm、137-144nm、188-201nm、136-156nm、202-212nm、147-163nm、223-229nm、144-154nm、196-206nm、131-141nm、275-285nm、160-171nm。Taking the end face of the ferrule as the base, starting from the base, the first layer of high-refractive index film layer Ta 2 O 5 , the second layer of low-refractive index film layer SiO 2 , the third layer of high-refractive index film layer Ta 2 O 5 , the second layer of Four layers of low refractive index film SiO 2 , fifth layer of high refractive index film layer Ta 2 O 5 , sixth layer of low refractive index film layer SiO 2 , seventh layer of high refractive index film layer Ta 2 O 5 , eighth layer Low refractive index film layer SiO 2 , ninth high refractive index film layer Ta 2 O 5 , tenth low refractive index film layer SiO 2 , eleventh high refractive index film layer Ta 2 O 5 , twelfth layer Low-refractive index film layer SiO 2 , thirteenth high-refractive-index film layer Ta 2 O 5 , fourteenth low-refractive-index film layer SiO 2 , fifteenth high-refractive index film layer Ta 2 O 5 , tenth Six layers of low-refractive index SiO 2 , seventeenth high-refractive-index Ta 2 O 5 , eighteenth low-refractive-index SiO 2 , nineteenth high-refractive index Ta 2 O 5 , The twentieth low-refractive index film layer SiO 2 , the twenty-first high-refractive index film layer Ta 2 O 5 , the twenty-second low-refractive index film layer SiO 2 , the twenty-third high-refractive index film layer Ta 2 O 5 , the twenty-fourth low-refractive index film layer SiO 2 , the twenty-fifth high-refractive index film layer Ta 2 O 5 , the twenty-sixth low-refractive index film layer SiO 2 , the twenty-seventh High refractive index layer Ta 2 O 5 , twenty-eighth low refractive index layer SiO 2 , twenty-ninth high refractive index layer Ta 2 O 5 , thirtieth low refractive index layer SiO 2 , the thirty-first layer of high refractive index film layer Ta 2 O 5 , the thirty-second layer of low refractive index film layer SiO 2 , the thirty-third layer of high refractive index film layer Ta 2 O 5 , the thirty-fourth layer of low Refractive index film layer SiO 2 , thirty-fifth high-refractive index film layer Ta 2 O 5 , thirty-sixth low-refractive index film layer SiO 2 , thirty-seventh high-refractive index film layer Ta 2 O 5 , Thirty-eighth low-refractive index film layer SiO 2 , thirty-ninth high-refractive index film layer Ta 2 O 5 , fortieth low-refractive index film layer SiO 2 , forty-first high-refractive index film layer Ta 2 O 5 , the forty-second low-refractive index film layer SiO 2 , the forty-third high-refractive index film layer Ta 2 O 5 , the forty-fourth low-refractive index film layer SiO 2 , the forty-fifth High refractive index film layer Ta 2 O 5 , the film thickness corresponding to each film layer is 132-141nm, 244-252nm, 141-152nm, 194-201nm, 136-155nm, 203-212nm, 145-173nm, 210nm -220nm, 138-148nm, 197-207nm, 130-140nm, 192-202nm, 129-136nm, 173-202nm, 134-144nm, 205-207nm, 140-163nm, 204-216nm, 132-144nm, 220-228nm , 169-179nm, 217-227nm, 141-158nm, 202-204nm, 127-138nm, 197-207nm, 139-142nm, 204-208nm, 135-145nm, 200-210nm, 135-145nm, 211-212nm, 153nm -167nm, 235-245nm, 137-144nm, 188-201nm, 136-156nm, 202-212nm, 147-163nm, 223-229nm, 144-154nm, 196-206nm, 131-141nm, 275-285nm, 160-171nm .

制作固定插芯的镀膜夹具,使之既可与镀膜机操作平台适配,又可固定上述经过抛光处理的插芯。Make a coating fixture for fixing the ferrule, so that it can be adapted to the operating platform of the coating machine, and can also fix the above-mentioned polished ferrule.

利用等离子体溅射方法完成Ta2O5和SiO2相交替设置的多层膜制备。薄膜厚度通过时间控制,多层膜的各膜层厚度误差小于0.5nm。溅射镀膜过程中的厚度误差和不均匀性通过控制靶材和光纤端面的距离以及溅射角度,并结合特殊掩模版来修正。A multi-layer film with alternating Ta 2 O 5 and SiO 2 phases was prepared by plasma sputtering. The thickness of the film is controlled by time, and the thickness error of each film layer of the multilayer film is less than 0.5nm. Thickness errors and inhomogeneities in the sputtering coating process are corrected by controlling the distance between the target and the end face of the fiber and the sputtering angle, combined with a special mask.

本实施例的色散薄膜的光学特性为:在1040nm的群延迟色散为-761fs2。对974nm泵浦光的透射率为99%,对信号光1040nm的反射率为89.3%。The optical properties of the dispersion film of this embodiment are: the group delay dispersion at 1040 nm is -761 fs 2 . The transmittance to 974nm pump light is 99%, and the reflectance to signal light 1040nm is 89.3%.

本实施例的色散薄膜能够用于构建高重频飞秒光纤激光谐振腔,参考图3,色散薄膜100设置在第一插芯201的端面上,第一插芯201的外径为2.5mm,通过陶瓷套管500,色散薄膜100与第二插芯202的端面对接,以保证光的低损耗传输。The dispersion film of this embodiment can be used to construct a high repetition frequency femtosecond fiber laser resonator. Referring to FIG. Through the ceramic sleeve 500, the dispersion film 100 is connected to the end face of the second ferrule 202, so as to ensure low-loss transmission of light.

本实施例使用商用掺Yb石英增益光纤400,其第一端插接第二插芯202,增益光纤400的第二端插接第三插芯203,第三插芯203的端面与半导体可饱和吸收镜600对接,本实施例采用环氧树脂将半导体可饱和吸收镜600粘接到第三插芯203端面。本实施例的半导体可饱和吸收镜600的调制深度为5%、饱和通量为40μJ/cm2、恢复时间为1ps。本实施例中的增益光纤400的长度为9.8cm,本实施例的所有插芯的端面做镜面抛光处理。This embodiment uses commercial Yb-doped quartz gain fiber 400, the first end of which is plugged into the second ferrule 202, the second end of the gain fiber 400 is plugged into the third ferrule 203, and the end face of the third ferrule 203 is saturable with the semiconductor The absorbing mirror 600 is butted. In this embodiment, epoxy resin is used to bond the semiconductor saturable absorbing mirror 600 to the end face of the third ferrule 203 . The modulation depth of the semiconductor saturable absorbing mirror 600 in this embodiment is 5%, the saturation flux is 40 μJ/cm 2 , and the recovery time is 1 ps. The length of the gain fiber 400 in this embodiment is 9.8 cm, and the end surfaces of all the ferrules in this embodiment are mirror polished.

进一步通过波分复用器连接泵浦源以构建宽光谱和窄脉宽的高重频飞秒激光器,用波长为974nm的半导体激光泵浦源激发本实施例的谐振腔,泵浦光通过单模光纤输出,最高泵浦光功率为680mW。用光纤熔接机将泵浦源的尾纤与980nm/1040nm光纤型波分复用器的泵浦端尾纤熔接,将波分复用器的公共端尾纤与本公开的谐振腔的色散腔镜尾纤300熔接。在泵浦激发下,产生的激光通过色散腔镜尾纤300经波分复用器的信号端输出腔外。然后用透射型衍射光栅对进行腔外去啁啾,可获得以下技术效果:Further connect the pump source through a wavelength division multiplexer to construct a high repetition frequency femtosecond laser with a wide spectrum and narrow pulse width, and use a semiconductor laser pump source with a wavelength of 974nm to excite the resonator of this embodiment, and the pump light passes through a single Mode fiber output, the highest pump light power is 680mW. Use a fiber optic fusion splicer to weld the pigtail of the pump source to the pump end of the 980nm/1040nm fiber-optic wavelength division multiplexer, and connect the common end of the wavelength division multiplexer to the dispersion cavity of the resonant cavity of the present disclosure The mirror pigtail 300 is welded. Under pump excitation, the generated laser light is output out of the cavity through the dispersive cavity mirror pigtail 300 and the signal end of the wavelength division multiplexer. Then use the transmission-type diffraction grating pair to perform extra-cavity dechirp, and the following technical effects can be obtained:

在1μm波段实现基础重复频率1GHz脉冲激光输出的同时,其锁模光谱3dB线宽和脉冲宽度分别为7.6nm和364fs,并且整个激光谐振腔为全光纤化结构,锁模光谱和脉冲宽度的自相关轨迹分别如图6和图7所示。此外,相比于现有技术报道的研究,本实施例的谐振腔输出的锁模脉冲激光具备两个典型性特征:1)光谱顶部平坦度更好;2)激光运转的稳定性更高。While realizing the basic repetition frequency 1GHz pulse laser output in the 1μm band, the 3dB linewidth and pulse width of the mode-locked spectrum are 7.6nm and 364fs respectively, and the entire laser resonator is an all-fiber structure, and the mode-locked spectrum and pulse width are self-contained. The relevant trajectories are shown in Figure 6 and Figure 7, respectively. In addition, compared with the research reported in the prior art, the mode-locked pulsed laser output by the resonator of this embodiment has two typical features: 1) better flatness at the top of the spectrum; 2) higher stability of laser operation.

可以发现,利用本公开的色散薄膜可以维持飞秒激光谐振腔的全光纤化结构。而且构建的激光器轻便小巧,易于规模化生产和集成。It can be found that the all-fiberized structure of the femtosecond laser resonator can be maintained by using the dispersion film of the present disclosure. Moreover, the constructed laser is light and compact, easy to scale production and integration.

实施例二Embodiment two

利用上文描述的色散薄膜的制备方法,制备光学特性为在1033nm附近为-348fs2,对974nm泵浦光的透射率为99%,对信号光1033nm的反射率为89.6%的色散腔镜。Using the method for preparing the dispersion film described above, a dispersive cavity mirror with optical characteristics of -348fs 2 near 1033nm, 99% transmittance to 974nm pump light, and 89.6% reflectance to signal light 1033nm was prepared.

基于本实施例的色散腔镜,可以构建更高重频的飞秒激光谐振腔。继续参考图3,本实施例使用商用掺Yb石英增益光纤400,其第一端插接第二插芯202,增益光纤400的第二端插接第三插芯203,第三插芯203的端面与半导体可饱和吸收镜600对接,本实施例采用环氧树脂将半导体可饱和吸收镜600粘接到第三插芯203端面。本实施例的半导体可饱和吸收镜600的调制深度为5%、饱和通量为40μJ/cm2、恢复时间为1ps。本实施例中的增益光纤400的长度为4.4cm,本实施例的所有插芯的端面做镜面抛光处理。Based on the dispersive cavity mirror of this embodiment, a femtosecond laser cavity with a higher repetition rate can be constructed. Continue to refer to Fig. 3, present embodiment uses commercial Yb-doped quartz gain fiber 400, and its first end inserts the second ferrule 202, the second end of gain fiber 400 inserts the 3rd ferrule 203, the 3rd ferrule 203 The end face is connected to the semiconductor saturable absorbing mirror 600 , and epoxy resin is used in this embodiment to bond the semiconductor saturable absorbing mirror 600 to the end face of the third ferrule 203 . The modulation depth of the semiconductor saturable absorbing mirror 600 in this embodiment is 5%, the saturation flux is 40 μJ/cm 2 , and the recovery time is 1 ps. The length of the gain fiber 400 in this embodiment is 4.4 cm, and the end faces of all the ferrules in this embodiment are mirror polished.

进一步通过波分复用器连接泵浦源以构建宽光谱和窄脉宽的高重频飞秒激光器,用波长为974nm的半导体激光泵浦源激发本实施例的谐振腔,泵浦光通过单模光纤输出,最高泵浦光功率为680mW。用光纤熔接机将泵浦源尾纤与980nm/1030nm光纤型波分复用器的泵浦端熔接,将波分复用器的公共端尾纤与本实施例的谐振腔的色散腔镜尾纤300熔接。在泵浦激发下,产生的激光通过色散腔镜尾纤300经波分复用器的信号端输出腔外。然后用透射型衍射光栅对进行腔外去啁啾,可获得以下技术效果:Further connect the pump source through a wavelength division multiplexer to construct a high repetition frequency femtosecond laser with a wide spectrum and narrow pulse width, and use a semiconductor laser pump source with a wavelength of 974nm to excite the resonator of this embodiment, and the pump light passes through a single Mode fiber output, the highest pump light power is 680mW. Splice the pump source pigtail with the pump end of the 980nm/1030nm fiber-optic wavelength division multiplexer with an optical fiber fusion splicer, and connect the common end pigtail of the wavelength division multiplexer with the dispersion cavity mirror tail of the resonant cavity of this embodiment Fiber 300 is welded. Under pump excitation, the generated laser light is output out of the cavity through the dispersive cavity mirror pigtail 300 and the signal end of the wavelength division multiplexer. Then use the transmission-type diffraction grating pair to perform extra-cavity dechirp, and the following technical effects can be obtained:

在1μm波段实现基础重复频率2.2GHz脉冲激光输出的同时,其锁模光谱3dB线宽和脉冲宽度分别为8.3nm和283fs,并且整个激光谐振腔为全光纤化结构,锁模光谱和脉冲宽度的自相关轨迹分别如图8和图9所示。此外,相比于现有技术报道的研究,本实施例的谐振腔输出的锁模脉冲激光具备两个典型性特征:1)光谱顶部平坦度更好;2)激光运转的稳定性更高。While realizing the basic repetition frequency of 2.2GHz pulse laser output in the 1μm band, the 3dB linewidth and pulse width of the mode-locked spectrum are 8.3nm and 283fs respectively, and the entire laser resonator is an all-fiber structure, and the mode-locked spectrum and pulse width are perfect The autocorrelation trajectories are shown in Figure 8 and Figure 9, respectively. In addition, compared with the research reported in the prior art, the mode-locked pulsed laser output by the resonator of this embodiment has two typical features: 1) better flatness at the top of the spectrum; 2) higher stability of laser operation.

实施例三Embodiment three

利用上文描述的色散薄膜的制备方法,制备光学特性为在1030nm附近为-233fs2,对974nm泵浦光的透射率为99%,对信号光1030nm的反射率为89.2%的色散腔镜。Using the preparation method of the dispersion film described above, a dispersion cavity mirror with optical characteristics of -233fs 2 near 1030nm, 99% transmittance to 974nm pump light, and 89.2% reflectance to signal light 1030nm was prepared.

本实施例的色散薄膜能够用于构建高重频飞秒光纤激光谐振腔,参考图3,色散薄膜100设置在第一插芯201的端面上,第一插芯201的外径为2.5mm,通过陶瓷套管500,色散薄膜100与第二插芯202的端面对接,以保证光的低损耗传输。The dispersion film of this embodiment can be used to construct a high repetition frequency femtosecond fiber laser resonator. Referring to FIG. Through the ceramic sleeve 500, the dispersion film 100 is connected to the end face of the second ferrule 202, so as to ensure low-loss transmission of light.

本实施例使用商用掺Yb石英增益光纤400,其第一端插接第二插芯202,增益光纤400的第二端插接第三插芯203,第三插芯203的端面与半导体可饱和吸收镜600对接,本实施例采用环氧树脂将半导体可饱和吸收镜600粘接到第三插芯203端面。本实施例的半导体可饱和吸收镜600的调制深度为5%、饱和通量为40μJ/cm2、恢复时间为1ps。本实施例中的增益光纤400的长度为3.0cm,本实施例的所有插芯的端面做镜面抛光处理。This embodiment uses commercial Yb-doped quartz gain fiber 400, the first end of which is plugged into the second ferrule 202, the second end of the gain fiber 400 is plugged into the third ferrule 203, and the end face of the third ferrule 203 is saturable with the semiconductor The absorbing mirror 600 is butted. In this embodiment, epoxy resin is used to bond the semiconductor saturable absorbing mirror 600 to the end face of the third ferrule 203 . The modulation depth of the semiconductor saturable absorbing mirror 600 in this embodiment is 5%, the saturation flux is 40 μJ/cm 2 , and the recovery time is 1 ps. The length of the gain fiber 400 in this embodiment is 3.0 cm, and the end surfaces of all the ferrules in this embodiment are mirror polished.

进一步通过波分复用器连接泵浦源以构建宽光谱和窄脉宽的高重频飞秒激光器,用波长为974nm的半导体激光泵浦源激发本实施例的谐振腔,泵浦光通过单模光纤输出,最高泵浦光功率为680mW。用光纤熔接机将泵浦源的尾纤与980nm/1030nm光纤型波分复用器的泵浦端尾纤熔接,将波分复用器的公共端尾纤与上述谐振腔的色散腔镜尾纤300熔接。在泵浦激发下,产生的激光通过色散腔镜尾纤300经波分复用器的信号端输出腔外。然后用透射型衍射光栅对进行腔外去啁啾,可获得以下技术效果:Further connect the pump source through a wavelength division multiplexer to construct a high repetition frequency femtosecond laser with a wide spectrum and narrow pulse width, and use a semiconductor laser pump source with a wavelength of 974nm to excite the resonator of this embodiment, and the pump light passes through a single Mode fiber output, the highest pump light power is 680mW. Use a fiber optic fusion splicer to weld the pigtail of the pump source to the pump end of the 980nm/1030nm fiber-optic wavelength division multiplexer, and connect the common end of the wavelength division multiplexer to the dispersion cavity mirror tail of the above resonant cavity Fiber 300 is welded. Under pump excitation, the generated laser light is output out of the cavity through the dispersive cavity mirror pigtail 300 and the signal end of the wavelength division multiplexer. Then use the transmission-type diffraction grating pair to perform extra-cavity dechirp, and the following technical effects can be obtained:

在1μm波段不仅在更高重复频率3.3GHz的脉冲激光中实现宽光谱和窄脉冲输出,光谱3dB线宽最宽为9.6nm,脉冲宽度最窄为266fs,同时整个激光器实现全光纤化结构。图10为本实施例的激光器测试光谱图,光谱3dB线宽为9.6nm,图11为自相关轨迹图,测试的脉冲宽度为266fs。示波器测试的脉冲序列如图12所示,显示本实施例的激光器运转在直流锁模状态,脉冲的基本重复频率为3.3GHz。In the 1μm band, not only can wide spectrum and narrow pulse output be achieved in the pulsed laser with a higher repetition rate of 3.3GHz, the widest spectral 3dB line width is 9.6nm, and the narrowest pulse width is 266fs. At the same time, the entire laser realizes an all-fiber structure. Fig. 10 is a test spectrum diagram of the laser of this embodiment, the spectrum 3dB linewidth is 9.6nm, Fig. 11 is an autocorrelation locus diagram, the pulse width of the test is 266fs. The pulse sequence tested by the oscilloscope is shown in FIG. 12 , which shows that the laser of this embodiment operates in a DC mode-locked state, and the basic repetition frequency of the pulse is 3.3 GHz.

实施例四Embodiment Four

为了进一步提升激光器的环境稳定性,构建全保偏结构的激光谐振腔,本实施例将色散薄膜设置于装载并固定保偏光纤的陶瓷插芯端面。用Nufern公司的PM980光纤替代上述实施例中的美国康宁公司Hi1060光纤。然后利用上文描述的制备方法制备色散薄膜。In order to further improve the environmental stability of the laser and build a laser resonator with a full polarization-maintaining structure, in this embodiment, the dispersion film is arranged on the end face of the ceramic ferrule that loads and fixes the polarization-maintaining optical fiber. The Hi1060 optical fiber of Corning Corporation of the United States in the above embodiment is replaced by the PM980 optical fiber of Nufern Corporation. Then, the dispersion film was prepared using the preparation method described above.

利用本实施例的保偏色散腔镜构建激光谐振腔时,将波长为974nm的半导体激光泵浦源的尾纤替换为PM980光纤,波分复用器替换为双轴工作的保偏型波分复用器,波分复用器尾纤均为PM980光纤。增益光纤使用保偏单模光纤或者双包层光纤。谐振腔其余元器件和结构保持图3所示不变。利用本实施例的谐振腔结构,除了能够实现宽光谱和窄脉宽的GHz重频超快激光,系统整体为保偏型全光纤结构,提升激光器抗干扰能力,拓展了其在极端条件下的使用。When using the polarization-maintaining dispersion cavity mirror of this embodiment to construct a laser resonator cavity, the tail fiber of the semiconductor laser pump source with a wavelength of 974nm is replaced with a PM980 optical fiber, and the wavelength division multiplexer is replaced with a polarization-maintaining type wavelength division The multiplexer and wavelength division multiplexer pigtails are all PM980 optical fibers. The gain fiber uses polarization-maintaining single-mode fiber or double-clad fiber. The remaining components and structures of the resonator remain unchanged as shown in Figure 3. Utilizing the resonant cavity structure of this embodiment, in addition to realizing the GHz repetition frequency ultrafast laser with wide spectrum and narrow pulse width, the whole system is a polarization-maintaining all-fiber structure, which improves the anti-interference ability of the laser and expands its performance under extreme conditions. use.

实施例五Embodiment five

在上述各个实施例中,主要利用掺Yb3+增益光纤作为增益介质,本实施例可以进一步在谐振腔中改变增益光纤类型,比如用掺Er3+、Tm3+、Ho3+等一种或共掺形式的稀土离子的光纤,相应地调整半导体可饱和吸收镜的参数和类型,均落入本公开的保护范围。In the above-mentioned embodiments, the Yb 3+ doped gain fiber is mainly used as the gain medium. In this embodiment, the type of the gain fiber can be further changed in the resonant cavity, such as Er 3+ , Tm 3+ , Ho 3+ , etc. Or co-doped rare earth ions in the optical fiber, correspondingly adjusting the parameters and types of semiconductor saturable absorbing mirrors, all fall within the protection scope of the present disclosure.

在本说明书的描述中,参考术语“一个实施例/方式”、“一些实施例/方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例/方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例/方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例/方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例/方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例/方式或示例以及不同实施例/方式或示例的特征进行结合和组合。In the description of this specification, descriptions referring to the terms "one embodiment/mode", "some embodiments/modes", "examples", "specific examples" or "some examples" mean that the embodiments/modes or The specific features, structures, materials or features described in the examples are included in at least one embodiment/mode or example of the present disclosure. In this specification, the schematic representations of the above terms do not necessarily refer to the same embodiment/mode or example. Moreover, the described specific features, structures, materials or characteristics may be combined in any one or more embodiments/modes or examples in an appropriate manner. In addition, those skilled in the art may combine and combine different embodiments/modes or examples and features of different embodiments/modes or examples described in this specification without conflicting with each other.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include at least one of these features. In the description of the present disclosure, "plurality" means at least two, such as two, three, etc., unless otherwise specifically defined.

本领域的技术人员应当理解,上述实施方式仅仅是为了清楚地说明本公开,而并非是对本公开的范围进行限定。对于所属领域的技术人员而言,在上述公开的基础上还可以做出其它变化或变型,并且这些变化或变型仍处于本公开的范围内。It should be understood by those skilled in the art that the above-mentioned embodiments are only for clearly illustrating the present disclosure, rather than limiting the scope of the present disclosure. For those skilled in the art, other changes or modifications can be made on the basis of the above disclosure, and these changes or modifications are still within the scope of the present disclosure.

Claims (18)

1. A dispersion film, comprising:
a plurality of first film layers, the first film layers having a first refractive index; and
a plurality of second film layers, the second film layers having a second refractive index;
the first film layers and the second film layers are alternately stacked to form the dispersion film;
wherein the first refractive index is greater than the second refractive index;
the total thickness of the dispersion film is in the micron level;
the total thickness of the first film layer is smaller than the total thickness of the second film layer;
wherein the odd layer is a first film layer, the even layer is a second film layer, and the bottom layer and the top layer of the dispersion film are both the first film layer;
the total thickness of the dispersion film is 7.803 μm to 8.292 μm;
the first film layer is Ta 2 O 5 、Nb 2 O 5 、HfO 2 One of the second film layer is SiO 2
The total number of layers of the first film layer and the second film layer is 45;
from bottom to top, the rete thickness that each rete corresponds respectively is:
132-141nm、244-252nm、141-152nm、194-201nm、136-155nm、203-212nm、145-173nm、210-220nm、138-148nm、197-207nm、130-140nm、192-202nm、129-136nm、173-202nm、134-144nm、205-207nm、140-163nm、204-216nm、132-144nm、220-228nm、169-179nm、217-227nm、141-158nm、202-204nm、127-138nm、197-207nm、139-142nm、204-208nm、135-145nm、200-210nm、135-145nm、211-212nm、153-167nm、235-245nm、137-144nm、188-201nm、136-156nm、202-212nm、147-163nm、223-229nm、144-154nm、196-206nm、131-141nm、275-285nm、160-171nm;
the transmittance T of the dispersion film to the wavelength 973-980nm of the pumping light is more than 80%.
2. The dispersion film according to claim 1, wherein the dispersion film is provided on an end face of an optical fiber ferrule through the first film layer as a bottom layer.
3. The dispersion film of claim 1, wherein the first film layer and the second film layer are both wafer-shaped in shape, and the radial dimension of the first film layer is the same as the radial dimension of the second film layer.
4. The dispersive film according to claim 1, wherein the alternating stacking of the plurality of first film layers and the plurality of second film layers is achieved by a plasma-based sputtering method.
5. An optical fiber ferrule, comprising:
the optical fiber connector comprises an optical fiber connector body, a first connecting rod and a second connecting rod, wherein the optical fiber connector body is provided with a first end and a second end, the first end forms an end face, and the second end is used for inserting an optical fiber; and
the dispersive film of any one of claims 1 to 4 disposed on the end face of the fiber stub body.
6. The fiber stub of claim 5, wherein the end face of the fiber stub body has a matching shape with the dispersion film.
7. The optical fiber ferrule of claim 5, wherein the end face is an abraded polished end face.
8. A dispersive endoscope having an all-fiber structure, comprising:
the optical fiber ferrule of any one of claims 5 to 7; and
and the passive optical fiber is inserted into the optical fiber ferrule body through the second end of the optical fiber ferrule body.
9. A laser resonator device comprising:
a first ferrule having a first end and a second end, the first end of the first ferrule forming an end face;
a second ferrule having a first end and a second end, the first end of the second ferrule interfacing with the first end of the first ferrule;
a third ferrule having a first end and a second end, the first end of the third ferrule forming an end face;
a dispersion film disposed on the end face of the first ferrule;
the two ends of the gain optical fiber are respectively inserted into the second end of the second inserting core and the second end of the third inserting core; and
a semiconductor saturable absorber mirror disposed on the end face of the third ferrule;
wherein the dispersion film is the dispersion film according to any one of claims 1 to 4.
10. The laser resonator device according to claim 9, wherein the length of the gain fiber is 10cm or less, and the fiber core of the gain fiber is doped with rare earth ions, so as to realize that the optical gain requirement of the mode locking threshold is met when the length of the short fiber is short.
11. The laser resonator device according to claim 9, characterized in that when the length of the gain fiber is 3cm or less, the third ferrule is eliminated, the second end of the second ferrule forms an end face, and the semiconductor saturable absorber mirror is disposed on the end face of the second ferrule.
12. The laser resonator device according to claim 9, wherein the gain fiber is a single mode fiber, a polarization maintaining single mode fiber, a multimode fiber, or a double clad fiber.
13. The laser resonator device according to claim 12, characterized in that the gain fiber is a fiber doped with one kind of rare earth ion or a co-doped form fiber doped with two or more kinds of rare earth ions.
14. The laser resonator device according to claim 13, wherein the rare earth ion is Yb 3+ 、Er 3+ 、Tm 3+ Or Ho 3+
15. The laser resonator device of claim 9 further comprising:
a passive optical fiber inserted into the second end of the first ferrule.
16. The laser resonator device of claim 9 further comprising:
the ceramic sleeve is partially sleeved on the first inserting core and partially sleeved on the second inserting core so as to fix the butt joint of the first inserting core and the second inserting core.
17. A laser comprising the dispersive cavity mirror with all-fiber architecture of claim 8.
18. A laser comprising a laser resonator device as claimed in any one of claims 9 to 16.
CN202210707056.5A 2022-06-21 2022-06-21 Dispersive thin film, optical fiber core insert, dispersive cavity mirror, resonant cavity device and laser Active CN115097556B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210707056.5A CN115097556B (en) 2022-06-21 2022-06-21 Dispersive thin film, optical fiber core insert, dispersive cavity mirror, resonant cavity device and laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210707056.5A CN115097556B (en) 2022-06-21 2022-06-21 Dispersive thin film, optical fiber core insert, dispersive cavity mirror, resonant cavity device and laser

Publications (2)

Publication Number Publication Date
CN115097556A CN115097556A (en) 2022-09-23
CN115097556B true CN115097556B (en) 2023-06-23

Family

ID=83293019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210707056.5A Active CN115097556B (en) 2022-06-21 2022-06-21 Dispersive thin film, optical fiber core insert, dispersive cavity mirror, resonant cavity device and laser

Country Status (1)

Country Link
CN (1) CN115097556B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738989A (en) * 2016-04-19 2016-07-06 中国科学院上海光学精密机械研究所 High-dispersion lens structure based on HGTI
CN106680911B (en) * 2017-02-26 2019-08-13 中国科学院上海光学精密机械研究所 The low oscillation dispersion mirror structure of one kind and its design method
CN108254816A (en) * 2018-01-10 2018-07-06 中国科学院上海光学精密机械研究所 Double centre wavelength dispersion mirrors to and preparation method thereof
CN111722311B (en) * 2020-07-27 2021-05-04 中国科学院上海光学精密机械研究所 Composite function dispersion mirror structure
CN112666641B (en) * 2021-01-18 2022-06-28 中国科学院上海光学精密机械研究所 Design method of broadband low-dispersion chirped mirror
CN113488834B (en) * 2021-07-14 2022-08-12 厦门大学 A tapered gain fiber high repetition frequency femtosecond laser resonator and laser

Also Published As

Publication number Publication date
CN115097556A (en) 2022-09-23

Similar Documents

Publication Publication Date Title
EP3387471B1 (en) Polarization maintaining optical fiber array
US10126494B2 (en) Configurable polarization mode coupler
EP3479443B1 (en) Optical resonator, method of manufacturing the optical resonator and applications thereof
US7787729B2 (en) Single mode propagation in fibers and rods with large leakage channels
EP3635459B1 (en) Optical coupler arrays
US10838155B2 (en) Multichannel optical coupler
CN115166959A (en) Transmission fiber assemblies and broadband light sources
CN103944048B (en) A kind of femto-second laser and preparation method based on single covering neodymium optical fiber and annular chamber
KR20040047871A (en) Multimode fiber laser gratings
WO2020068695A1 (en) Multichannel optical coupler
US7580609B1 (en) Fiber intensity reducing devices and related systems
CN113488834A (en) Conical gain optical fiber high repetition frequency femtosecond laser resonant cavity and laser
US7801186B2 (en) Light source
WO2021076752A1 (en) Multichannel optical coupler
CN115097556B (en) Dispersive thin film, optical fiber core insert, dispersive cavity mirror, resonant cavity device and laser
JP2012209510A (en) Optical fiber laser light source
Urquhart Fibre laser resonators
WO2014168040A1 (en) Optical coupling structure
JP2005003871A (en) Optical connector
WO2011007693A1 (en) Fusion-splicing structure, optical waveguide element having fusion-splicing structure, and light source device using optical waveguide element, and splicing method
CN108039638A (en) Low-threshold two-stage spectrum shaping flexible optical fiber high-power mode-locked laser
CN117039593A (en) Single, double and three-wavelength switchable fiber laser based on seven-core fiber interference
JP2007121787A (en) Optical wavelength filter device
JP2006343705A (en) Optical wavelength filter and optical wavelength filter apparatus with same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant