CN115092929B - 一种大片层可控孔洞化MXene纳米片的制备方法 - Google Patents

一种大片层可控孔洞化MXene纳米片的制备方法 Download PDF

Info

Publication number
CN115092929B
CN115092929B CN202210771623.3A CN202210771623A CN115092929B CN 115092929 B CN115092929 B CN 115092929B CN 202210771623 A CN202210771623 A CN 202210771623A CN 115092929 B CN115092929 B CN 115092929B
Authority
CN
China
Prior art keywords
mxene
sheet
nano
tio
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210771623.3A
Other languages
English (en)
Other versions
CN115092929A (zh
Inventor
李琪
马泽林
徐晗雪
张茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202210771623.3A priority Critical patent/CN115092929B/zh
Publication of CN115092929A publication Critical patent/CN115092929A/zh
Application granted granted Critical
Publication of CN115092929B publication Critical patent/CN115092929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种大片层可控孔洞化MXene纳米片的制备方法,该方法先将Ti3AlC2粉末用氢氟酸刻蚀掉其中的Al元素,得到多层MXene;然后将多层MXene在六亚甲基四胺催化氧化作用下进行水热反应,得到MXene/TiO2复合材料;最后利用过量氢氟酸处理去除TiO2,得到二维孔洞化MXene纳米片。本发明在六亚甲基四胺催化氧化作用下,MXene片层上Ti在水热反应条件下被快速氧化,且可以通过调节反应时间、反应温度控制Ti氧化程度及制备得到不同粒径大小的MXene/TiO2复合材料,并在此基础上制备得到孔径可控、孔分布均匀的二维孔洞化Mxene纳米片材料,有望进一步改善MXene做锂离子电池等储能装置电极材料性质。

Description

一种大片层可控孔洞化MXene纳米片的制备方法
技术领域
本发明属于材料技术领域,具体涉及一种大片层可控孔洞化MXene纳米片的制备方法。
背景技术
二维层状材料具有高比表面积、高活性位点及快速离子扩散路径等优势,已经在电催化、超级电容器和二次电池等储能领域被广泛应用。众多二维纳米材料中,过渡金属碳/氮化物材料是一类新型二维晶体,化学通式为Mn+1XnTz(M:过渡金属元素;X:碳或氮元素;T:活性官能团),具有与石墨烯类似的层状结构,且表面存在F-,OH-,O2-等官能团。由于MAX相种类众多,包含多种元素,在氢氟酸(HF) 的作用下可以选择性刻蚀掉其中的金属原子,自上而下剥离得到类石墨烯结构的二维层状晶体,具有不同的物理化学性质。目前,研究最为普遍的一种物质是Ti3AlC2,在HF酸作用下Al原子被选择性刻蚀,剥离得到Ti3AlC2纳米片。这类材料具有优异的导电性,比表面积较大,活性位点多,具有良好的电学、磁学以及力学性能等,有望应用在储能、催化、吸附等各个领域。
目前,关于制备MXene纳米片的常见方法主要包括两种:一种是自下而上生长制备高质量薄膜技术,但无法获得单层纳米片;另一类是自上而下化学剥离制备单层纳米片。将其应用于储能领域具有导电性好等优势,但其在垂直方向上通过平面的电导率有限,致使材料倍率性能等会有下降,对开发高容量和快速充放电电极材料不利。研究表明采用在片层上形成孔洞化的方式来进行改性,可以克服纳米片层组装的堆叠问题,能够加快离子和电子快速传输到电极结构内部,同时可以提高电解液对电极材料浸润性等。但对于制备可精细调控的孔径均匀MXene纳米片的报道较少,严重影响了孔洞化MXene材料的发展。因此,开发粒径均匀、尺寸可控的二维MXene纳米片层制备新技术具有重要意义。
发明内容
本发明的目的是提供一种操作简单、孔径均匀、尺寸可控的二维孔洞化MXene 纳米片的制备方法。
针对上述目的,本发明所采用的技术方案由下述步骤组成:
(1)将Ti3AlC2粉末加入到氢氟酸中,搅拌充分反应使其中Al元素被完全刻蚀掉,将刻蚀后物质洗至中性后冷冻干燥,得到多层MXene;
(2)将多层MXene加入到蒸馏水和乙醇的混合液中,超声分散30~60分钟后搅拌10~24小时,再加入六亚甲基四胺,在反应釜中120~160℃水热反应5~ 12小时,所得产物用水和乙醇洗涤至中性后真空干燥,得到MXene/TiO2复合材料;
(3)利用过量氢氟酸处理MXene/TiO2复合材料以去除TiO2,得到二维孔洞化 MXene纳米片。
上述步骤(1)和步骤(3)中,所述氢氟酸是质量浓度为25%~35%的氟化氢水溶液。
上述步骤(2)中,优选多层MXene与六亚甲基四胺的质量为1:0.5~0.8。
上述步骤(2)中,优选在反应釜中150℃水热反应5小时。
上述步骤(2)中,所述混合液中蒸馏水和乙醇的体积比为1:1。
本发明的有益效果如下:
本发明在六亚甲基四胺催化氧化作用下,MXene片层上Ti在水热反应条件下被快速氧化,且可以通过调节反应时间、反应温度控制Ti氧化程度及制备得到不同粒径大小的MXene/TiO2复合材料,并在此基础上制备得到孔径可控、孔分布均匀的二维孔洞化Mxene纳米片材料,有望进一步改善MXene做锂离子电池等储能装置电极材料性质。
附图说明
图1是多层MXene在空气中放置12h后、不添加CHN进行水热反应后以及添加CHN进行水热反应后的X射线衍射对比图。
图2是多层MXene在空气中放置12h后、不添加CHN进行水热反应后以及添加CHN进行水热反应后的扫描电镜对比图。
图3是实施例1中MAX和多层MXene的X射线衍射图。
图4是实施例1中多层MXene、MXene/TiO2复合材料及H-MXene纳米片的X 射线衍射图。
图5是实施例1中多层MXene及H-MXene纳米片的拉曼光谱图。
图6是实施例1中多层MXene(a)、MXene/TiO2复合材料(b)及H-MXene 纳米片(c)的扫描电镜照片。
图7是实施例1中多层MXene(a)、MXene/TiO2复合材料(b)及H-MXene 纳米片(c)的透射电镜照片。
图8是实施例1中多层MXene和H-MXene纳米片的BET图。
图9是实施例1中多层MXene(a)和H-MXene纳米片(b)的X射线光电子能谱图。
具体实施方式
下面结合附图和实施例对本发明技术方案进一步系统阐述说明,但是本发明保护范围不限于这些实例。
实施例1
1、将10g Ti3AlC2(MAX)缓慢加入到187.5mL质量浓度为30%的氟化氢水溶液中,室温下缓慢搅拌72h使其中Al元素被完全刻蚀掉,将刻蚀后物质用去离子水洗涤至滤液为中性,冷冻干燥后得到多层MXene。
2、取100mg多层Mxene分散到40mL蒸馏水和乙醇体积比为1:1的混合液中,超声1h后搅拌24h,再加60mg六亚甲基四胺,在反应釜中150℃水热反应5h,所得产物用水和乙醇洗涤至中性后,60℃真空干燥,得到MXene/TiO2复合材料。该步骤中,若直接将多层Mxene放置在空气中,不添加六亚甲基四胺(CHN),且不进行水热反应,即使放置12h,多层MXene也不容易被氧化成TiO2,XRD第一个衍射峰不向小角度发生偏移(见图1中Eaching Al和图2a);若将多层Mxene加入反应釜中但不添加CHN进行水热反应,多层MXene也极少被氧化(见图1中No CHN和图2b),而添加CHN后进行水热反应,多层MXene发生明显氧化,第一个衍射峰明显向小角度偏移,是由于生成较多TiO2颗粒后,使片层间距增加,进一步证明在CHN作用下MXene被催化氧化成TiO2物质(见图1中CHN和图2c),说明在水热过程中CHN对氧化具有促进作用。
3、将100mg MXene/TiO2复合材料加入50mL质量浓度为30%的氟化氢水溶液中去除TiO2,反应迅速产生大量气泡,气泡消失后用去离子水洗涤至中性,得到二维孔洞化MXene纳米片(H-MXene)。
如图3所示,Ti3AlC2(MAX)在氢氟酸刻蚀后,位于39°处衍射峰消失,证明刻蚀完全,形成多层MXene结构,同时图4曲线表明形成孔洞结构XRD保持不变,因此说明孔洞化后不影响MXene主体结构。图5拉曼光谱结果表明,普通MXene 在197、287、391、601、714cm-1处出现拉曼信号,其中197、714cm-1处对应于 Ti-C的A1g的对称面外振动,而287、391、601cm-1为Ti、C和表面平面官能团原子的面内剪切振动,形成孔洞化结构后,MXene的拉曼信号不发生改变,但强度略有减弱,同时在150cm-1附近代表TiO2的拉曼信号不存在,这表明将TiO2在氢氟酸作用下完全去除且MXene孔洞化过程中没有发生二次氧化。从图6中可以看出,通过水热反应在MXene片层表面出现明显颗粒状物质,对应于生成的TiO2,粒径大小约为20nm,后续经过氢氟酸处理,TiO2颗粒消失,MXene片层上形成孔洞化结构。为进一步表征孔洞结构,采用透射电镜对材料进行表征,如图7所示。从图 7a中可以看到,普通MXene纳米片上不存在孔隙结构,经过孔洞化处理后,其片层表面明显出现孔洞结构(图7b),从暗场相中可以更直观的观察到(图7c),比表面积测试结果显示孔洞化后MXene比表面积从10cm2/g增加至35cm2/g,这是由于孔洞结构存在使其比表面积增大(见图8)。使用X射线光电子能谱进行分析 (图9),对MXene进行孔洞化处理后,其元素组成和价态不发生改变。结果证明使用该方法对MXene进行孔洞化处理不改变其晶体结构和化学性质。
实施例2
本实施例的步骤2中,在反应釜中120℃水热反应12h,其他步骤与实施例1 相同,得到二维孔洞化MXene纳米片。
实施例3
本实施例的步骤2中,在反应釜中160℃水热反应8h,其他步骤与实施例1 相同,得到二维孔洞化MXene纳米片。

Claims (5)

1.一种大片层可控孔洞化MXene纳米片的制备方法,其特征在于:
(1)将Ti3AlC2粉末加入到氢氟酸中,搅拌充分反应使其中Al元素被完全刻蚀掉,将刻蚀后物质洗至中性后冷冻干燥,得到多层MXene;
(2)将多层MXene加入到蒸馏水和乙醇的混合液中,超声分散30~60分钟后搅拌10~24小时,再加入六亚甲基四胺,在反应釜中120~160℃水热反应5~12小时,所得产物用水和乙醇洗涤至中性后真空干燥,得到MXene/TiO2复合材料;
(3)利用过量氢氟酸处理MXene/TiO2复合材料以去除TiO2,得到二维孔洞化MXene纳米片。
2.根据权利要求1所述的大片层可控孔洞化MXene纳米片的制备方法,其特征在于:所述氢氟酸是质量浓度为25%~35%的氟化氢水溶液。
3.根据权利要求1所述的大片层可控孔洞化MXene纳米片的制备方法,其特征在于:步骤(2)中,所述多层MXene与六亚甲基四胺的质量为1:0.5~0.8。
4.根据权利要求1或3所述的大片层可控孔洞化MXene纳米片的制备方法,其特征在于:步骤(2)中,在反应釜中150℃水热反应5小时。
5.根据权利要求1或3所述的大片层可控孔洞化MXene纳米片的制备方法,其特征在于:步骤(2)中,所述混合液中蒸馏水和乙醇的体积比为1:1。
CN202210771623.3A 2022-06-30 2022-06-30 一种大片层可控孔洞化MXene纳米片的制备方法 Active CN115092929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210771623.3A CN115092929B (zh) 2022-06-30 2022-06-30 一种大片层可控孔洞化MXene纳米片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210771623.3A CN115092929B (zh) 2022-06-30 2022-06-30 一种大片层可控孔洞化MXene纳米片的制备方法

Publications (2)

Publication Number Publication Date
CN115092929A CN115092929A (zh) 2022-09-23
CN115092929B true CN115092929B (zh) 2023-10-24

Family

ID=83295022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210771623.3A Active CN115092929B (zh) 2022-06-30 2022-06-30 一种大片层可控孔洞化MXene纳米片的制备方法

Country Status (1)

Country Link
CN (1) CN115092929B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496461A (zh) * 2014-12-23 2015-04-08 陕西科技大学 立方状二氧化钛/二维纳米碳化钛复合材料的制备方法
CN104495918A (zh) * 2014-12-23 2015-04-08 陕西科技大学 颗粒状二氧化钛/二维纳米碳化钛复合材料的制备方法
CN104529455A (zh) * 2014-12-23 2015-04-22 陕西科技大学 一种二氧化钛/二维层状碳化钛复合材料的低温制备法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496461A (zh) * 2014-12-23 2015-04-08 陕西科技大学 立方状二氧化钛/二维纳米碳化钛复合材料的制备方法
CN104495918A (zh) * 2014-12-23 2015-04-08 陕西科技大学 颗粒状二氧化钛/二维纳米碳化钛复合材料的制备方法
CN104529455A (zh) * 2014-12-23 2015-04-22 陕西科技大学 一种二氧化钛/二维层状碳化钛复合材料的低温制备法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Ben Yang et al..Nitrogen Doped Intercalation TiO2/TiN/Ti3C2Tx Nanocomposite Electrodes with Enhanced Pseudocapacitance.《nanomaterials》.2020,第10卷第1-17页. *
Chang E. Ren et al..Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage.《ChemElectroChem》.2016,第3卷第689-693页以及Supporting Information. *
Lijuan Yang et al..Holey Ti3C2 nanosheets based membranes for efficient separation and removal of microplastics from water.《Journal of Colloid and Interface Science》.2022,第617卷第673–682页. *
Xuefeng Zhang et al..One-step hydrothermal synthesis of a TiO2-Ti3C2Tx nanocomposite with small sized TiO2 nanoparticles.《Ceramics International》.2017,第43卷第11065-11070页. *

Also Published As

Publication number Publication date
CN115092929A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Kirubasankar et al. Sonochemical synthesis of a 2D–2D MoSe 2/graphene nanohybrid electrode material for asymmetric supercapacitors
Ejigu et al. A simple electrochemical route to metallic phase trilayer MoS 2: evaluation as electrocatalysts and supercapacitors
Zhang et al. Graphitized porous carbon microspheres assembled with carbon black nanoparticles as improved anode materials in Li-ion batteries
Bulusheva et al. Creation of nanosized holes in graphene planes for improvement of rate capability of lithium-ion batteries
Plonska-Brzezinska et al. Synthesis of carbon nano-onion and nickel hydroxide/oxide composites as supercapacitor electrodes
Ouyang et al. Green synthesis of vertical graphene nanosheets and their application in high-performance supercapacitors
CN104649253A (zh) 一种多孔石墨烯及多孔石墨烯膜的制备方法
WO2010123081A1 (ja) 炭素材料およびその製造方法
Feng et al. Facile hydrothermal fabrication of ZnO–graphene hybrid anode materials with excellent lithium storage properties
KR102003605B1 (ko) 흑린―그래핀 복합체 및 이의 제조방법
Yen et al. Tunable nitrogen-doped graphene sheets produced with in situ electrochemical cathodic plasma at room temperature for lithium-ion batteries
CN107428553B (zh) 钛氧化物粒子、钛氧化物粒子的制造方法、蓄电元件用电极、及蓄电元件
Zhang et al. Formation of V 6 O 11@ Ni (OH) 2/NiOOH hollow double-shell nanoflowers for the excellent cycle stability of supercapacitors
EP3642155A1 (en) Scalable fabrication of pristine holey graphene nanoplatelets via dry microwave irradiation
KR101451354B1 (ko) 독립형 탄소나노튜브/금속 산화물 입자 복합체 필름 및 그 제조방법
Zhang et al. Encapsulating Sn (OH) 4 Nanoparticles in Micropores of Mesocarbon Microbeads: A New Anode Material for High‐Performance Lithium Ion Batteries
Kornilov et al. Li/graphene oxide primary battery system and mechanism
Guo et al. Synthesis of Mo2C MXene with high electrochemical performance by alkali hydrothermal etching
KR102479739B1 (ko) ZnO 나노입자 코팅된 박리된 흑연 복합체, 복합체의 제조 방법 및 Li-이온 전지에서의 용도
Wang et al. An innovative carbon template-induced approach to a graphene-like MnO 2 nanomesh with enhanced pseudocapacitance performance
Li et al. Selective grafting of phosphorus onto Ti 3 C 2 T x MXene enables a two-proton process and enhanced charge storage
JP7465524B2 (ja) アノード電極材料、その製造方法、および、それを用いたリチウムイオン二次電池
Campéon et al. Iron nanoparticle templates for constructing 3D graphene framework with enhanced performance in sodium-ion batteries
CN115092929B (zh) 一种大片层可控孔洞化MXene纳米片的制备方法
Kim et al. Stacking‐Controlled Assembly of Cabbage‐Like Graphene Microsphere for Charge Storage Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant