CN115094084B - 水稻OsRS基因在选育高种子活性水稻中的应用 - Google Patents

水稻OsRS基因在选育高种子活性水稻中的应用 Download PDF

Info

Publication number
CN115094084B
CN115094084B CN202210632734.6A CN202210632734A CN115094084B CN 115094084 B CN115094084 B CN 115094084B CN 202210632734 A CN202210632734 A CN 202210632734A CN 115094084 B CN115094084 B CN 115094084B
Authority
CN
China
Prior art keywords
rice
osrs
gene
activity
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210632734.6A
Other languages
English (en)
Other versions
CN115094084A (zh
Inventor
张建福
芦国嫣
余箬芊
何炜
魏毅东
蔡秋华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rice Research Institute Fujian Academy Of Agricultural Sciences
Original Assignee
Rice Research Institute Fujian Academy Of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rice Research Institute Fujian Academy Of Agricultural Sciences filed Critical Rice Research Institute Fujian Academy Of Agricultural Sciences
Priority to CN202210632734.6A priority Critical patent/CN115094084B/zh
Publication of CN115094084A publication Critical patent/CN115094084A/zh
Application granted granted Critical
Publication of CN115094084B publication Critical patent/CN115094084B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/8267Seed dormancy, germination or sprouting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01182Lipid-A-disaccharide synthase (2.4.1.182)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physiology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种水稻OsRS基因在选育高种子活性水稻中的应用,还记载了水稻OsRS基因的过表达元件在选育高种子活性水稻中的应用,同时还记载了一种OsRS基因过表达元件,包括pCUbi‑1309载体和OsRS基因片段,其具体用限制性内切酶NcoI和BstEII双酶切pCUbi‑1309载体后,将带有同源端的OsRS基因目的片段和酶切载体通过Exnase酶的催化进行同源重组连接而成。

Description

水稻OsRS基因在选育高种子活性水稻中的应用
技术领域
本发明涉及水稻育种及相关基因筛选技术领域,更具体地说是涉及水稻OsRS基因的应用。
背景技术
水稻种子在储藏过程中的陈化变质,是农业生产上经常遇到问题。我国作为世界上最大的稻米生产国和消费国,稻谷在储藏期间的陈化与霉变,造成每年几十亿斤的损失,同时,稻谷储藏过程中种子活力的下降,对育种工作产生的负面影响更是不可估量。随着分子生物学技术的飞速发展,水稻种子活力遗传机制及生理生化机制方面的研究取得了较大的进展,对我国水稻生产具有重要意义。
棉子糖家族寡糖(Raffinose family oligosaccharides,RFOs)是植物中广泛存在的可溶性低聚糖,可参与调控种子活力,对植物抗老化具有重要作用,但在水稻中RFOs对不同胁迫的调控途径和功能研究鲜有报道。棉子糖合成酶(Raffinose Synthase,RS)是植物RFOs合成通路中的关键酶。棉子糖合成酶AtRS5敲除突变体rs5的种子,获得脱水耐受性的时间迟于野生型。而过表达转基因植株OE-AtRS5与野生型相比,相同时间内获得了更高的脱水耐受性,种子中肌醇半乳糖苷、棉子糖及水苏糖的含量较高,并在缺水胁迫下表现出更高的发芽率及发芽势。玉米棉子糖合成酶基因ZmRS敲除突变体zmrs的种子活力及耐贮性较对照而言显著下降,表现为萌发所需时间延长,胚根、胚芽生长速率减缓。这些基因的突变体以及转基因材料表明RS基因可通过提高RFOs的含量从而提高种子活力。
因此,如何克隆到OsRS基因并将其应用于提高水稻种子活力中是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明在粳稻品种“日本晴”中克隆到OsRS基因,利用水稻遗传转化获得了三个OsRS敲除转基因株系和一个OsRS过表达转基因株系,种子活力评测实验表明,敲除OsRS对种子活力无明显影响,过表达OsRS显著提高了水稻种子活力。
为了实现上述目的,本发明采用如下技术方案:
水稻OsRS基因在选育高种子活性水稻中的应用。
作为上述技术方案优选的技术方案,OsRS基因能提高SOD和CAT活性。
作为上述技术方案优选的技术方案,水稻OsRS基因应用于构建OsRS基因过表达元件中,进而转化至水稻植株中
作为与上述技术方案相同的发明构思,本发明还请求保护水稻OsRS基因的过表达元件在选育高种子活性水稻中的应用。
一种OsRS基因过表达元件,包括pCUbi-1309载体和OsRS基因片段,其具体用限制性内切酶NcoI和BstEII双酶切pCUbi-1309载体后,将带有同源端的OsRS基因目的片段和酶切载体通过Exnase酶的催化进行同源重组连接而成。
经由上述的技术方案可知,与现有技术相比,本发明克隆得到水稻OsRS基因,通过在水稻中过表达和敲除该基因,研究了OsRS基因的功能,为水稻育种提供了理论基础。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为OsRS基因过表达载体构建策略示意图;
图2附图为OsU3p驱动的pHUE411载体图谱;
图3附图为OsRS基因敲除载体构建策略示意图;
图4附图为农杆菌介导的水稻遗传转化的流程图;
图5附图为野生型和过表达转基因植株OsRS基因的表达量示意图;
图6附图为碱基敲除结果图;
图7附图为碳水化合物含量示意图;
图8附图为不同处理组水稻的表型图;
图9附图为种胚中抗氧化酶活力测定结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
OsRS基因的克隆分析
以NCBI网站获取的OsRS基因组序列为参考序列,使用Primer Premier 5软件设计出CDS区及两段外显子区的引物序列,具体引物序列如下:
OsRS-CDS-F:ATGAGTTGTTGTGGCTCCCACA,如SEQ ID NO.1所示;
OsRS-CDS-R:GTAAAAGTACTCGACACGCGACA,如SEQ ID NO.2所示;
OsRS-exon1-F:ATGAGTTGTTGTGGCTCCCACA,如SEQ ID NO.3所示;
OsRS-exon1-R:ATGGATGACGTCGACCTTGACA,如SEQ ID NO.4所示;
OsRS-exon2-F:
GTCAAGGTCGACGTCATCCATCTGCTGGAGATGGTGTGCG,如SEQ ID NO.5所示;
OsRS-exon2-R:CTAGTAAAAGTACTCGACACGCGAC,如SEQ ID NO.6所示;
因OsRS基因CDS序列中CG含量较高,难以直接从cDNA中扩增成功,所以选择先将该基因的两端外显子分别扩增,扩增体系如表1;
表1
电泳检测是否为目标条带,确认后进行胶回收。将回收后的两段外显子作为样本,通过一步法和两步法将带有黏性末端的两条外显子序列连接起来,扩增体系与PCR具体如表2和表3;
一步法:
表2
两步法:先按表配制反应体系体系,按照下表中PCR-1程序运行完毕后,加入OsRS-CDS-F/R各0.2μL并运行PCR-2程序
表3
反应结束后,吸取5μL样品跑电泳,如果有目标条带就扩大反应体系,并将产物胶回收。将回收产物连pTOPO克隆载体并转化到大肠杆菌中,挑选阳性菌落送由生物公司测序。
本实验从日本晴中扩增出了水稻OsRS基因,通过测序确定该基因基因组序列全长3380bp,有两个外显子并一个内含子,CDS区全长2523bp,编码841个氨基酸。
实施例2OsRS基因过表达和敲除载体的构建
以Ubiquitin强驱动的pCUbi-1309为基础载体,构建pCUbi-1309-OsRS-CDS的过量表达融合载体。
分析过该基因的CDS序列和载体序列后,选取NcoI和BstEII做为酶切位点设计了带有20bp左右载体及酶切位点得同源末端过表达扩增引物,具体引物序列如下:
OsRS-OE-NcoI-F:TACCTGCAGGTCGACGGATCCATGAGTTGTTGTGGCTCCCACA,如SEQ IDNO.7所示;
OsRS-OE-BstEII-R:GTGGCTAGCGTTAACACTAGTGTAAAAGTACTCGACACGCGACA,SEQ IDNO.8所示;
由于进行该实验时还未能成功扩增出OsRS基因的CDS全长序列,所以在构建过表达载体时,目的片段从水稻日本晴gDNA中扩增出的OsRS基因序列,包含两段外显子和一段内含子。按照表4进行扩增,反应结束后取产物进行电泳检测,如果条带大小正确则扩大体系扩增并进行胶回收。
表4
用限制性内切酶双酶切pCUbi-1309载体(NcoI和BstEII),将带有同源端的目的片段和酶切载体通过Exnase酶的催化进行同源重组连接,连接条件为37℃,1h。连接完成后将产物(5-10μL)转化大肠杆菌(Trans1-T1)感受态,选阳性菌株送往公司测序,提取正确的菌株的质粒(具体步骤见TianGen试剂盒说明书)。OsRS基因过表达载体构建策略示意图见图1;
将OsU3p驱动的pHUE411(载体图谱见图2)作为敲除载体,在CRISPR-PLANT(http://www.genome.arizona.edu/crispr/CRISPRsea rch.html)网站筛选出特异性靶点,之后登录到CRISPR RGEN Tools(http://www.rgenome.net/cas-offinder/)网站对筛选出的靶点进行脱靶分析,选取出最适宜靶点后,设计得到两对特异性引物为:
OsRS-cas9-F1:ATATATGGTCTCTGGCGGGCACGAGGGTGGACGCCGGTTTTAGAGCTAGAAATAGC,如SEQ ID NO.9所示;
OsRS-cas9-R1:ATTATTGGTCTCTAAACCCGGCGCGTCGAAGCCGAGGGCTTCTTGGTGCC,如SEQID NO.10所示;
OsRS-cas9-F2:ATATATGGTCTCTGGCGGCCTACTTCGCTGGGCTGAGTTTTAGAGCTAGAAATAGC,SEQ ID NO.11所示;
OsRS-cas9-R2:ATTATTGGTCTCTAAACTGCCCAGCAGCATGAAGTCG GCTTCTTGGTGCC,SEQID NO.12所示;
pHUE411质粒(实验室保存)为模板进行连接片段靶序列的扩增,扩增、酶切、回收。转化,测序,获得敲除载体质粒(OsRS基因敲除载体构建策略示意图见图3)。
实施例3农杆菌转化
将构建好的过表达载体质粒转化到农杆菌感受态细胞EHA105中,以便后续遗传转化组织侵染实验,具体步骤如下:
(1)农杆菌感受态EHA105的制备
1)将-80℃保存的甘油菌EHA105置于冰上解冻,随后在超净台上在含利福平(Rif)抗性(50μg/mL)的固体培养基中划线,置于28℃暗培养2-3d;
2)挑取单克隆菌落加入到700μL含Rif抗性(50μg/mL)的LB液体培养基中振荡培养,150rpm,28℃暗培养,待菌体培养一定浓度后,置于50mL三角瓶中继续扩大培养;
3)待培养菌体OD值约0.4-0.6范围内时,将菌液冰浴处理30min,4℃4,000rpm离心10min,去除上清液;
4)加入10mL预冷的NaCl溶液(0.15mol/L),轻轻混匀重悬菌体,4℃,4,000rpm离心10min,去上清;
5)加入1mL预冷的CaCl2溶液(0.02mol/L),轻轻吹打悬浮细胞;
6)加入1mL预冷的30%浓度甘油,轻轻混均,并进行分装处理(每管50μL),随后进行液氮速冻并置于-80℃超低温冰箱保存备用。
(2)重组载体质粒的转化
1)冰上冻融制备好的EHA105感受态细胞,加入2μg重组载体质粒,轻柔混匀后再冰浴静置30min;
2)液氮速冻3min,立即放入37℃水浴锅水浴3min,再冰浴2min;
3)加入500μL的LB液体培养基,150rpm,28℃复苏培养3-5h;
4)将上述样品涂布于含50μg/mL的Rif和50μg/mL Kan抗性的LB固体培养基上,28℃进行暗培养处理2-3d;
5)挑取单克隆菌落加入到含Kan+Rif抗性(均为50μg/mL)的700μL LB液体培养基中,220rpm,37℃振荡培养约4h左右,再经菌液PCR鉴定将阳性克隆扩大培养,加入一定量甘油(15%-25%甘油浓度)与菌株混合并冻存于-80℃冰箱备用。
实施例4农杆菌介导的水稻遗传转化及转基因植株的检测
(一)水稻愈伤组织的诱导与继代培养
(1)材料的挑选
水稻愈伤组织的诱导可以挑选幼胚或者当季新鲜种子进行诱导,幼胚挑选谷壳嫩绿谷粒偏软带汁为佳,成熟胚则挑选饱满,完整性好的种子。
(2)消毒
先无菌水清洗3-5次,去除表面杂质,用75%乙醇溶液进行表面消毒处理2min,随后直接用含有2.5%的次氯酸钠溶液浸泡10min(为了更好的消毒效果,可添加一滴Tween-20),期间置于摇床不停摇晃以达更好的效果,再经过无菌水清洗数次后将其置于暗处30min,随后将消毒清洗后的谷粒铺于灭菌的滤纸上超净工作台吹干(约10min)。
(3)愈伤组织的诱导与继代培养
消毒处理后的幼胚用解剖针取下胚接到诱导培养基上,成熟胚可直接接种到诱导培养基上,并放于28℃暗培养。7-10d后将诱导长出的新愈伤组织去芽后转接到继代培养基上,根据愈伤组织生长情况,约2周继代一次。
(二)农杆菌转化水稻愈伤组织
(1)菌体活化
吸取适量经鉴定为阳性的菌液直接在含Kan(50mg/L)和Rif(50mg/L)抗性的LB固体培养基上划线,倒置于28℃生化培养箱中进行1-2d的暗培养。
(2)愈伤组织的侵染
1)挑选直径约2-3mm,色泽鲜黄且结构致密的胚性愈伤组织于预培养培养基中28℃培养2-3d;
2)取适量含乙酰丁香酮(AS)(100μmol/L)的AAM液体培养基吹洗已活化的菌体,调整OD浓度,使OD600在0.2-0.3的范围内,激烈振荡1min,静置1h,使菌体形成悬浮液同时增强其侵染活性;
3)挑取预培养的胚性愈伤组织,倒入悬浮液,略微摇动后静置10min,于无菌滤纸上晾干愈伤组织后置于含有100μmol/L乙酰丁香酮的共培养培养基上,28℃暗培养2d。
(3)抗性愈伤组织的继代筛选
共培养2d后的愈伤组织转接到不同羧苄青霉素浓度的筛选培养基上进行筛选培养,新长出的愈伤组织继代2-3次,每次继代培养10-12d。
(4)分化与生根
挑选经筛选继代处理后长出的新愈伤组织转接至预分化培养基中进行再生,成团,一周后愈伤组织出现绿点,再将其转接到分化培养基中,约2-3w后长出幼芽。当长出的植株到一定高度后转到生根培养基中生根处理至成苗。
(5)炼苗
生根10d后开盖,加入无菌水浸泡培养基即可,2d后洗苗转移至营养液中进行生长,在此期间可进行转基因植株的阳性鉴定。其中,农杆菌介导水稻遗传转化的流程见图4。
水稻遗传转化组培试剂配制培养基配方如下:
1)诱导(继代、预培养)培养基(J0):MS Basal Medium+2,4-D(3mg/L)+谷氨酰胺(500mg/L)+脯氨酸(500mg/L)+3%蔗糖+0.25%Gelrite(植物凝胶),pH=5.8;
2)共培养培养基:DL3+2,4-D(2mg/L)+乙酰丁香酮(AS,100μM),pH=5.8;
3)筛选培养基Ⅰ:DL3+2,4-D(2mg/L)+羧苄青霉素400mg/L+潮霉素50mg/L,pH=5.8;
4)筛选培养基Ⅱ:DL3+2,4-D(2mg/L)+羧苄青霉素200mg/L+潮霉素50mg/L,pH=5.8;
5)筛选培养基Ⅲ:DL3+2,4-D(2mg/L)+羧苄青霉素100mg/L+潮霉素50mg/L,pH=5.8;
6)预分化培养基:DL3+羧卞(250mg/L)+Hyg(50mg/L),pH=5.9;
7)分化培养基:DL+BA(2mg/L)+NAA(0.2mg/L)+KT(2mg/L)+IAA(0.2mg/L)+谷氨酰胺(500mg/L)+脯氨酸(500mg/L)+水解酪蛋白(800mg/L),pH=5.9;
8)生根培养基:1/2MS无机盐+MS有机成分+30g蔗糖,pH=5.8。
实施例5转基因植株阳性检测
对T3代OsRS过表达转基因植株进行检测,Trizol法提取野生型和过表达转基因水稻种胚中RNA,反转录后获得cDNA,进行实时荧光定量PCR验证表达量变化。野生型和过表达转基因植株OsRS的表达量如图5所示,过表达植株OsRS表达量上调,因此我们使用纯合的OE1阳性纯合过表达株系进行后续试验。
对T3代纯合OsSH3P2的CRISPR/Cas9敲除植株转基因植株进行检测,CTAB法提取野生型和敲除转基因水稻叶片DNA,从DNA中扩增OsRS基因,纯化回收DNA片段后进行pTOPO载体连接,转化大肠杆菌,菌液送公司测序,比对测序结果得到具体的碱基敲除结果如图6所示。敲除植株均造成密码子移码,OsRS功能丧失,因此我们使用这三个阳性纯合敲除株系进行后续试验。
实施例6转基因种子种胚中碳水化合物含量鉴定
取日本晴及OsRS转基因水稻种子各800粒,切取水稻种胚装于1.5mL离心管中,液氮速冻(边切边冻)后放置在-80℃储存于干净的研钵中用液氮研磨成干粉。把磨好的种胚干粉用干净的药品勺转移至带有编号的离心管中,液氮速冻后可用于后续称重,或于-80℃储存。每个编号的样品称取50±0.5mg,并记录重量。每管中加入1mL 70%甲醇,低温超声萃取20min后,4℃,12,000rpm离心10min。取上清20μL于新的离心管中,加入980μL 70%甲醇,用0.22μm的滤膜过滤稀释液。
标准品溶液的配制:取标准品粉末,用10%甲醇溶液稀释成1mg/mL的母液,再将母液稀释成一定倍数的储备液用作混标的制作。
混标标曲点的制作:取各标准品储备液,配制混标标曲最高浓度液,记为系数1,在1的基础上配制系数为0.6,0.4,0.2,0.06,0.04,0.02,0.004,0.0004的8个梯度标曲点。
质谱参数:离子化模式(Ionmode):ES-;毛细管电压(Capillary):2.00kV;锥孔电压(Cone):30V;离子源温度(Source Temperature):150℃;锥孔气流量(Cone Gas Flow):150L/Hr;脱溶剂气流量(Desolvation Gas Flow):900L/Hr;脱溶剂气温度(DesolvationGas Temperature):450℃;数据采集模式:MRM(Multiple Reaction Monitor)。
液相参数:柱温:40℃;样品室温度:10℃;进样体积:2μL;色谱柱型号及规格:ACQUITY UPLC HSS T31.7μm 100mm×2.1mm;洗脱流动相:A:水,B:乙腈;洗脱方式:梯度洗脱。
利用Waters的Targetlynx软件进行数据处理,得到棉子糖标曲:Y=13.56*X+292.2(R2>0.99)碳水化合物含量如图7。
过表达OsRS显著提高了水稻种胚中棉子糖的含量;OsRS敲除转基因水稻种胚中棉子糖含量显著降低,肌醇半乳糖苷作为合成棉子糖的底物,在种胚中大量积累。本实验表明,OsRS所编码的产物是水稻中主要合成棉子糖的蛋白。
实施例7OsRS转基因植株种子活力表型鉴定
(1)水稻种子的人工老化:挑选外形完好且较为饱满的转基因种子与对照种子,装于网袋中,每个株系设置3组重复,每个重复50粒种子。将网袋悬挂于人工气候箱内,设置温度42℃,相对湿度88%,分别处理0、14、18及20天。
(2)水稻种子的发芽实验:将人工老化处理完毕的水稻种子,过夜浸种后,均匀平铺在放置有裁好的圆形滤纸的培养皿中,培养皿中加入8ml纯净水,置于多功能环境监测培养箱中,控制温度28℃,相对湿度70%,16h光照/8h黑暗)进行发芽试验,5天统计发芽势,12天后统计发芽率。
表型如图8。未进行人工老化处理时各组间发芽率无明显差异,人工老化处理20天后OsRS过表达转基因种子发芽率显著高于其他株系。
(3)种胚中抗氧化酶活性鉴定
SOD酶活的测定
使用索莱宝公司提供的超氧化物岐化酶(SOD)活性检测试剂盒,参照说明书方法略作改进。
所用试剂:SOD提取液、试剂一至试剂五(临用前将试剂四加入试剂五中,并震荡溶解)。
取未进行人工老化及人工老化处理18天后的水稻株系种胚各50粒左右,每个株系设置三组重复,加入液氮于冰上研磨成粉后,加入500μl POD提取液,继续于冰上研磨至匀浆;8000g,4℃离心10min,取上清稀释10倍后置于冰上待测。其余步骤参照说明书。
POD酶活的测定
使用索莱宝公司提供的过氧化物酶(POD)活性检测试剂盒,参照说明书方法略作改进。
取未进行人工老化及人工老化处理18天后的水稻株系种胚各50粒左右,每个株系设置三组重复,加入液氮于冰上研磨成粉后,加入500μl POD提取液,继续于冰上研磨至匀浆;8000g,4℃离心10min,取上清置于冰上待测。其余步骤参照说明书。
CAT活性的测定
使用索莱宝公司提供的过氧化氢酶(CAT)活性检测试剂盒,参照说明书方法略作改进。
取未进行人工老化及人工老化处理18天后的水稻株系种胚各50粒左右,每个株系设置三组重复,加入液氮于冰上研磨成粉后,加入500μl CAT提取液,继续于冰上研磨至匀浆;8000g,4℃离心10min,取上清置于冰上待测。其余步骤参照说明书。
蛋白质浓度的测定
根据索莱宝公司提供的Bradford蛋白浓度测定试剂盒说明书测定。
种胚中抗氧化酶活力测定结果如图9所示。敲除OsRS导致种胚内抗氧化压力增大,POD活性及CAT活性升高;而过表达OsRS则在老化处理后表现出更低的SOD和CAT活性。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
序列表
<110> 福建省农业科学院水稻研究所
<120> 水稻OsRS基因在选育高种子活性水稻中的应用
<160> 12
<170> SIPOSequenceListing 1.0
<210> 1
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgagttgtt gtggctccca ca 22
<210> 2
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gtaaaagtac tcgacacgcg aca 23
<210> 3
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atgagttgtt gtggctccca ca 22
<210> 4
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
atggatgacg tcgaccttga ca 22
<210> 5
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
gtcaaggtcg acgtcatcca tctgctggag atggtgtgcg 40
<210> 6
<211> 25
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
ctagtaaaag tactcgacac gcgac 25
<210> 7
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
tacctgcagg tcgacggatc catgagttgt tgtggctccc aca 43
<210> 8
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
gtggctagcg ttaacactag tgtaaaagta ctcgacacgc gaca 44
<210> 9
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
atatatggtc tctggcgggc acgagggtgg acgccggttt tagagctaga aatagc 56
<210> 10
<211> 50
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
attattggtc tctaaacccg gcgcgtcgaa gccgagggct tcttggtgcc 50
<210> 11
<211> 56
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
atatatggtc tctggcggcc tacttcgctg ggctgagttt tagagctaga aatagc 56
<210> 12
<211> 50
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
attattggtc tctaaactgc ccagcagcat gaagtcggct tcttggtgcc 50

Claims (3)

1.水稻OsRS基因在选育高种子活性水稻中的应用,其中,过表达OsRs基因提高水稻种子人工老化处理后的发芽率;所述水稻OsRS基因CDS区的引物序列如SEQ ID NO.1-SEQ IDNO.2所示。
2.根据权利要求1所述的水稻OsRS基因在选育高种子活性水稻中的应用,其特征在于,水稻OsRS基因应用于构建OsRS基因过表达元件中,进而转化至水稻植株中。
3.水稻OsRS基因的过表达元件在选育高种子活性水稻中的应用,其中,过表达OsRs基因提高水稻种子人工老化处理后的发芽率;所述水稻OsRS基因CDS区的引物序列如SEQ IDNO.1-SEQ ID NO.2所示。
CN202210632734.6A 2022-06-06 2022-06-06 水稻OsRS基因在选育高种子活性水稻中的应用 Active CN115094084B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210632734.6A CN115094084B (zh) 2022-06-06 2022-06-06 水稻OsRS基因在选育高种子活性水稻中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210632734.6A CN115094084B (zh) 2022-06-06 2022-06-06 水稻OsRS基因在选育高种子活性水稻中的应用

Publications (2)

Publication Number Publication Date
CN115094084A CN115094084A (zh) 2022-09-23
CN115094084B true CN115094084B (zh) 2023-10-24

Family

ID=83289260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210632734.6A Active CN115094084B (zh) 2022-06-06 2022-06-06 水稻OsRS基因在选育高种子活性水稻中的应用

Country Status (1)

Country Link
CN (1) CN115094084B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1241630A (zh) * 1999-08-18 2000-01-19 中国农业科学院作物育种栽培研究所 普通野生稻抗白叶枯病近等基因系及其培育方法
CN110452917A (zh) * 2019-09-16 2019-11-15 河南科技大学 野葡萄VyGOLS基因及其编码蛋白在干旱胁迫中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1241630A (zh) * 1999-08-18 2000-01-19 中国农业科学院作物育种栽培研究所 普通野生稻抗白叶枯病近等基因系及其培育方法
CN110452917A (zh) * 2019-09-16 2019-11-15 河南科技大学 野葡萄VyGOLS基因及其编码蛋白在干旱胁迫中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
NM_001409418.1.《GENEBANK》.2023, *
Tao Li1等.Regulation of Seed Vigor by Manipulation of Raffinose Family Oligosaccharides in Maize and Arabidopsis thaliana.《Molecular Plant》.2017,第10卷第1540-1555页. *
XM_052288546.1.《GENEBANK》.2022, *
丁国华 ; 孙健 ; 杨光 ; 张凤鸣 ; 白良明 ; 孙世臣 ; 姜树坤 ; 王彤彤 ; 郑洪亮 ; 夏天舒 ; 沈希宏 ; 马殿荣 ; 陈温福 ; .干旱胁迫下杂草稻和栽培稻根系基因表达差异研究.中国水稻科学.2016,(05),第15-25页. *
任海英.生物激发子与氧化还原相关信号对植物生长和抗病性的调控作用.《中国优秀博士论文全文数据库 农业科技辑》.2008,第七章摘要部分、第1.1.3节、第2.8节. *

Also Published As

Publication number Publication date
CN115094084A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
CN109837296B (zh) 玉米基因ZmNAC77的一个耐盐耐旱新功能及其应用
CN112522291B (zh) 水稻OsSH3P2基因及其应用
CN117757769B (zh) 一种CsMEK5基因及其编码蛋白在提高柑橘溃疡病抗性的应用和转基因植株
CN109022451B (zh) 一种水稻基因OsPGSIP1及其应用
CN111394365A (zh) OsDUF6基因在提高水稻耐旱性中的应用
CN112048515B (zh) 一种油菜S-腺苷-L-蛋氨酸依赖的甲基转移酶基因BnPMT6及其应用
JP4987734B2 (ja) ストレス応答性遺伝子が導入された形質転換植物
CN115094084B (zh) 水稻OsRS基因在选育高种子活性水稻中的应用
CN114350673B (zh) 一种调控种子活力的水稻kob1基因及其调控方法
CN114410658B (zh) 一种降低水稻糙米镉含量的基因OsWNK9及其编码蛋白和应用
CN109971765B (zh) 一种调控拟南芥脂肪酸和淀粉含量的玉米基因ZmNAC77及其应用
CN116064568A (zh) 紫花苜蓿MsASG166基因及在提高植物耐旱中的用途
CN114807168A (zh) 绿豆VrMIB1基因及其应用
CN114958866B (zh) 调控大豆分枝数的基因及其用途
CN116218897A (zh) OsGolS2基因在提高水稻种子活力和抗干旱胁迫中的应用
US20240240193A1 (en) Gene for regulating branch numbers of soybean and use thereof
CN113403336B (zh) 一种编辑水稻巨胚基因ge培育巨胚粳稻品种的方法
CN110183524B (zh) 一个促进大豆主根伸长的基因GmKRP2a、蛋白及其应用
CN113136388B (zh) 水稻OsMAPKKK5基因在改良水稻的株高和粒型方面的应用
CN114774462B (zh) 一种大豆双组分系统响应调节器基因GmRR1的应用
CN112375766B (zh) 一种水稻抗氧化能力相关基因brhis1及其应用
CN118147175B (zh) MtCOMT13基因在调控植物耐盐抗旱性中的应用
CN118516376B (zh) HbSHB基因在提高橡胶树遗传转化效率中的应用及其表达载体的构建方法
CN115976053B (zh) 一种干旱胁迫相关的鸭茅基因及其应用
CN116179574A (zh) CmEAF7基因在提高甜瓜耐冷性和/或果实品质中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant