CN115094365A - 一种抗高温酸腐蚀的绝缘涂层及其制备方法 - Google Patents

一种抗高温酸腐蚀的绝缘涂层及其制备方法 Download PDF

Info

Publication number
CN115094365A
CN115094365A CN202210777842.2A CN202210777842A CN115094365A CN 115094365 A CN115094365 A CN 115094365A CN 202210777842 A CN202210777842 A CN 202210777842A CN 115094365 A CN115094365 A CN 115094365A
Authority
CN
China
Prior art keywords
zro
spraying
coating
layer
nicrmowfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210777842.2A
Other languages
English (en)
Other versions
CN115094365B (zh
Inventor
邵芳
赵华玉
杨加胜
庄寅
盛靖
倪金星
陶顺衍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202210777842.2A priority Critical patent/CN115094365B/zh
Publication of CN115094365A publication Critical patent/CN115094365A/zh
Application granted granted Critical
Publication of CN115094365B publication Critical patent/CN115094365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明涉及一种抗高温酸腐蚀的绝缘涂层及其制备方法。所述抗高温酸腐蚀的绝缘涂层包括:依次形成于基材表面的NiCrMoWFe合金层和ZrO2‑Y2O3陶瓷层;所述NiCrMoWFe合金层的组成包括:Cr:14.5 wt%~16.5 wt%,Mo:15 wt%~17 wt%,W:3 wt%~5 wt%,Fe:0.4 wt%~4.5wt%,余量为Ni;所述ZrO2‑Y2O3陶瓷层的组成为氧化钇稳定氧化锆单相,包括:Y2O3:35 wt%~42 wt%,余量为ZrO2

Description

一种抗高温酸腐蚀的绝缘涂层及其制备方法
技术领域
本发明涉及一种抗高温酸腐蚀的绝缘涂层及其制备方法,属于热喷涂涂层技术领域。
背景技术
在化工装备中,部分反应原料含有强酸性物质,具有强腐蚀性。该类原料在高温下还容易产生水蒸气和酸性腐蚀性气体,对装备部件造成严重的腐蚀问题。另外,冷坩埚壁等部件往往还需要彼此绝缘,急需加强对化工装备金属零部件的腐蚀和电绝缘防护。在化工装备金属零部件表面制备涂层,可以赋予基体各种功能表面。热喷涂技术以其喷涂材料适用范围广泛、适合内孔喷涂、涂层厚度可控且范围宽(几微米至几毫米)、工艺稳定性好、涂层质量可靠等优势成为制备涂层的有效工艺方法,并已在航天、航空、汽车、机械、能源、冶金、石化、船舶等方面获得了广泛的应用。热喷涂是节约贵重材料、节约能源、提高产品质量、延长产品使用寿命、降低成本、提高功效的重要手段。涂层必需具备抗高温氧化和酸腐蚀的特性才能适应其复杂的工况环境要求。另外,涂层还应具有电绝缘特性,以满足零部件的绝缘要求。研究开发抗高温酸腐蚀的绝缘涂层具有重要的科学意义和应用价值。
发明内容
本发明的目的在于提供一种抗高温酸腐蚀的绝缘涂层,具有良好的抗高温酸腐蚀和电绝缘性能,并且与金属基材结合较好。能够有效提高高温酸腐蚀工况下化工装备的服役寿命,并保证其电绝缘性能。
本发明的另一目的在于提供一种耐高温氧化和抗腐蚀的合金涂层的制备方法,其是采用热喷涂技术制备熔融效果好、结构致密、与基材结合强度高的NiCrMoWFe合金层和ZrO2-Y2O3陶瓷层。
一方面,本发明提供了一种抗高温酸腐蚀的绝缘涂层,包括:依次形成于基材表面的NiCrMoWFe合金层和ZrO2-Y2O3陶瓷层;
所述NiCrMoWFe合金层的组成包括:Cr:14.5wt%~16.5wt%,Mo:15wt%~17wt%,W:3wt%~5wt%,Fe:0.4wt%~4.5wt%,余量为Ni;
所述ZrO2-Y2O3陶瓷层的组成为氧化钇稳定氧化锆单相,包括:Y2O3:35wt%~42wt%,余量为ZrO2
在本发明中,NiCrMoWFe合金层和ZrO2-Y2O3陶瓷层均具有良好的防腐抗蚀性能,ZrO2-Y2O3陶瓷层赋予零部件良好的电绝缘性能,且NiCrMoWFe合金层和ZrO2-Y2O3陶瓷层之间、NiCrMoWFe合金层和基材之间均具有好的结合性能。
具体地,NiCrMoWFe合金中的Ni具有良好的抗氧化性,高Cr含量能在表面形成致密的钝化氧化膜,提高抗氧化能力,高Mo含量能够增强抗还原能力,Cr、Mo、W的加入大大提高了合金的耐点蚀和缝隙腐蚀能力,高含量的Ni和Mo使合金对应力腐蚀断裂也有很强的抵抗能力,合适含量的Ni、Cr、Mo、W、Fe共同使得NiCrMoWFe合金兼有耐蚀、耐热、强韧、抗氧化等特点。ZrO2-Y2O3陶瓷层中较高的Y2O3含量提高了陶瓷层的抗腐蚀能力和电绝缘性能。但Y2O3含量过高会造成涂层不耐酸腐蚀。
较佳的,所述NiCrMoWFe合金层的厚度为50~250μm。
较佳的,所述ZrO2-Y2O3陶瓷层的厚度为100~350μm。
在该上述两种涂层的厚度范围内,可以有效提高涂层的防腐抗蚀和电绝缘性能。合金层厚度低于50μm,会难以形成完全覆盖涂层。在50~250μm厚度范围内,合金层可以有效增强陶瓷层与基材的结合。陶瓷层厚度低于100μm,会对防腐抗蚀和电绝缘性能造成不利影响,而陶瓷层厚度高于350μm,则残余应力较大,容易影响涂层结合强度。
较佳的,所述基体包括:金属基体、石墨基体和陶瓷基体。所述基材的种类不受到限制,包括但不限于碳钢、铸铁、不锈钢中的一种。
另一方面,本发明提供了一种抗高温酸腐蚀的绝缘涂层的制备方法,分别以NiCrMoWFe粉体和ZrO2-Y2O3粉体为喷涂原料,采用热喷涂方法在基材表面依次制备NiCrMoWFe合金层和ZrO2-Y2O3陶瓷层。其中,ZrO2-Y2O3粉体的相组成为氧化钇稳定氧化锆单相。
本发明的制备方法可以得到熔融效果好、与基材结合好的NiCrMoWFe合金层和ZrO2-Y2O3陶瓷层。
较佳的,所述热喷涂方法包括:火焰喷涂、电弧喷涂、等离子喷涂、激光喷涂中的一种或几种;优选为超音速火焰喷涂制备合金层、大气等离子体喷涂制备陶瓷层。
又,较佳的,所述超音速火焰喷涂的工艺参数包括:氧气流量200~220slpm,氮气流量280~310slpm,氢气流量600~700slpm。
又,较佳的,所述大气等离子体喷涂的工艺参数包括:氩气流量35~45slpm,氢气流量7~12slpm,喷涂电流615~625A。
有益效果:
本发明中,抗高温酸腐蚀的绝缘涂层的高温绝缘电阻可达2.6GΩ以上(测试电压500V,测试温度150℃)。本发明抗高温酸腐蚀的绝缘涂层在100℃、2mol/L硝酸溶液或磷酸溶液中腐蚀14天后,涂层完好,无裂纹、剥落等现象,样品无腐蚀变色现象。
附图说明
图1为实施例1中喷涂态涂层试样照片和XRD图谱;
图2为实施例2中涂层试样在100℃、2mol/L硝酸溶液中腐蚀14天后的照片;
图3为实施例3中涂层试样在100℃、2mol/L磷酸溶液中腐蚀14天后的照片;
图4为实施例4中喷涂态涂层试样照片;
图5为实施例4中涂层试样在100℃、2mol/L磷酸溶液中腐蚀14天后的照片;
图6为对比例1中涂层试样在100℃、1mol/L硝酸溶液中腐蚀4天后的照片;
图7为对比例2中涂层试样在100℃、2mol/L硝酸溶液中腐蚀14天后的照片;
图8为对比例3中涂层试样在100℃、2mol/L磷酸溶液中腐蚀14天后的照片;
图9为对比例4中涂层试样在100℃、2mol/L磷酸溶液中腐蚀14天后的照片;
图10为对比例5中涂层试样在100℃、2mol/L硝酸溶液中腐蚀14天后的照片。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本公开中,抗高温酸腐蚀的绝缘涂层为双层结构,包括形成于基材表面的NiCrMoWFe合金层和ZrO2-Y2O3陶瓷层。
在可选的实施方式中,合金层的组成包括:Cr:14.0wt%~16.5wt%,Mo:15wt%~17wt%,W:3wt%~5wt%,Fe:0.4wt%~4.5wt%,Ni:余量。在可选的实施方式中,所述ZrO2-Y2O3陶瓷层的组成可为35wt%~42wt%的Y2O3稳定的ZrO2
在本发明一实施方式中,利用超音速火焰喷涂和大气等离子体喷涂技术等热喷涂技术,在金属基材表面依次制备NiCrMoWFe合金层和ZrO2-Y2O3陶瓷层。以下示例性地说明抗高温酸腐蚀的绝缘涂层的制备方法。
NiCrMoWFe合金粉体的制备包括:先将金属原料熔炼为成分合格的合金液体,然后利用高速气流将合金液体粉碎为小液滴并快速冷凝成金属粉体。
NiCrMoWFe合金粉体的沉积。具体,采用火焰喷涂、电弧喷涂、等离子喷涂、激光喷涂中的一种或几种进行喷涂。
ZrO2-Y2O3陶瓷粉体的制备包括:喷雾干燥团聚制粉和等离子体致密化过程。
ZrO2-Y2O3陶瓷粉体的沉积。具体,采用火焰喷涂、电弧喷涂、等离子喷涂、激光喷涂中的一种或几种进行喷涂。
本发明制备的双层涂层的高温绝缘电阻可达2.6GΩ以上(测试电压500V,测试温度150℃),具有优越的抗高温酸腐蚀和电绝缘的能力,可用于加强化工装备金属零部件的腐蚀和电绝缘防护。本发明制备的抗高温酸腐蚀的绝缘涂层的绝缘电阻9.0±1.6GΩ以上(室温,1000V,点测(3个点值,取平均值±标准差(STDEV)))。
本发明制备的双层涂层在100℃、2mol/L硝酸溶液或磷酸溶液中腐蚀14天后,涂层完好,无裂纹、剥落等现象,样品无腐蚀变色现象。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
(1)试样基材为不锈钢。待喷涂金属基材表面的预处理:喷砂、超声清洗、压缩空气吹干;
(2)采用超音速火焰喷涂工艺将NiCrMoWFe合金粉体沉积于金属基材表面。合金粉末成分为Cr:15.8wt%,Mo:15.7wt%,W:3.8wt%,Fe:0.4wt%,Ni:余量。喷涂参数为:氧气流量214slpm,氮气流量300slpm,氢气流量666slpm;
(3)采用大气等离子体喷涂工艺将ZrO2-Y2O3陶瓷粉体沉积于NiCrMoWFe合金层表面。陶瓷粉末成分为Y2O3:38.8wt%,ZrO2:余量。喷涂参数为:氩气流量38slpm,氢气流量9slpm,喷涂电流620A。
图1为其数码照片和XRD图谱,合金层厚度为50~150μm,陶瓷层厚度为200~300μm,涂层与基材紧密结合。
对试样在150℃进行绝缘电阻测试,测试电压为500V,测试值为2.6GΩ、3.5GΩ。对试样在室温进行绝缘电阻测试,测试电压为1000V,测试值为10.3±0.8GΩ(点测)。
实施例2
制备方法同实施例1,将所得的试样置入装有2mol/L硝酸溶液的水热反应釜中,在100℃腐蚀14天。图2为高温酸腐蚀后涂层样品数码照片。高温酸腐蚀后,涂层完好,无裂纹、剥落等现象,无腐蚀变色现象。
实施例3
制备方法同实施例1,将所得的试样置入装有2mol/L磷酸溶液的水热反应釜中,在100℃腐蚀14天。图3为高温酸腐蚀后涂层样品数码照片。高温酸腐蚀后,涂层完好,无裂纹、剥落等现象,无腐蚀变色现象。
实施例4
与实施例1不同之处在于,基材形状尺寸不同,合金粉末成分为Cr:15.5wt%,Mo:16.0wt%,W:4.5wt%,Fe:4.0wt%,Ni:余量。陶瓷粉末成分为Y2O3:39.2wt%,ZrO2:余量。制备方法同实施例1,图4为其数码照片,合金层厚度为150~250μm,陶瓷层厚度为250~350μm,涂层与基材紧密结合。对试样在室温进行绝缘电阻测试,测试电压为1000V,测试值为22.4±5.9GΩ(点测)。
将所得的试样置入装有2mol/L磷酸溶液的水热反应釜中,在100℃腐蚀14天。图5为高温酸腐蚀后涂层样品数码照片。高温酸腐蚀后,涂层完好,无裂纹、剥落等现象,无腐蚀变色现象。
实施例5
与实施例1不同之处在于,合金粉末成分为Cr:14.5wt%,Mo:15wt%,W:3wt%,Fe:0.4wt%,Ni:余量。陶瓷粉末成分为Y2O3:35wt%,ZrO2:余量。制备方法同实施例1,涂层与基材紧密结合。对试样在室温进行绝缘电阻测试,测试电压为1000V,测试值为9.0±1.6GΩ(点测)将所得的试样置入装有1mol/L硝酸溶液的水热反应釜中,在100℃腐蚀4天。高温酸腐蚀后,涂层完好,无裂纹、剥落等现象,无腐蚀变色现象。
实施例6
与实施例1不同之处在于,合金粉末成分为Cr:16.5wt%,Mo:17wt%,W:5wt%,Fe:4.5wt%,Ni:余量。陶瓷粉末成分为Y2O3:42wt%,ZrO2:余量。制备方法同实施例1,涂层与基材紧密结合。将所得的试样置入装有1mol/L硝酸溶液的水热反应釜中,在100℃腐蚀4天。高温酸腐蚀后,涂层完好,无裂纹、剥落等现象,无腐蚀变色现象。
对比例1
将实施例1中的NiCrMoWFe合金层替换为CoMoCrSi合金层。与实施例1不同之处在于,合金粉末成分为Mo:28.5wt%,Cr:17.5wt%,Si:3.4wt%,Co:余量。试样的形状尺寸、陶瓷层成分及涂层的制备方法同实施例1。对试样在150℃进行绝缘电阻测试,测试电压为500V,测试值为2.1GΩ、3.1GΩ(涂覆导电胶测试)。对试样在室温进行绝缘电阻测试,测试电压为1000V,测试值为11.1±2.3GΩ(点测)。将所得的试样置入装有1mol/L硝酸溶液的水热反应釜中,在100℃腐蚀4天。图6为高温酸腐蚀后涂层样品数码照片。高温酸腐蚀后,涂层出现剥落现象。
对比例2
与实施例1不同之处在于,陶瓷粉末成分为Y2O3:7.8wt.%,ZrO2:余量。试样的形状尺寸、合金层成分及涂层的制备方法同实施例1。对试样在室温进行绝缘电阻测试,测试电压为1000V,测试值为6.6±1.9GΩ(点测)。将所得的试样置入装有2mol/L硝酸溶液的水热反应釜中,在100℃腐蚀14天。图7为高温酸腐蚀后涂层样品数码照片。高温酸腐蚀后,涂层出现剥落现象。
对比例3
将实施例1中的ZrO2-Y2O3陶瓷层替换为Al2O3-TiO2陶瓷层。与实施例1不同之处在于,陶瓷粉末成分为TiO2:3wt.%,Al2O3:余量。大气等离子体喷涂陶瓷层喷涂参数为:氩气流量49slpm,氢气流量9slpm,喷涂电流650A。试样的形状尺寸、合金层成分及制备方法同实施例1。对试样在150℃进行绝缘电阻测试,测试电压为500V,测试值为1.4GΩ、2.2GΩ。对试样在室温进行绝缘电阻测试,测试电压为1000V,测试值为5.1±1.6GΩ(点测)。与实施例1相比,可以看出,ZrO2-Y2O3陶瓷涂层具有更高的绝缘电阻,绝缘性能更好。
将所得的试样置入装有2mol/L磷酸溶液的水热反应釜中,在100℃腐蚀14天。图8为高温酸腐蚀后涂层样品数码照片。高温酸腐蚀后,涂层出现剥落现象。
对比例4
将实施例1中的NiCrMoWFe合金层替换为CoNiCrAlY合金层。与实施例1不同之处在于,合金粉末成分为Ni:32.3wt%,Cr:21.1wt%,Al:8.0wt%,Y:0.5wt%,Co:余量。试样的形状尺寸、陶瓷层成分及涂层的制备方法同实施例1。对试样在室温进行绝缘电阻测试,测试电压为1000V,测试值为9.3±2.6GΩ(点测)。
对比例5
将实施例4中的NiCrMoWFe合金层替换为CoNiCrAlY合金层。与实施例1不同之处在于,合金粉末成分为Ni:32.3wt%,Cr:21.1wt%,Al:8.0wt%,Y:0.5wt%,Co:余量。试样的形状尺寸、陶瓷层成分及涂层的制备方法同实施例4。
将所得的试样置入装有2mol/L磷酸溶液的水热反应釜中,在100℃腐蚀14天。图9为高温酸腐蚀后涂层样品数码照片。高温酸腐蚀后,涂层出现腐蚀变色现象。
对比例6
将实施例1中的ZrO2-Y2O3陶瓷层替换为Y2O3陶瓷层。试样的形状尺寸、合金层成分及涂层的制备方法同实施例1。对试样在室温进行绝缘电阻测试,测试电压为1000V,测试值为24.7±1.0GΩ(点测)。
对比例7
将实施例4中的ZrO2-Y2O3陶瓷层替换为Y2O3陶瓷层。试样的形状尺寸、合金层成分及涂层的制备方法同实施例4。将所得的试样置入装有2mol/L硝酸溶液的水热反应釜中,在100℃腐蚀14天。图10为高温酸腐蚀后涂层样品数码照片。高温酸腐蚀后,涂层出现剥落现象。
表1为制备的抗高温酸腐蚀的绝缘涂层的组成及性能:
Figure BDA0003728207220000071

Claims (8)

1.一种抗高温酸腐蚀的绝缘涂层,其特征在于,包括:依次形成于基材表面的NiCrMoWFe合金层和ZrO2-Y2O3陶瓷层;
所述NiCrMoWFe合金层的组成包括:Cr:14.5 wt%~16.5 wt%,Mo:15 wt%~17 wt%,W:3wt%~5 wt%,Fe:0.4 wt%~4.5wt%,余量为Ni;
所述ZrO2-Y2O3陶瓷层的组成为氧化钇稳定氧化锆单相,包括:Y2O3:35 wt%~42 wt%,余量为ZrO2
2.根据权利要求1所述的抗高温酸腐蚀的绝缘涂层,其特征在于,所述NiCrMoWFe合金层的厚度为50~250 μm。
3.根据权利要求1所述的抗高温酸腐蚀的绝缘涂层,其特征在于,所述ZrO2-Y2O3陶瓷层的厚度为100~350 μm。
4.根据权利要求1-3中任一项所述的抗高温酸腐蚀的绝缘涂层,其特征在于,所述基体包括金属基体、石墨基体和陶瓷基体中的一种。
5.一种如权利要求1至4中任一项所述的抗高温酸腐蚀的绝缘涂层的制备方法,其特征在于,分别以NiCrMoWFe粉体和ZrO2-Y2O3粉体为喷涂原料,采用热喷涂方法在基材表面依次制备NiCrMoWFe合金层和ZrO2-Y2O3陶瓷层;其中,ZrO2-Y2O3粉体的相组成为氧化钇稳定氧化锆单相。
6.根据权利要求5所述的制备方法,其特征在于,所述热喷涂方法包括:火焰喷涂、电弧喷涂、等离子喷涂、激光喷涂中的一种或几种;优选为超音速火焰喷涂制备合金层、大气等离子体喷涂制备陶瓷层。
7.根据权利要求6所述的制备方法,其特征在于,所述超音速火焰喷涂的工艺参数包括:氧气流量200~220 slpm,氮气流量 280~310 slpm,氢气流量600~700 slpm。
8.根据权利要求6所述的制备方法,其特征在于,所述大气等离子体喷涂的工艺参数包括:氩气流量35~45 slpm,氢气流量7~12 slpm,喷涂电流615~625 A。
CN202210777842.2A 2022-07-04 2022-07-04 一种抗高温酸腐蚀的绝缘涂层及其制备方法 Active CN115094365B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210777842.2A CN115094365B (zh) 2022-07-04 2022-07-04 一种抗高温酸腐蚀的绝缘涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210777842.2A CN115094365B (zh) 2022-07-04 2022-07-04 一种抗高温酸腐蚀的绝缘涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN115094365A true CN115094365A (zh) 2022-09-23
CN115094365B CN115094365B (zh) 2023-06-06

Family

ID=83294846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210777842.2A Active CN115094365B (zh) 2022-07-04 2022-07-04 一种抗高温酸腐蚀的绝缘涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN115094365B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202952600U (zh) * 2012-12-07 2013-05-29 新乡市布瑞林特机械再制造有限责任公司 一种耐高温强酸的防腐涂层

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202952600U (zh) * 2012-12-07 2013-05-29 新乡市布瑞林特机械再制造有限责任公司 一种耐高温强酸的防腐涂层

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈飞等: "不锈钢表面等离子喷涂梯度涂层耐蚀性能的研究", 《金属热处理》 *

Also Published As

Publication number Publication date
CN115094365B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
JP3894313B2 (ja) フッ化物含有膜、被覆部材及びフッ化物含有膜の形成方法
JP2695835B2 (ja) セラミック被覆耐熱部材
US5277936A (en) Oxide containing MCrAlY-type overlay coatings
TW201033407A (en) Thermal spray coatings for semiconductor applications
CN106435443A (zh) 一种环境障涂层的制备方法
CN111809094A (zh) 一种耐高温氧化的高熵合金、热障涂层及热障涂层的制备方法
JPH0251978B2 (zh)
CN112176275B (zh) 一种热障涂层及其制备方法和应用
CN114591102A (zh) 一种C/C复合材料SiB6-Glass抗氧化涂层及其制备方法
CN107604299B (zh) 一种隔热涂层用的复合材料及其涂层制备方法
CN113388830A (zh) 一种耐高温防腐陶瓷涂层的制备方法
JP3700766B2 (ja) 熱遮蔽皮膜被覆部材並びに溶射用粉体
CN114525048B (zh) 稀土增强氧化锆高温抗氧化涂料、涂层及其制备方法
Saremi et al. Bond coat oxidation and hot corrosion behavior of plasma sprayed YSZ coating on Ni superalloy
McPherson Plasma sprayed ceramic coatings
CN115094365B (zh) 一种抗高温酸腐蚀的绝缘涂层及其制备方法
CN108611588B (zh) 一种耐高温氧化和抗硫、氯腐蚀的合金涂层及其制备方法
CN106544615A (zh) 一种耐磨耐腐蚀梯度涂层镁合金及其制备方法
CN110791726B (zh) 一种降低可磨耗组分损失率的可磨耗涂层喷涂方法
CN108070859A (zh) 难熔金属表面层状复合Ir/W高温抗氧化涂层及其制备方法
JP2013221215A (ja) 表面被覆部材及びその製造方法、並びに、表面被覆部材の被覆方法
JPH07126827A (ja) 金属表面の複合皮膜及びその形成方法
Gond et al. Hot corrosion behaviour of yttria-stabilised zirconia as plasma sprayed coated boiler steel in air and salt at 900 C under cyclic condition
CN108707897B (zh) 排气管陶瓷涂层及其制备方法
KR20180024053A (ko) 열차폐 코팅 구조 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant