CN115089836A - 用于呼吸治疗系统的通气适配器 - Google Patents

用于呼吸治疗系统的通气适配器 Download PDF

Info

Publication number
CN115089836A
CN115089836A CN202210541164.XA CN202210541164A CN115089836A CN 115089836 A CN115089836 A CN 115089836A CN 202210541164 A CN202210541164 A CN 202210541164A CN 115089836 A CN115089836 A CN 115089836A
Authority
CN
China
Prior art keywords
vent
flow
housing
hme
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210541164.XA
Other languages
English (en)
Inventor
M·P·丹塔纳亚纳
J·J·佛米卡
R·L·琼斯
J·S·奥姆罗德
C·I·谭
J·G·韦伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resmed Pty Ltd
Original Assignee
Resmed Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resmed Pty Ltd filed Critical Resmed Pty Ltd
Publication of CN115089836A publication Critical patent/CN115089836A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0875Connecting tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/1045Devices for humidifying or heating the inspired gas by using recovered moisture or heat from the expired gas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0605Means for improving the adaptation of the mask to the patient
    • A61M16/0616Means for improving the adaptation of the mask to the patient with face sealing means comprising a flap or membrane projecting inwards, such that sealing increases with increasing inhalation gas pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0683Holding devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • A61M16/161Devices to humidify the respiration air with means for measuring the humidity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0225Carbon oxides, e.g. Carbon dioxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3584Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using modem, internet or bluetooth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/42Reducing noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers

Abstract

用于呼吸压力治疗(RPT)系统的通气组件。该通气组件可以包括通气壳体,该通气壳体具有被配置成用于接收来自RPT装置的加压气体流的第一孔口,并且该通气壳体具有多个孔以将加压气体排放到大气中;通气壳体连接器,该通气壳体连接器具有第二孔口,该第二孔口被配置成用于将该加压气体流引导至患者接口;以及热湿交换器(HME),其包括HME壳体和HME壳体内的HME材料,其中通气壳体和通气壳体连接器构造成至少部分地连接以形成空腔,并且其中当组装通气组件时HME定位在空腔中。

Description

用于呼吸治疗系统的通气适配器
本申请是申请号为201780087688.3、申请日为2017年12月22日、发明名称为“用于呼吸治疗系统的通气适配器”的专利申请的分案申请。申请号为201780087688.3的申请是PCT国际申请PCT/AU2017/051456进入中国国家阶段的申请。
1相关申请的交叉引用
本申请要求于2017年1月6日提交的美国临时申请第62/443,305号的优先权,其全部内容以引用方式并入本文。
2背景技术
2.1技术领域
本技术涉及呼吸相关障碍的检测、诊断、治疗、预防和改善中的一者或多者。本技术还涉及医疗装置或设备及其用途。
2.2相关技术描述
2.2.1人类呼吸系统及其障碍
人体的呼吸系统促进气体交换。鼻和嘴形成患者的气道入口。
气道包括一系列分支管,当分支气管穿透更深入肺部时,其变得更窄、更短且更多。肺部的主要功能是气体交换,从而允许氧气从空气进入静脉血并排出二氧化碳。气管分成左主支气管和右主支气管,它们最终再分成端部细支气管。支气管构成传导气道,但是并不参与气体交换。气道的进一步分支通向呼吸细支气管,并最终通向肺泡。肺部的肺泡区域为发生气体交换的区域,且称为呼吸区。参见2012年由John B.West,LippincottWilliams&Wilkins出版的《呼吸系统生理学(Respiratory Physiology)》,第9版。
存在一系列呼吸障碍。某些障碍可以通过特定事件来表征,例如呼吸中止、呼吸不足和呼吸过度。
阻塞性睡眠呼吸中止症(OSA)是一种睡眠呼吸障碍(SDB)形式,其特征在于包括上气道在睡眠期间的闭塞或阻塞的事件。其起因于睡眠期间异常小的上气道和肌肉张力在舌、软腭及后口咽壁的区域中的正常损失的组合。该病状导致受影响患者停止呼吸,典型地持续30秒至120秒的时间段,有时每晚200次至300次。这常常导致过度日间嗜睡,并可导致心血管疾病和脑损伤。并发症状为常见障碍,尤其在中年超重男性中,但是受到影响的人可能并未意识到这个问题。参见美国专利号4,944,310(Sullivan)。
潮式呼吸(CSR)是另一种睡眠呼吸障碍形式。CSR是患者呼吸控制器的失调,其中存在称为CSR循环的盛衰通气的律动交替周期。CSR的特征在于动脉血的重复性缺氧和复氧。由于重复性氧不足,所以CSR有可能是有害的。在一些患者中,CSR与从睡眠中重复性觉醒相关,这导致严重的睡眠中断、增加的交感神经活动,以及后负荷增加。参见美国专利号6,532,959(Berthon-Jones)。
呼吸功能不全是呼吸障碍的涵盖性术语,其中如果患者的代谢活性升高至比休息高很多时,患者不能足够通气以平衡其血液中的CO2。呼吸功能不全可涵盖以下障碍中的一些或全部。
肥胖通气过度综合征(OHS)被定义为严重肥胖和清醒时慢性高碳酸血症的组合,不存在通气不足的其他已知原因。症状包括呼吸困难、晨起头痛和过度日间嗜睡。
慢性阻塞性肺疾病(COPD)涵盖具有某些共同特征的一组下气道疾病中的任何一种。这些疾病包括空气流动阻力增加、呼吸的呼气阶段延长,以及肺的正常弹性丧失。COPD的实例为肺气肿和慢性支气管炎。COPD由慢性吸烟(主要风险因素)、职业暴露、空气污染和遗传因素所引起。症状包括:劳力性呼吸困难、慢性咳嗽和产生痰液。
神经肌肉疾病(NMD)是一个广泛的术语,其涵盖直接通过内在肌肉病理学或间接通过神经病理学损害肌肉功能的许多疾病和病痛。一些NMD患者的特征在于进行性肌肉损伤,其导致行走能力丧失、乘坐轮椅、吞咽困难、呼吸肌无力,并最终死于呼吸衰竭。神经肌肉障碍可分为快速进行性和慢进行性:(i)快速进行性障碍:特征在于肌肉损伤历经数月恶化,且在几年内导致死亡(例如,青少年中的肌萎缩性侧索硬化(ALS)和杜氏肌肉营养不良症(DMD);(ii)可变或慢进行性障碍:特征在于肌肉损伤历经数年恶化,且仅轻微缩短预期寿命(例如,肢带型、面肩肱型和强直性肌肉营养不良症)。NMD的呼吸衰竭的症状包括:渐增的全身虚弱、吞咽困难、运动中和休息时呼吸困难、疲惫、嗜睡、晨起头痛,以及注意力难以集中和情绪变化。
胸壁是一组导致呼吸肌与胸廓之间无效率联接的胸廓畸形。这些障碍通常特征在于限制性缺陷,并且具有长期高碳酸血症性呼吸衰竭的可能。脊柱侧凸和/或脊柱后侧凸可引起严重的呼吸衰竭。呼吸衰竭的症状包括:运动中呼吸困难、外周水肿、端坐呼吸、反复胸部感染、晨起头痛、疲惫、睡眠质量差以及食欲不振。
已经使用一系列治疗来治疗或改善此类病状。此外,其他健康个体可利用此类治疗来预防出现呼吸障碍。然而,这些治疗具有许多缺点。
2.2.2治疗
持续气道正压通气(CPAP)治疗已被用于治疗阻塞性睡眠呼吸中止症(OSA)。作用机制是连续气道正压通气充当气动夹板,并且可以诸如通过向前并远离后口咽壁推挤软腭和舌来防止上气道闭塞。通过CPAP治疗的OSA的治疗可以是自愿的,因此如果患者发现用于提供此类治疗的装置为:不舒适、难以使用、昂贵和不美观中的任何一者或多者,则患者可选择不依从治疗。
无创通气(NIV)通过上气道向患者提供通气支持以帮助患者呼吸和/或通过完成呼吸功中的一些或全部来维持身体内适当的氧水平。通气支持经由无创患者接口提供。NIV已用于治疗CSR和呼吸功能不全,其呈诸如OHS、COPD、NMD和胸壁障碍的形式。在一些形式中,可以改善这些治疗的舒适性和有效性。
无创通气(IV)为不能够自己有效呼吸的患者提供通气支持,并且可以使用气切管提供。在一些形式中,可以改善这些治疗的舒适性和有效性。
2.2.3治疗系统
这些治疗可以由治疗系统或装置提供。此类系统和装置也可以用于诊断病状而不治疗它。
治疗系统可以包括呼吸压力治疗装置(RPT装置)、空气回路、湿化器、患者接口和数据管理。
治疗系统的另一种形式是下颌再定位装置。
2.2.3.1患者接口
患者接口可用于将呼吸设备接合到其佩戴者,例如通过向气道的入口提供空气流。空气流可以经由面罩提供到患者鼻和/或嘴里、经由管提供到嘴里,或经由气切管提供到患者的气管中。根据待施加的治疗,患者接口可与例如患者面部的区域形成密封,从而有利于气体以与环境压力有足够差异的压力(例如,相对于环境压力大约10cm H2O的正压)进行的输送,以实现治疗。对于其他形式的治疗,诸如氧气输送,患者接口可以不包括足以有利于将约10cm H2O的正压下的气体供给输送至气道的密封。
某些其他面罩系统可能在功能上不适用于本领域。例如,单纯的装饰性面罩可能不能维持适合的压力。用于水下游泳或潜水的面罩系统可被构造成防止水从外部高压流入,而非在内部维持比环境高的压力下的空气。
某些面罩可能在临床上不利于本技术,例如在它们阻挡气流通过鼻子并且仅允许它通过嘴部的情况下。
如果某些面罩需要患者将一部分面罩结构插入在它们的嘴中来通过它们的嘴唇形成并维持密封,则它们可能对于本技术而言是不舒适的或者不能实现的。
某些面罩可能对于在睡眠时使用是不能实现的,例如在头在枕头上侧卧在床上睡眠时。
患者接口的设计提出了若干挑战。面部具有复杂的三维形状。鼻的尺寸和形状显著地因人而异。由于头部包括骨、软骨以及软组织,所以面部的不同区域对机械力反应不同。下颌或下颌骨可以相对于头骨的其他骨骼移动。整个头部可以在呼吸疗法时间段的过程中移动。
由于这些挑战,一些面罩面临以下问题中的一个或多个:突兀、不美观、昂贵、不相称、难以使用以及特别是当佩戴很长一段时间时或者当患者不熟悉系统时不舒适。例如,仅设计用于飞行员的面罩、设计成为个人防护设备的一部分的面罩(例如过滤面罩)、SCUBA面罩,或设计用于施加麻醉剂的面罩对于其原始应用是可以接受的,但是对于长时期(例如几个小时)佩戴,此类面罩却没有理想的那么舒适。这种不适可能导致患者对疗法的依从性降低。如果在睡眠期间佩戴面罩,则更是如此。
假设患者依从治疗,CPAP治疗对治疗某些呼吸障碍非常有效。如果面罩不舒适或难以使用,则患者可能不依从治疗。由于常常建议患者定期清洗他们的面罩,如果面罩难以清洗(例如,难以组装或拆卸),则患者可能不会清洗他们的面罩,这可能影响患者的依从性。
虽然用于其他应用(例如飞行员)的面罩可不适合用于治疗睡眠呼吸障碍,但是经设计用于治疗睡眠呼吸障碍的面罩可以适用于其他应用。
基于这些原因,用于在睡眠期间输送CPAP的患者接口形成了不同的领域。
2.2.3.1.1密封形成部分
患者接口可以包括密封形成部分。由于其与患者面部直接接触,所以密封形成部分的形状和构造可以直接影响患者接口的有效性和舒适性。
根据密封形成部分在使用时与面部接合的设计意图,可以部分地表征患者接口。在一种形式的患者接口中,密封形成部分可以包括两个子部分,以与相应的左鼻孔和右鼻孔接合。在一种形式的患者接口中,密封形成部分可以包括在使用时围绕两个鼻孔的单个元件。这种单个元件可以被设计成例如覆盖面部的上唇区域和鼻梁区域。在一种形式的患者接口中,密封形成部分可以包括在使用时围绕嘴部区域的元件,例如,通过在面部的下唇区域上形成密封。在一种形式的患者接口中,密封形成部分可以包括在使用时围绕两个鼻孔和嘴部区域的单个元件。这些不同类型的患者接口可以由他们的制造商冠以各种名称,包括鼻罩、全面罩、鼻枕、鼻喷和口鼻罩。
可以在患者面部的一个区域中有效的密封形成部分可能不适合在另一区域中,例如,因为患者面部的形状、结构、可变性和敏感区域不同。例如,在覆盖患者前额的游泳护目镜上的密封件可能不适合在患者的鼻子上使用。
某些密封形成部分可以被设计用于批量制造,使得一种设计对于大范围的不同面部形状和尺寸来说是适合、舒适和有效的。对于在患者面部的形状与大规模制造的患者接口的密封形成部分之间存在不匹配的程度,一者或两者必须适应以形成密封。
一种类型的密封形成部分围绕患者接口的外围延伸,并且当力被施加到患者接口,同时密封形成部分与患者面部面对接合时,该密封形成部分旨在抵靠患者面部进行密封。密封形成部分可以包括空气或流体填充垫,或者由弹性体(诸如橡胶)制成的有回弹力的密封元件的模制或成形表面。对于这种类型的密封形成部分,如果配合不充分,则在密封形成部分与面之间将存在间隙,并且将需要额外的力来迫使患者接口抵靠面部以实现密封。
另一种类型的密封形成部分结合围绕面罩的周边定位的薄材料的片状密封件,以便当在面罩内施加正压时提供抵靠患者面部的自密封动作。类似于先前形式的密封形成部分,如果面部与面罩之间的匹配不好,则可能需要额外的力来实现密封,或者面罩可能泄漏。此外,如果密封形成部分的形状与患者的形状不匹配,则其可能在使用时起皱或弯曲,导致泄漏。
另一种类型的密封形成部分可包括摩擦配合元件,例如用于插入鼻孔中,然而一些患者发现这些不舒适。
另一种形式的密封形成部分可以使用粘合剂来实现密封。一些患者可能发现不断向其面部施用和去除粘合剂并不方便。
一系列患者接口密封形成部分技术在以下已转让给瑞思迈有限公司(ResMedLimited)的专利申请中公开:WO 1998/004,310;WO 2006/074,513;WO 2010/135,785。
一种形式的鼻枕在由Puritan Bennett制造的亚当回路(Adam Circuit)中发现。另一种鼻枕或鼻喷是转让给Puritan-Bennett公司的美国专利4,782,832(Trimble等人)的主题。
瑞思迈有限公司已经制造了结合鼻枕的以下产品:SWIFTTM鼻枕面罩、SWIFTTM II鼻枕面罩、SWIFTTM LT鼻枕面罩、SWIFTTM FX鼻枕面罩和MIRAGE LIBERTYTM全面罩。转让给瑞思迈有限公司的以下专利申请描述了鼻枕面罩的实例:国际专利申请WO 2004/073,778(其中描述了瑞思迈有限公司SWIFTTM鼻枕的其他方面);美国专利申请2009/0044808(其中描述了瑞思迈有限公司SWIFTTM LT鼻枕的其他方面);国际专利申请WO 2005/063,328和WO2006/130,903(其中描述了瑞思迈有限公司MIRAGE LIBERTYTM全面罩的其他方面);国际专利申请WO 2009/052,560(其中描述了瑞思迈有限公司SWIFTTM FX鼻枕的其他方面)。
2.2.3.1.2定位和稳定
用于正气压治疗的患者接口的密封形成部分受到要破坏密封的气压的对应的力。因此,已经使用各种技术来定位密封形成部分,并且保持其与面部的适当部分处于密封关系。
一种技术是使用粘合剂。参见例如美国专利申请公开号US 2010/0000534。然而,使用粘合剂可能对一些人不舒适。
另一种技术是使用一个或多个绑带和/或稳定线束。许多此类线束受到不合身、体积大、不舒适和使用别扭中的一种或多种。
2.2.3.1.3通气口技术
一些形式的患者接口系统可以包括通气口以允许冲洗呼出的二氧化碳。通气口可允许气体从患者接口的内部空间(例如充气室)流到患者接口的外部空间,例如到环境中。通气口可以包括孔口,并且在使用面罩时气体可以流过孔口。许多此类通气口是有噪声的。其他的可能在使用时阻塞,从而提供不足的冲洗。一些通气口可例如通过噪声或聚集气流来破坏患者1000的床伴1100的睡眠。
瑞思迈有限公司已经开发了许多改进的面罩通气技术。参见国际专利申请公开号WO 1998/034,665;国际专利申请公开号WO 2000/078,381;美国专利号6,581,594;美国专利申请公开号US 2009/0050156;美国专利申请公开号US 2009/0044808。
现有面罩的噪声表(ISO 17510-2:2007,1m处10cm H2O的压力)
Figure BDA0003648407510000061
(*仅为一个样本,在CPAP模式下使用ISO 3744中规定的测试方法在10cm H2O下测量)各种对象的声压值如下所示
Figure BDA0003648407510000071
2.2.3.2呼吸压力治疗(RPT)装置
空气压力发生器在一系列应用中是已知的,例如工业规模的通气系统。然而,医学应用的空气压力发生器具有未由更普遍的空气压力发生器满足的特定要求,诸如医疗装置的可靠性、尺寸和重量要求。此外,即使被设计用于医疗的装置也可具有关于以下一个或多个的缺点:舒适性、噪声、易用性、功效、尺寸、重量、可制造性、成本和可靠性。
某些RPT装置的特殊要求的实例是噪声。
现有RPT装置的噪声输出级别表(仅为一个样本,在CPAP模式下使用ISO 3744中规定的测试方法在10cm H2O下测量)。
RPT装置名称 A加权的声功率级dB(A) 年(约)
C-系列Tango<sup>TM</sup> 31.9 2007
具有湿化器的C-系列Tango<sup>TM</sup> 33.1 2007
S8 Escape<sup>TM</sup> II 30.5 2005
具有H4i<sup>TM</sup>湿化器的S8 Escape<sup>TM</sup> II 31.1 2005
S9 AutoSet<sup>TM</sup> 26.5 2010
具有H5i湿化器的S9 AutoSet<sup>TM</sup> 28.6 2010
一种已知的用于治疗睡眠呼吸障碍的RPT装置是由瑞思迈有限公司(ResMedLimited)制造的S9睡眠治疗系统。RPT装置的另一个实例是呼吸机。呼吸机诸如瑞思迈StellarTM系列的成人和儿科呼吸机可以为一系列患者为对创伤性和无创性非依赖性通气提供支持以用于治疗多种病状,诸如但不限于NMD、OHS和COPD。
瑞思迈EliséeTM 150呼吸机和瑞思迈VS IIITM呼吸机可为适合成人或儿科患者的创伤性和无创性依赖性通气提供支持以用于治疗多种病状。这些呼吸机提供具有单分支或双分支回路的体积和气压通气模式。RPT装置通常包括压力发生器,诸如电动机驱动的鼓风机或压缩气体贮存器,并且被配置为将空气流供应至患者的气道。在一些情况下,可在正压下将空气流供应到患者的气道。RPT装置的出口经由空气回路连接到诸如上文所述的患者接口。
装置的设计者可能呈现了可做出的无限数目的选择。设计标准常常发生冲突,这意味着某些设计选择远非常规或不可避免。此外,某些方面的舒适性和功效可能对一个或多个参数方面的小且微妙的改变高度敏感。
2.2.3.3湿化器
输送没有加湿的空气流可能导致气道干燥。使用具有RPT装置和患者接口的湿化器产生加湿气体,使鼻黏膜的干燥最小化并增加患者气道舒适度。此外,在较冷的气候中,通常施加到患者接口中和患者接口周围的面部区域的暖空气比冷空气更舒适。一系列人工加湿装置和系统是已知的,然而它们可能不能满足医用湿化器的专门要求。
在需要时,通常在患者可能睡着或休息处(例如在医院),医用湿化器用于增加空气流相对于环境空气的湿度和/或温度。用于床边放置的医用湿化器可以很小。医用湿化器可以被配置为仅加湿和/或加热输送至患者的空气流,而不加湿和/或加热患者的周围环境。基于房间的系统(例如桑拿浴室、空气调节器或蒸发冷却器),例如,也可以加湿患者呼吸的空气,然而这些系统也会加湿和/或加热整个房间,这可能引起居住者的不适。此外,医用湿化器可具有比工业湿化器更严格的安全限制
虽然许多医用湿化器是已知的,但它们可具有一个或多个缺点。一些医用湿化器可能提供不充分的加湿,一些会难以或不便由患者使用。
2.2.3.4数据管理
可存在许多临床原因来获得确定以呼吸治疗进行处方治疗的患者是否“依从”的数据,例如患者已根据某些“依从规则”使用其RPT装置。CPAP治疗的依从规则的一个实例是为了认为患者是依从性的,要求患者使用RPT装置,每晚至少四小时,持续至少21或30个连续天。为了确定患者的依从性,RPT装置的提供者诸如健康护理提供者可手动获得描述使用RPT装置进行患者治疗的数据,计算在预定时间段内的使用并且与依从规则相比较。一旦健康护理提供者已确定患者已根据依从规则使用其RPT装置,健康护理提供者就可以告知患者依从的第三部分。
患者治疗存在可得益于治疗数据与第三部分或外部系统的通信的其他方面。
通信并管理此类数据的现有方法可能是以下一种或多种:昂贵的、耗时的且容易出错的。
2.2.3.5下颌复位
下颌复位装置(MRD)或下颌前移装置(MAD)是睡眠呼吸中止症和打鼾的治疗选择之一。它是一种可购自牙科医生或其他供应商的可调节的口腔矫治器,其在睡眠期间将下颚(下颌)保持在前向位置。MRD一种可移除装置,患者在进入睡眠之前将其插入他们的嘴中并且在睡眠之后将其取走。因此,MRD并不是设计成始终佩戴的。MRD可以定制或以标准形式生产,并且包括设计成允许装配到患者牙齿的咬合压印部分。下颌的这种机械突出扩大了舌头后面的空间,在咽壁上施加张力,以减少气道的萎缩并减少上颚的振动。
在某些实例中,下颌前移装置可包括旨在与上颌或上颌骨上的牙齿接合或配合的上夹板和旨在与上颌或下颌骨上的牙齿接合或配合的下夹板。上夹板和下夹板通过一对连接杆侧向连接在一起。该对连杆对称地固定在上夹板和下夹板上。
在这种设计中,选择连杆的长度,使得当MRD被放置在患者的口中时,下颌骨保持在前移位置。可以调节连接杆的长度以改变下颚的前伸程度。牙医可以确定下颌骨的前伸程度,其将确定连接杆的长度。
一些MRD被构造成相对于上颌骨向前推动下颌骨,而其他MAD(诸如瑞思迈NarvalCCTMMRD)被设计成将下颌骨保持在前向位置。该装置还减少或最小化牙科和颞下颌关节(TMJ)的副作用。因此,它被配置为最小化或防止一个或多个齿的任何运动。
2.2.4诊断和监测系统
临床专家能够基于人体观察适当地诊断或监测患者。然而,存在临床专家可能不可用或者临床专家可能负担不起的情况。在一些情况下,不同临床专家可能对患者病状意见不一致。此外,给定的临床专家可能在不同时间应用不同的标准。由于临床实践的繁忙,临床医生可能难以跟上不断发展的患者管理指南。
多导睡眠描记术(PSG)是用于诊断和预后心肺疾病的常规系统,并且通常涉及应用和/或解释的专业临床人员。PSG通常涉及在人体上放置15至20个接触传感器,以便记录各种身体信号,诸如脑电图(EEG)、心电图(ECG)、眼电图(EOG)、肌电图(EMG)等。然而,尽管它们可适合于它们在临床环境中的通常应用,但是此类系统是复杂并且可能昂贵的,和/或对于在家试图睡觉的患者可能不适或不切实际。
3发明内容
本技术旨在提供用于诊断、改善、治疗或预防呼吸障碍的医疗装置,其具有改善的舒适性、成本、功效、易用性和可制造性中的一者或多者。
本技术的第一方面涉及用于诊断、改善、治疗或预防呼吸障碍的设备。
本技术的另一方面涉及用于诊断、改善、治疗或预防呼吸障碍的方法。
本技术的某些形式的一个方面是用于提供改善患者对呼吸治疗的依从性的方法和/或设备。
本技术的第一种形式包括一种连接器套件,该连接器套件具有在连接器套件的第一端与第二端之间的顺应性面密封件和将第一端和第二端联接在一起的保持机构。
本技术的第二种形式包括一种用于将呼吸气体从呼吸压力治疗装置输送至患者的流体连接器,该流体连接器包括第一端,该第一端具有用于流体流动的第一开口、围绕第一开口的周边延伸的密封部分,以及闩锁部分;第二端,该第二端具有用于流体流动的第二开口、围绕第二开口的周边延伸并且被构造为接合密封部分以形成面密封的密封表面,以及互补闩锁部分,该互补闩锁部分被构造为与闩锁部分接合,其中面密封允许呼吸气体在第一开口与第二开口之间行进,并且闩锁部分与互补闩锁部分之间的接合将第一端与第二端固定。
本技术的第三种形式包括一种用于向患者提供呼吸治疗的系统,该系统包括呼吸压力治疗装置;空气回路;连接到空气回路的患者接口以及用于防止呼吸压力治疗装置通过工业标准连接件与空气回路连接的手段。
本技术的第四种形式包括一种提供流体连接以将呼吸气体从呼吸压力治疗装置输送至患者的方法,该方法包括将流体连接的第一端与第二端之间的闩锁接合;以及将围绕第一端中的第一开口和围绕第二端中的第二开口的面密封件接合,其中第一端和第二端中的一个对应于呼吸压力治疗装置。
本发明技术的第五种形式包括一种用于将呼吸气体从呼吸压力治疗装置输送至患者的流体连接器系统的第一半部,该第一半部包括具有用于流体流动的第一开口的连接器部分、围绕第一开口的周边延伸的密封部分;以及闩锁部分,其中密封部分被构造为贴靠围绕第二开口的周边延伸的密封表面密封以与流体连接器系统的第二半部形成面密封,并且闩锁部分被构造为与流体连接器系统的第二半部的另一个闩锁部分闩锁。
本发明技术的第六种形式包括一种用于将呼吸气体从呼吸压力治疗装置输送至患者的流体连接器系统的第一半部,该第一半部包括具有用于流体流动的第一开口的连接器部分、围绕第一开口的周边的密封表面;以及闩锁部分,其中密封表面被构造为接收围绕第二开口的周边延伸的密封部分密封以与流体连接器系统的第二半部形成面密封,并且闩锁部分被构造为与流体连接器系统的第二半部的另一个闩锁部分闩锁。
本技术的第七种形式包括一种用于将呼吸气体从呼吸压力治疗装置输送至患者的流体连接器,该流体连接器包括第一端,该第一端具有用于流体流动的第一内部部分和第一保持部分,以及第二端,该第二端具有用于流体流动的第二内部部分和互补保持部分,该互补保持部分被构造为与保持部分接合,其中第一内部部分和第二内部部分具有垂直于流动方向的第一形状,保持部分和互补保持部分具有垂直于流动方向的第二形状,并且第一形状和第二形状是不同的。
本发明技术的第八种形式包括一种用于向患者提供呼吸治疗的系统,该系统包括呼吸压力治疗装置;空气回路;连接到空气回路的患者接口,该患者接口特别适于与呼吸压力治疗装置一起操作;以及用于确保特别适于与呼吸压力治疗装置一起操作的患者接口连接到呼吸压力治疗装置的手段。
在本技术的第一至第八种形式中的至少一者的实例中,(a)第一端连接到包括鼓风机的呼吸压力治疗装置,并且第二端连接到流体导管;(b)呼吸压力治疗装置被配置成为睡眠相关呼吸障碍提供治疗压力;(c)密封表面是平坦的;(d)密封表面基本上垂直于从第一端到第二端的流体流动的方向;(e)密封表面是倾斜的;(d)密封表面围绕第二开口周向地延伸;(e)密封表面形成在从限定第二开口的管径向延伸的凸缘上;(f)凸缘基本上垂直于管延伸;(g)管在朝向密封部分的方向上延伸超出凸缘;(h)当互补闩锁部分与闩锁部分接合时,管至少部分地延伸通过密封部分;(i)密封部分在第一端与第二端之间的接合方向上是顺应性的;(j)密封部分包括截头圆锥形部分;(k)截头圆锥形部分接触密封表面以形成面密封;(l)密封部分包括部分球形表面;(m)部分球形表面接触密封表面以形成面密封;(n)密封部分包括波纹管形或部分波纹管形部分;(o)波纹管形或部分波纹管形部分接触密封表面以形成面密封;(p)当第一端和第二端连接时,密封部分被构造为在闩锁部分和互补闩锁部分接合之前接合密封表面;(q)密封部分在径向于由第一端与第二端之间的接合方向限定的轴线的方向上是顺应性的;(r)密封部分被构造为当在未加压状态下密封部分与密封表面之间存在间隙时由于第一端的内部加压而膨胀并接合密封表面;(s)密封部分与密封表面之间的接触导致密封部分贴靠密封并相反于从第一开口至第二开口的空气流动方向压缩;(t)密封部分的压缩不会导致显著的压缩力;(u)压缩密封部分所需的力小于使闩锁部分与互补闩锁部分接合所需的力;(v)压缩密封部分所需的力小于使闩锁部分与互补闩锁部分接合所需的力的一半;(w)压缩所述密封部分所需的力小于使闩锁部分与互补闩锁部分接合所需的力的十分之一;(x)密封部分和密封表面中的至少一个包括在密封部分与密封表面之间的足够接触面积以在密封部分和密封表面的相应中心彼此未对准时形成密封;(y)第二端包括内部部分和外部部分,并且内部部分可旋转地联接到外部部分;(z)内部部分包括密封表面;(aa)内部部分刚性地连接到流体导管;(bb)外部部分包括互补闩锁部分;(cc)互补闩锁部分包括具有突出部的悬臂部分,该突出部被构造为接合闩锁部分;(dd)悬臂部分被构造为被压下以使互补闩锁部分与闩锁部分接合或脱离,并且允许第一端与第二端之间的接合或脱离;(ee)第一端包括约束第二端以防止其在第一端与第二端之间的接合方向上移动的行程限制件;(ff)行程限制件是围绕第一开口的凸缘,并且第二端包括被构造为接触凸缘的止动表面;(gg)闩锁部分约束第二端以防止其在与接合方向相反的方向上移动,并且当第一端和第二端接合时,行程限制件和闩锁部分一起限定第二端的移动距离;(hh)密封部分被构造为在整个移动距离上贴靠密封表面密封,该移动距离为非零距离;(ii)密封部分被构造为在最差情况的制造公差下并且在流体连接器的预定磨损和/或蠕变量之后与密封表面形成密封;(jj)流体连接器被构造为在整个患者呼吸周期中并且在4cm H2O至40cm H2O的压力下当空气流过流体连接器时提供可忽略的压降;(kk)第一端是凹性连接,第二端是凸性连接;(11)凹性连接和凸性连接具有非圆形的轮廓;(mm)第一端包括与密封部分的内部流体连通并且与第一开口和第二开口分离的端口;(nn)第一开口和第二开口是管的内部部分;(oo)第一端连接到包括鼓风机的呼吸压力治疗装置,并且第二端连接到用于流体导管连接器的适配器;(pp)流体连接器还包括工业标准流体连接件,其中工业标准流体连接件与第一开口流体连通并且在与密封部分相对的端部上;(qq)流体连接器还包括工业标准流体连接件,其中工业标准流体连接件与第一开口流体连通并且在与密封表面相对的端部上;(rr)第一形状是圆形并且第二形状包括圆形和正方形的属性;和/或(ss)第一内部部分和第二内部部分中的一个包括第一凸性部分,并且第一内部部分和第二内部部分中的另一个包括第一凹性部分,第一凸性部分和第一凹性部分包括第一形状,并且保持部分和互补保持部分中的一个包括第二凸性部分,并且保持部分和互补保持部分中的另一个包括第二凹性部分,第二凸性部分和第二凹性部分包括第二形状。
本技术的一种形式的一个方面为一种可由个人携带(例如在个人家庭周围)的便携式RPT装置,其包括流体连接器。
本技术的另一个方面涉及一种用于呼吸压力治疗(RPT)系统的通气组件。通气组件包括:通气壳体,该通气壳体限定用于使加压气体流从输送导管通过通气组件至患者接口的中心孔口,该通气壳体具有围绕中心孔口的环形表面,并且环形表面具有多个孔,以将加压气体排放至大气;以及邻近环形表面定位的膜,其中膜是可移动的,使得当通气组件内的加压气体的压力增加时,膜被推动抵靠在通气壳体的环形表面上。
本技术的另一个方面涉及一种RPT系统,其包括:在前面的段落中描述的通气组件;RPT装置,其被配置为产生4-20cm H2O范围内的加压气体流;患者接口,其被配置为将加压气体流输送至患者气道,该患者接口是非通气型的;以及输送导管,其被配置为将加压气体流从RPT装置输送至患者接口。
在前两段中描述的通气组件和RPT系统的实例中,(a)多个孔可以包括第一组孔和第二组孔,第一组孔相对于第二组孔在中心孔口的近侧,(b)膜的形状和尺寸可以经设计使得膜不覆盖第一组孔,(c)膜可以被构造为在通气组件内的加压气体压力增加时覆盖更多的第二组孔,(d)第一组孔可相对于加压气体流定位于第二组孔的上游,(e)通气组件还可包括保持结构以将膜保持在邻近通气壳体的环形表面的位置,(f)膜还可包含弹性材料,(g)膜可以是环形的,(h)膜可以不结合至通气壳体,(i)膜的形状和尺寸可以经设定使得膜的外边缘邻近通气壳体的内周边,和/或(j)多个孔中的每一个可以具有从通气壳体的内表面会聚到通气壳体的外表面的形状。
本技术的另一个方面涉及一种用于呼吸压力治疗(RPT)系统的通气适配器。通气适配器包括:通气壳体,该通气壳体限定用于使加压气体流从输送导管通过通气组件至患者接口的中心孔口,该通气壳体具有围绕中心孔口的环形表面,并且环形表面具有多个孔,以将加压气体排放至大气;以及邻近环形表面定位的膜;以及扩散构件。
本技术的另一个方面涉及一种RPT系统。RPT系统包括:在前面的段落中描述的通气适配器;RPT装置,其被配置为产生4-20cm H2O范围内的加压气体流;患者接口,其被配置为将加压气体流输送至患者气道,该患者接口是非通气型的;以及输送导管,其被配置为将加压气体流从RPT装置输送至患者接口。
在前两个段落中描述的通气适配器和RPT系统的实例中,(a)膜可以是可移动的,使得当通气组件内的加压气体的压力增加时,膜被推动抵靠在通气壳体的环形表面上,(b)多个孔可以包括第一组孔和第二组孔,第一组孔相对于第二组孔在中心孔口的近侧,(c)膜的形状和尺寸可以经设计使得膜不覆盖第一组孔,(d)膜可以被构造为在通气组件内的加压气体压力增加时覆盖更多的第二组孔,(e)第一组孔可相对于加压气体流定位于第二组孔的上游,(f)通气适配器还可包括保持结构以将膜保持在邻近通气壳体的环形表面的位置,(g)膜还可包含弹性材料,(h)膜可以是环形的,(i)膜可以不结合至通气壳体,(j)膜的形状和尺寸可以经设定使得膜的外边缘邻近通气壳体的内周边,(k)多个孔中的每一个可以具有从通气壳体的内表面会聚到通气壳体的外表面的形状,(l)通气适配器可以包括热湿交换器(HME),其可以相对于加压气体流定位在多个孔的下游,(m)扩散构件可以定位在通气壳体的外部以至少部分地覆盖多个孔,(n)通气适配器还可包括具有不透气材料的阻挡构件,该阻挡构件防止从多个孔离开的气体沿直线路径通过扩散构件流动至大气,(o)扩散构件和阻挡构件可以被构造为将从多个孔离开的气体以与多个孔不同的取向从扩散构件向外引导,(p)扩散构件可以提供平行于阻挡构件的与扩散构件接触的表面的流动路径,(q)扩散构件可以是多孔材料,(r)扩散构件可以是开孔泡沫,和/或(s)扩散构件可以是纤维材料。
本发明技术的一个方面涉及一种在使用高于环境压力的加压气体的治疗流的患者呼吸治疗期间与患者接口一起使用的通气系统,该通气系统提供通气气体流以将患者呼出的气体从加压容积排出,通气流在呼吸治疗期间是连续的。通气系统包括通气壳体,该通气壳体包括基部,该基部具有延伸穿过基部、用于治疗气体流的入口和延伸穿过基部以允许气体从加压容积排放至大气的至少一个第一孔口;至少一个第二孔口,以允许气体从加压容积排放至大气;以及邻近基部定位的膜。
本发明技术的一个方面涉及一种在使用高于环境压力的加压气体的治疗流的患者呼吸治疗期间与患者接口一起使用的通气系统,该通气系统提供通气气体流以将患者呼出的气体从加压容积排出,通气流在呼吸治疗期间是连续的。通气系统包括通气壳体,该通气壳体包括基部,该基部具有延伸穿过基部以允许气体从加压容积排放至大气的至少一个第一孔口;至少一个第二孔口,以允许气体从加压容积排放至大气;以及邻近基部定位的膜,其中加压容积在整个治疗压力范围内通过至少第一孔口和至少第二孔口与大气流体连通,并且其中膜可由于加压容积内的压力而弹性变形以在整个治疗压力下分配至少第一孔口与至少第二孔口之间的通气流。
在实例中,(a)通气壳体可以包括外壁和内壁,内壁限定用于治疗气体流的入口,并且基部可以定位于外壁与内壁之间,(b)基部可以包括内基部和外基部,(c)外基部可以与外壁相邻,内基部可以与外基部相邻,并且内基部可以与内壁相邻,(d)至少一个第一孔口可以包括多个内孔口,并且至少一个第二孔口可以包括多个外孔口,(e)多个外孔口可以穿过外基部,并且多个内孔口可以在外基座与内基座之间通过,(f)通气系统可以包括多个基部连接器以结合内基部和外基部并且分隔多个内孔口,(g)通气系统可以包括从内基部延伸的多个膜间隔件,(h)膜可以支撑于在外基部和膜间隔件上的多个内孔口上方,(i)通气壳体可以包括在内基部与外基部之间的基部分隔件,并且膜可以支撑于基部分隔件上和膜间隔件的多个内孔口上方,(j)多个膜间隔件可以限定多个膜间隔件中的相邻膜间隔件之间的多个膜间隔件间隙,(k)膜可以包括邻近通气壳体的内基部和外基部的大气侧表面和限定膜开口的内表面,并且用于冲洗流的内基部膜通道可以限定在膜的大气侧表面与通气壳体的内基部之间,(l)用于冲洗流的内壁膜通道可以限定在膜的内表面与通气壳体的内壁之间,(m)内基部可以包括在多个膜间隔件中的相邻膜间隔件之间的多个内基部狭槽,(n)外基部可以包括多个侧向膜支撑件,该多个侧向膜支撑件被构造为防止膜覆盖多个外孔口,(o)通气壳体可以包括与外基部相对的多个凹陷部,并且多个外孔口中的至少一个可以通向多个凹陷部中的对应一个,(p)内壁可以延伸在内基部和外基部上方,(q)内壁可以延伸在内基部和外基部下方,(r)膜可以包含可弹性变形的材料,(s)可弹性变形的材料可以包括硅树脂,(t)通气壳体可以由相对刚性材料的单一均匀件形成,(u)相对刚性材料可以是聚碳酸酯,(v)外壁、内壁、内基部、外基部和膜可以是圆形的,(w)外壁、内壁、内基部、外基部和膜可以是同心的,和/或(x)膜可以不附接到通气壳体,使得膜可朝向和远离基部自由移动。
本技术的另一个方面涉及一种患者接口,其包括:密封形成结构;与密封形成结构结合的充气室;定位和稳定结构,以在使用中将患者接口固定在患者上;以及根据前两个段落中公开的任何方面和/或实例的通气系统。患者接口可以包括通气连接管或解耦结构以将通气系统流体连接到充气室。
本发明技术的另一个方面涉及一种在使用高于环境压力的加压气体的治疗流的患者呼吸治疗期间与患者接口一起使用的通气系统,该通气系统提供通气气体流以将患者呼出的气体从加压容积排出,通气流在呼吸治疗期间是连续的。通气系统包括通气壳体,该通气壳体包括基部,该基部具有延伸穿过基部以允许气体从加压容积排放至大气的至少一个第一孔口;至少一个第二孔口,以允许气体从加压容积排放至大气;以及邻近基部定位的膜,其中加压容积在整个治疗压力范围内通过至少第一孔口和至少第二孔口与大气流体连通,其中膜被构造为使得增压容积内的压力增加导致膜在整个治疗压力范围内限制通过至少第一孔口的第一通气流量,并且其中对通过至少第一孔口的第一通气流量的限制导致通过至少第二孔口的第二通气流量增加,使得通过至少第一孔口和至少第二孔口的通气流量在整个治疗压力范围内大约是恒定的。
在实例中,(a)通气壳体可以包括外壁和内壁,内壁限定用于治疗气体流的入口,并且基部可以定位于外壁与内壁之间,(b)冲洗流量可以大于或等于第一通气流量和第二通气流量的总和,(c)膜在使用中可以朝向基部弹性变形,使得当膜朝向基部偏转时第一通气流量受到限制,(d)膜可以被构造为当治疗压力增加至阈值治疗压力值以上时偏转成更靠近基部,(e)膜可以被构造为减小第一通气流量,使得当膜由于将治疗压力增加至阈值治疗压力值以上而偏转成更靠近基部时第二通气流量增加,(f)至少一个第一孔口可以包括多个内孔口,并且至少一个第二孔口可以包括多个外孔口,(g)基部可以包括内基部和外基部,(h)通气系统可以包括从内基部延伸的多个膜间隔件,(i)膜可以支撑于外基部和膜间隔件上的多个内孔口上方,使得将治疗压力增加至临界治疗压力值以上导致膜朝向内基部偏转,(j)膜可以被构造为使得当治疗压力增加至阈值治疗压力值以上时,限定在膜与内基部之间的膜-内基部间隙减小,(k)膜可以被构造为使得当膜-内基部间隙减小时,第一通气流量减小并且第二通气流量增加,(l)膜可以包含可弹性变形材料,(m)可弹性变形材料可以包括硅树脂,(n)通气壳体可以由相对刚性材料的单一均匀件形成,(o)相对刚性材料可以是聚碳酸酯,(p)外壁、内壁、内基部、外基部和膜可以是圆形的,(q)外壁、内壁、内基部、外基部和膜可以是同心的,和/或(r)膜可以不附接到通气壳体,使得膜可朝向和远离基部自由移动。
本技术的另一个方面涉及一种患者接口,其包括:密封形成结构;与密封形成结构结合的充气室;定位和稳定结构,以在使用中将患者接口固定在患者上;以及根据前两个段落中公开的任何方面和/或实例的通气系统。患者接口可以包括通气连接管或解耦结构以将通气系统流体连接到充气室。
本技术的另一个方面涉及一种患者接口,其可以包括:充气室,该充气室可加压到比环境空气压力高至少6cm H2O的治疗压力,所述充气室包括充气室入口端口,该充气室入口端口的尺寸和结构经设计为接收处于在治疗压力下的空气流以供患者呼吸;密封形成结构,该密封形成结构被构造和布置为与在患者气道的入口周围的患者面部区域形成密封,使得在所述治疗压力下的空气流至少被输送至患者鼻孔的入口,密封形成结构被构造和布置为在使用中在整个患者呼吸周期中维持充气室中的所述治疗压力;定位和稳定结构,以提供弹性力从而将密封形成结构保持在患者头部上的治疗有效位置,定位和稳定结构包括系带,该系带被构造和布置为使得在使用中至少一部分覆盖患者头部的在患者头部的耳上基点上方的区域,并且系带的一部分的尺寸和结构经设计为在使用中接合患者头部的在顶骨区域中的一部分,其中定位和稳定结构具有非刚性解耦部分;以及在使用高于环境压力的加压气体的治疗流的患者呼吸治疗期间与患者接口一起使用的通气系统,该通气系统提供通气气体流以将患者呼出的气体从加压容积排出,通气流在呼吸治疗期间是连续的,该通气系统包括:通气壳体,该通气壳体包括基部,该基部具有延伸穿过基部以允许气体从加压容积排放至大气的至少一个第一孔口;至少一个第二孔口,以允许气体从加压容积排放至大气;以及邻近基部定位的膜,其中加压容积在整个治疗压力范围内通过至少第一孔口和至少第二孔口与大气流体连通,其中膜被构造为使得增压容积内的压力增加导致膜在整个治疗压力范围内限制通过至少第一孔口的第一通气流量,并且其中对通过至少第一孔口的第一通气流量的限制导致通过至少第二孔口的第二通气流量增加,使得通过至少第一孔口和至少第二孔口的通气流量在整个治疗压力范围内大约是恒定的,并且患者接口被构造为在不存在通过充气室入口端口的加压气体流的情况下允许患者通过其口部从环境呼吸,或者患者接口被构造为使得患者口部是未覆盖的。
在实例中,(a)通气壳体可以包括外壁和内壁,内壁限定用于治疗气体流的入口,并且基部可以定位于外壁与内壁之间,(b)冲洗流量可以大于或等于第一通气流量和第二通气流量的总和,(c)膜在使用中可以朝向基部弹性变形,使得当膜朝向基部偏转时第一通气流量受到限制,(d)膜可以被构造为当治疗压力增加至阈值治疗压力值以上时偏转成更靠近基部,(e)膜可以被构造为减小第一通气流量,使得当膜由于将治疗压力增加至阈值治疗压力值以上而偏转成更靠近基部时第二通气流量增加,(f)基部可以包括内基部和外基部,(g)至少一个第一孔口可以包括多个内孔口,并且至少一个第二孔口可以包括多个外孔口,(h)通气系统可以包括从内基部延伸的多个膜间隔件,(i)膜可以支撑于外基部和膜间隔件上的多个内孔口上方,(j)通气壳体可以包括在内基部与外基部之间的基部分隔件,并且膜可以支撑于基部分隔件和膜间隔件上的多个内孔口上方,(k)外基部可以包括多个侧向膜支撑件,该多个侧向膜支撑件被构造为防止膜覆盖多个外孔口,(l)膜可以包含可弹性变形的材料,(m)可弹性变形的材料可以包括有机硅,(n)通气壳体可以由相对刚性材料的单一均匀件形成,(o)相对刚性材料可以是聚碳酸酯,(p)外壁、内壁、内基部、外基部和膜可以是圆形的,(q)外壁、内壁、内基部、外基部和膜可以是同心的,(r)膜可以不附接到通气壳体,使得膜可朝向和远离基部自由移动,和/或(s)患者接口可以包括通气连接管或解耦结以将通气系统流体连接到充气室。
本技术的另一个方面涉及一种患者接口,其可以包括:充气室,该充气室可加压到比环境空气压力高至少6cm H2O的治疗压力,所述充气室包括充气室入口端口,该充气室入口端口的尺寸和结构经设计为接收处于在治疗压力下的空气流以供患者呼吸;密封形成结构,该密封形成结构被构造和布置为与在患者气道的入口周围的患者面部区域形成密封,使得在所述治疗压力下的空气流至少被输送至患者鼻孔的入口,密封形成结构被构造和布置为在使用中在整个患者呼吸周期中维持充气室中的所述治疗压力;定位和稳定结构,以提供弹性力从而将密封形成结构保持在患者头部上的治疗有效位置,定位和稳定结构包括系带,该系带被构造和布置为使得在使用中至少一部分覆盖患者头部的在患者头部的耳上基点上方的区域,并且系带的一部分的尺寸和结构经设计为在使用中接合患者头部的在顶骨区域中的一部分,其中定位和稳定结构具有非刚性解耦部分;以及通气系统,以提供通气气体流以将患者呼出的气体从加压容积排出,通气流在呼吸治疗期间是连续的,该通气流包括第一通气流和第二通气流,该通气系统包括:通气壳体,该通气壳体包括基部,该基部具有延伸穿过基部、用于第一通气流的至少一个第一孔口;用于第二通气流的至少一个第二孔口;以及邻近基部定位的膜,其中加压容积在整个治疗压力范围内通过至少第一孔口和至少第二孔口与大气流体连通,其中膜被构造为根据加压容积内的压力而弹性变形,使得由于压力增加而导致的变形增加降低通过第一通气孔口的第一通气流量并且增加通过至少第二通气孔口的第二通气流量以在整个治疗压力范围内维持基本上恒定的通气流量,并且其中患者接口被构造为在不存在通过充气室入口端口的加压气体流的情况下允许患者通过其口部从环境呼吸,或者患者接口被构造为使得患者口部是未覆盖的。
在实例中,(a)通气壳体可以包括外壁和内壁,内壁限定用于治疗气体流的入口,并且基部可以定位于外壁与内壁之间,(b)冲洗流量可以大于或等于第一通气流量和第二通气流量的总和,(c)膜在使用中可以朝向基部弹性变形,使得当膜朝向基部偏转时第一通气流量受到限制,(d)膜可以被构造为当治疗压力增加至阈值治疗压力值以上时偏转成更靠近基部,(e)膜可以被构造为减小第一通气流量,使得当膜由于将治疗压力增加至阈值治疗压力值以上而偏转成更靠近基部时第二通气流量增加,(f)基部可以包括内基部和外基部,(g)至少一个第一孔口可以包括多个内孔口,并且至少一个第二孔口可以包括多个外孔口,(h)通气系统可以包括从内基部延伸的多个膜间隔件,(i)膜可以支撑于外基部和膜间隔件上的多个内孔口上方,(j)通气壳体可以包括在内基部与外基部之间的基部分隔件,并且膜可以支撑于基部分隔件和膜间隔件上的多个内孔口上方,(k)外基部可以包括多个侧向膜支撑件,该多个侧向膜支撑件被构造为防止膜覆盖多个外孔口,(l)膜可以包含可弹性变形的材料,(m)可弹性变形的材料可以包括有机硅,(n)通气壳体可以由相对刚性材料的单一均匀件形成,(o)相对刚性材料可以是聚碳酸酯,(p)外壁、内壁、内基部、外基部和膜可以是圆形的,(q)外壁、内壁、内基部、外基部和膜可以是同心的,(r)膜可以不附接到通气壳体,使得膜可朝向和远离基部自由移动,和/或(s)患者接口可以包括通气连接管或解耦结以将通气系统流体连接到充气室。
本技术的另一方面涉及一种用于呼吸压力治疗(RPT)系统的通气组件,用于从呼吸压力治疗(RPT)装置向患者接口提供治疗压力比环境空气压力高至少6cmH2O的加压气体流以治疗呼吸病症。所述通气组件包括:通气壳体,所述通气壳体具有第一孔口,所述第一孔口被配置成用于接收来自RPT装置的加压气体流并且所述通气壳体具有多个孔以将加压气体排放到大气中;通气壳体连接器,所述通气壳体连接器具有第二孔口;在第二孔口处连接到通气壳体连接器的管,所述管被配置成连接到患者接口以将加压气体流引导到患者接口;以及热湿交换器(HME),所述热湿交换器包括HME壳体以及在HME壳体内的HME材料,其中通气壳体和通气壳体连接器被配置成至少部分地连接以形成空腔,并且其中当所述通气组件被组装时,所述HME被定位在所述空腔中。
本技术的另一方面涉及一种RPT系统。所述RPT系统包括:通气组件;RPT装置,所述RPT装置被配置为产生加压气体流;患者接口,所述患者接口被配置为将所述加压气体流输送至患者气道,所述患者接口是非通气型的;以及输送导管,所述输送导管被配置为将加压气体流从所述RPT装置输送至所述通气组件。
在以上两段中描述的通气组件和RPT系统的示例中,(a)所述通气组件可以进一步包括从所述通气壳体的内周周围延伸的环形唇缘和从所述环形唇缘延伸的至少一个保持突起,(b)所述通气组件可进一步包括围绕所述HME壳体的外周延伸的环形凹陷部,并且所述至少一个保持突起和所述环形凹陷部被配置成用于将所述HME壳体可移除地连接至所述通气壳体上,(c)所述HME壳体可通过卡扣配合可移除地连接到所述通气壳体,(d)所述HME壳体可包括患者侧HME壳体部分和大气侧HME壳体部分,并且所述通气组件可被配置成使得患者侧HME壳体部分在使用中定位成比大气侧HME壳体部分更靠近患者,(e)所述环形凹陷部可设置于所述大气侧HME壳体部分,(f)所述通气壳体可进一步包括围绕第一孔口的环形表面并且多个孔穿过所述环形表面,并且通气组件可包括邻近环形表面定位的膜,并且所述膜可以是可移动的,使得当所述通气组件内的加压气体的压力增加时,所述膜被推靠在所述通气壳体的环形表面上,(g)所述多个孔可以包括第一组孔和第二组孔,所述第一组孔相对于所述第二组孔在所述第一孔口的近侧,(h)所述膜的形状和尺寸可经设计使得所述膜不覆盖所述第一组孔,(i)所述膜可被构造为在所述通气组件内的所述加压气体的压力增加时覆盖更多的所述第二组孔,(j)所述第一组孔相对于所述加压气体流定位于所述第二组孔的上游,(k)所述通气组件还可包括保持结构以将所述膜保持在邻近所述通气壳体的所述环形表面的位置,(l)所述膜还可包含弹性材料,(m)多个孔中的每一个可具有从所述通气壳体的内表面会聚到所述通气壳体的外表面的形状,(n)包括HME壳体和HME材料的HME能够从空腔移除,和/或(o)所述呼吸治疗系统不包括加湿器。
本技术的另一方面涉及一种在使用高于环境压力的加压气体的治疗流的患者呼吸治疗期间与患者接口一起使用的通气系统,所述通气系统提供通气气体流以将所述患者呼出的气体从加压容积排出,所述通气气体流在所述呼吸治疗期间是连续的。所述通气系统包括:通气壳体,所述通气壳体包括基部,所述基部具有延伸穿过所述基部以允许气体从所述加压容积排放至大气的至少一个第一孔口;至少一个第二孔口,以允许气体从所述加压容积排放至大气;通气壳体连接器,所述通气壳体连接器具有第二孔口,所述第二孔口被配置成用于将所述治疗气体流引导至患者接口;热湿交换器(HME),所述热湿交换器包括HME壳体以及在HME壳体内的HME材料,以及邻近所述基部定位的膜,其中通气壳体和通气壳体连接器被配置成至少部分地连接以形成空腔,并且其中,当所述通气组件被组装时,所述HME被定位在所述空腔中,其中所述加压容积在整个治疗压力范围内通过至少一个第一孔口和至少一个第二孔口与大气流体连通,并且其中所述膜能够由于所述加压容积内的压力而弹性变形以在整个所述治疗压力范围内分配所述至少一个第一孔口与所述至少一个第二孔口之间的所述通气气体流。
本技术的另一方面涉及患者接口。所述患者接口包括:密封形成结构;与所述密封形成结构结合的充气室;定位和稳定结构,以在使用中将所述患者接口固定在所述患者上;以及通气系统。
在以上两段中描述的通气系统和患者接口的示例中,(a)所述通气系统可以进一步包括从所述通气壳体的内周周围延伸的环形唇缘和从所述环形唇缘延伸的至少一个保持突起,(b)所述通气系统可进一步包括围绕所述HME壳体的外周延伸的环形凹陷部,并且所述至少一个保持突起和所述环形凹陷部可被配置成用于将所述HME壳体可移除地连接至所述通气壳体上,(c)所述HME壳体可通过卡扣配合可移除地连接到所述通气壳体,(d)所述HME壳体可包括患者侧HME壳体部分和大气侧HME壳体部分,并且所述通气组件可被配置成使得患者侧HME壳体部分在使用中定位成比大气侧HME壳体部分更靠近患者,(e)所述环形凹陷部可设置于所述大气侧HME壳体部分,(f)所述通气壳体可包括外壁和内壁,所述内壁限定用于所述治疗气体流的入口,并且所述基部被定位于所述外壁、所述内壁和所述基部之间,(g)所述基部还可包括内基部和外基部,(h)所述外基部可与所述外壁相邻,所述内基部可与所述外基部相邻,并且所述内基部可与所述内壁相邻。(i)所述至少一个第一孔口还可包括多个内孔口,并且所述至少一个第二孔口还可包括多个外孔口,(j)所述多个外孔口可穿过所述外基部,并且所述多个内孔口可在所述外基座与所述内基座之间通过,(k)所述膜可包含可弹性变形的材料,(l)所述可弹性变形的材料可包括硅树脂,(m)所述通气壳体可由相对刚性材料的单一均匀件形成,(n)所述相对刚性材料可以是聚碳酸酯,(o)所述外壁、所述内壁、所述内基部、所述外基部和所述膜可以是圆形的,(p)所述外壁、所述内壁、所述内基部、所述外基部和所述膜可以是同心的,(q)所述膜可不附接到所述通气壳体,使得所述膜能够朝向和远离所述基部自由移动,(r)所述通气系统还可包括通气连接管或解耦结构以将所述通气系统流体连接到所述充气室,和/或包括HME壳体和HME材料的HME能够从空腔移除。
当然,这些方面的一部分可以形成本技术的子方面。子方面和/或方面中的各个方面可以各种方式进行组合,并且还构成本技术的其他方面或子方面。
考虑到以下详细描述、摘要、附图和权利要求书中包含的信息,本技术的其他特征将变得显而易见。
4附图说明
本技术在附图的各图中以举例而非限制的方式例示,附图中的相似参考数字指代相似元件,包括:
4.1治疗系统
图1A示出了一种系统,其包括以鼻枕的方式佩戴患者接口3000的患者1000从RPT装置4000接收正压下的空气供给。来自RPT装置的空气在湿化器5000中加湿,并沿着空气回路4170传送至患者1000。还示出了床伴1100。
图1B示出了一种系统,其包括以鼻罩的方式佩戴患者接口3000的患者1000从RPT装置4000接收正压下的空气供给。来自RPT装置的空气在湿化器5000中加湿,并沿着空气回路4170传送至患者1000。
图1C示出了一种系统,其包括以全面罩的方式佩戴患者接口3000的患者1000从RPT装置4000接收正压下的空气供给。来自RPT装置的空气在湿化器5000中加湿,并沿着空气回路4170传送至患者1000。
4.2呼吸系统和面部解剖结构
图2A示出了包括鼻腔和口腔、喉、声带、食道、气管、支气管、肺、肺泡囊、心脏和膈膜的人类呼吸系统的概略图。
图2B示出了包括鼻腔、鼻骨、鼻外软骨、鼻翼大软骨、鼻孔、上唇、下唇、喉、硬腭、软腭、口咽、舌、会厌、声带、食道和气管的人类上气道的视图。
图2C是具有标识的若干个表面解剖学特征的面部的正视图,包括上唇、上唇红、下唇红、下唇、嘴宽、内眦、鼻翼、鼻唇沟和口角。还标示了上、下、径向向内和径向向外的方向。
图2D是具有标识的若干个表面解剖学特征的头部的侧视图,包括眉间、鼻梁点、鼻突点、鼻中隔下点、上唇、下唇、颏上点、鼻脊、鼻翼顶点、耳上基点和耳下基点。还标示了上下以及前后方向。
图2E是头部的另一侧视图。标示了法兰克福水平面和鼻唇角的大致位置。还标示了冠状面。
图2F示出了具有标识的若干个特征的鼻部的底部视图,包括鼻唇沟、下唇、上唇红、鼻孔、鼻中隔下点、鼻小柱、鼻突点、鼻孔长轴和矢状平面。
图2G示出了鼻部表层特征的侧视图。
图2H示出了鼻部的皮下结构,包括外侧软骨、中隔软骨、鼻翼大软骨、鼻翼小软骨、籽状软骨、鼻骨、表皮、脂肪组织、上颌骨额突和纤维脂肪组织。
图2I示出了鼻部从矢状平面起大约有几毫米的内侧解剖图,除其他事项以外还示出了中隔软骨和鼻翼大软骨的内侧脚。
图2J示出了头骨的正视图,包括额骨、鼻骨和颧骨。也标示了鼻甲骨,以及上颌骨和下颌骨。
图2K示出了具有头部表面轮廓以及若干种肌肉的头骨侧视图。示出了如下骨部:额骨、蝶骨、鼻骨、颧骨、上颌骨、下颌骨、顶骨、颞骨和枕骨。还标示了颏隆凸。示出了如下肌肉:二腹肌、嚼肌、胸锁乳突肌和斜方肌。
图2L示出了鼻部的前外侧视图。
4.3患者接口
图3A示出了根据本技术的一种形式的呈鼻罩形式的患者接口。
图3B示出了在一点处通过结构的横截面的示意图。指示了在该点处的向外法线。在该点处的曲率具有正号,并且当与图3C所示的曲率幅度相比时具有相对大的幅度。
图3C示出了在一点处通过结构的横截面的示意图。指示了在该点处的向外法线。在该点处的曲率具有正号,并且当与图3B所示的曲率幅度相比时具有相对小的幅度。
图3D示出了在一点处通过结构的横截面的示意图。指示了在该点处的向外法线。在该点处的曲率具有零值。
图3E示出了在一点处通过结构的横截面的示意图。指示了在该点处的向外法线。在该点处的曲率具有负号,并且当与图3F所示的曲率幅度相比时具有相对小的幅度。
图3F示出了在一点处通过结构的横截面的示意图。指示了在该点处的向外法线。在该点处的曲率具有负号,并且当与图3E所示的曲率幅度相比时具有相对大的幅度。
图3G示出了用于包括两个枕的面罩的垫子。指示了垫子的外表面。指示了表面的边缘。指示了圆顶区域和鞍状区域。
图3H示出了用于面罩的垫子。指示了垫子的外表面。指示了表面的边缘。指示了点A与点B之间的表面上的路径。指示了点A与点B之间的直线距离。指示了两个鞍状区域和一个圆顶区域。
4.4 RPT装置
图4A示出了根据本技术的一种形式的RPT装置。
图4B是根据本技术的一种形式的RPT装置的气动路径的示意图。指示了上游和下游的方向。
图4C是根据本技术的一种形式的RPT装置的电气部件的示意图。
图4D是在根据本技术的一种形式的RPT装置中实施的算法的示意图。
图4E是示出由根据本技术的一种形式的图4D治疗引擎模块进行的方法的流程图。
4.5湿化器
图5A是根据本技术的一种形式的湿化器的等轴视图。
图5B示出了根据本技术的一种形式的湿化器的等距视图,其示出了从湿化器贮存器底座5130取下的湿化器贮存器5110。
图5C示出了根据本技术的一种形式的湿化器的示意图。
4.6通气适配器
图6A示出了具有彼此配合的第一端和第二端的流体连接器的侧视图。
图6B示出了具有彼此脱离的第一端和第二端的流体连接器的侧横截面视图。
图6C示出了具有彼此配合的第一端和第二端的流体连接器的侧横截面视图。
图6D示出了具有彼此分离的第一端和第二端的流体连接器的透视图,其中第一端的内部是可见的。
图6E示出了具有附加流体端口的流体连接器的横截面图。
图6F示出了流体连接器,其中第一端和第二端连接在一起并且第一端整合到RTP装置中。
图6G示出了流体连接器,其中第一端和第二端断开并且第一端整合到RTP装置中
图6H示出了具有彼此分离的第一端和第二端的流体连接器的透视图,其中第二端的密封表面是可见的。
图7A示出了根据本技术的一个实例的通气适配器的透视图。
图7B示出了根据本技术的一个实例的通气适配器的侧视图。
图7C示出了根据本技术的一个实例的通气适配器的顶部视图。
图7D示出了根据本技术的一个实例的通气适配器通过图7C的线7D-7D截取的横截面视图。
图7E示出了根据本技术的一个实例的通气适配器的分解图。
图7F示出了根据本技术的一个实例的通气适配器的另一分解图。
图8A示出了根据本技术的一个实例的通气壳体的透视图。
图8B示出了根据本技术的一个实例的通气壳体的另一透视图。
图8C示出了根据本技术的一个实例的通气壳体的侧视图。
图8D示出了根据本技术的一个实例的通气壳体的另一侧视图。
图8E示出了根据本技术的一个实例的通气壳体的顶部视图。
图8F示出了根据本技术的一个实例的通气壳体通过图8E的线8F-8F截取的横截面视图。
图9A示出了根据本技术的一个实例的通气壳体连接器的透视图。
图9B示出了根据本技术的一个实例的通气壳体连接器的另一透视图。
图9C示出了根据本技术的一个实例的通气壳体连接器的侧视图。
图9D示出了根据本技术的一个实例的通气壳体连接器的另一侧视图。
图9E示出了根据本技术的一个实例的通气壳体连接器的顶部视图。
图10A示出了根据本技术的一个实例的波纹管密封件的透视图。
图10B示出了根据本技术的一个实例的波纹管密封件的另一透视图。
图10C示出了根据本技术的一个实例的波纹管密封件的侧视图。
图10D示出了根据本技术的一个实例的波纹管密封件的另一侧视图。
图10E示出了根据本技术的一个实例的波纹管密封件的底部视图。
图11A示出了根据本技术的一个实例的通气适配器连接器的透视图。
图11B示出了根据本技术的一个实例的通气适配器连接器的另一透视图。
图11C示出了根据本技术的一个实例的通气适配器连接器的侧视图。
图11D示出了根据本技术的一个实例的通气适配器连接器的另一侧视图。
图11E示出了根据本技术的一个实例的通气适配器连接器的底部视图。
图12A示出了根据本技术的一个实例的热湿交换器(HME)夹片的透视图。
图12B示出了根据本技术的一个实例的热湿交换器(HME)夹片的侧视图。
图12C示出了根据本技术的一个实例的热湿交换器(HME)夹片的另一侧视图。
图12D示出了根据本技术的一个实例的热湿交换器(HME)夹片的另一侧视图。
图13A示出了根据本技术的一个实例的热湿交换器(HME)壳体的透视图。
图13B示出了根据本技术的一个实例的热湿交换器(HME)壳体的侧视图。
图13C示出了根据本技术的一个实例的热湿交换器(HME)壳体的另一侧视图。
图13D示出了根据本技术的一个实例的热湿交换器(HME)壳体的顶部视图。
图14A示出了根据本技术的一个实例的导管连接器的透视图。
图14B示出了根据本技术的一个实例的导管连接器的顶部视图。
图14C示出了根据本技术的一个实例的导管连接器的侧视图。
图14D示出了根据本技术的一个实例的导管连接器的前视图。
图15A示出了根据本技术的一个实例的通气适配器的透视图。
图15B示出了根据本技术的一个实例的通气适配器的另一透视图。
图15C示出了根据本技术的一个实例的通气适配器的分解图。
图15D示出了根据本技术的一个实例的通气适配器的分解图。
图15E示出了根据本技术的一个实例的通气适配器的侧视图。
图15F示出了根据本技术的一个实例的通气适配器通过图15B的线15F-15F截取的横截面视图。
图16示出了在治疗压力范围内根据本技术与来自恒定流量通气口(CFV)的通气流量相比来自全脸面罩的通气流量的曲线图。
图17示出了根据本技术的一个实例接受治疗的患者的图。
图18示出了在治疗压力范围内根据本技术与来自恒定流量通气口(CFV)的通气流量相比来自全脸面罩的通气流量的曲线图。
图19示出了在治疗压力范围内根据本技术仅来自恒定流量通气口(CFV)、仅来自被动通气口和两者的通气流量的曲线图。
图20示出了根据本技术的一个实例的恒定流量通气口(CFV)膜的实例。
图21A示出了根据本技术的一个实例的通气适配器的横截面视图。
图21B示出了根据本技术的一个实例的通气适配器的恒定流量通气口(CFV)的分解图。
图21C示出了根据本技术的一个实例的通气适配器的恒定流量通气口(CFV)的后视图。
图21D示出了根据本技术的一个实例的通气适配器的恒定流量通气口(CFV)的透视图。
图21E示出了根据本技术的一个实例的通气适配器的恒定流量通气口(CFV)的另一透视图。
图21F示出了根据本技术的一个实例的通气适配器的恒定流量通气口(CFV)的横截面视图。
图22示出了根据本技术的一个实例的通气适配器的分解图。
图23示出了根据本技术的示例性患者接口的图表。
图24A示出了根据本技术的一个实例的通气适配器的横截面视图。
图24B示出了根据本技术的一个实例的通气适配器的透视图。
图25A示出了根据本技术的一个方面的包括单层7001的HME 7000的横截面视图。
图25B示出了根据本技术的一个方面的HME 7000的单波纹横7030的实例。
图25C是示出包括沿着垂直轴线和水平轴线堆叠的多个层7001的HME 7000的示意图。
图25D是示出HME的图,该HME处于预负荷下以压缩固定体积中的波纹,使得层7001的数目在固定容积内增加。
图25E显示了波纹状结构7002,其包括多个波纹7030,其中波纹状结构被轧制以形成HME 7000。
图26描绘了形成气体冲洗通气口的一部分的孔口、扩散构件和阻挡构件。
图27描绘了形成气体冲洗通气口的一部分的孔口、扩散构件和阻挡构件,其中阻挡构件中设置有孔。
图28描绘了形成围绕中心孔圆形地形成的气体冲洗通气口的一部分的孔口、扩散构件和阻挡构件的分解图。
图29描绘了形成围绕中心孔圆形地形成的气体冲洗通气口的一部分的孔口、扩散构件和阻挡构件的简化视图。
图30描绘了通过图29的线30-30截取的横截面视图。
图31A描绘了带有具有一个环形出口的气体冲洗通气口的弯管的局部视图。
图31B描绘了图31B的气体冲洗通气口中孔口的轴向视图。
图31C描绘了通过图31图的平面截取的横截面视图,该平面等同于图31B中标记为31C-31C的平面。
图32A描绘了具有球窝接头和气体冲洗通气口的弯管。
图32B是图32A的弯管的分解图。
图32C是弯管的侧视图。
图32D描绘了通过图32C的线32D-32D截取的横截面视图。
图33A描绘了根据本技术的一个实例的通气适配器的透视图。
图33B描绘了根据本技术的一个实例的通气适配器的另一透视图。
图33C描绘了根据本技术的一个实例的通气适配器的上侧视图。
图33D描绘了根据本技术的一个实例的通气适配器的下侧视图。
图33E描绘了根据本技术的一个实例的通气适配器的侧视图。
图33F示出了根据本技术的一个实例通气适配器通过图33C的线33F-33F截取的横截面视图。
图33G描绘了根据本技术的示例的具有热湿交换器(HME)壳体的通气适配器的截面图,该截面图是沿着图33C的线33F-33F截取的。
图33H描绘了根据本技术的示例的具有热湿交换器(HME)壳体的通气适配器的截面图,该截面图是沿着图33C的线33F-33F截取的。
图33I描绘了根据本技术的一个实例的通气适配器的分解图。
图34A描绘了用于根据本技术的一个实例的通气适配器的通气组件的透视图。
图34B描绘了用于根据本技术的一个实例的通气适配器的通气组件的另一透视图。
图34C描绘了用于根据本技术的一个实例的通气适配器的通气组件的后视图。
图34D描绘了用于根据本技术的一个实例的通气适配器的通气组件的前视图。
图34E描绘了用于根据本技术的一个实例的通气适配器的通气组件的侧视图。
图34F示出了用于根据本技术的一个实例的通气适配器的通气组件通过图34C的线34F-34F截取的横截面视图。
图34G描绘了用于根据本技术的一个实例的通气适配器的通气组件的分解图。
图35描绘了根据本技术的一个实例的具有患者接口的通气适配器的透视图。
图36A描绘了根据本技术的一个实例的空气回路的透视图。
图36B描绘了根据本技术的一个实例的空气回路的另一透视图。
图36C描绘了根据本技术的一个实例的空气回路的分解图。
图37A描绘了根据本技术的一个实例的通气适配器的透视图。
图37B描绘了根据本技术的一个实例的通气适配器的另一透视图。
图37C描绘了根据本技术的一个实例的通气适配器的侧视图。
图37D描绘了根据本技术的一个实例通气适配器通过图37B的37D-37D截取的横截面视图。
图37E描绘了根据本技术的一个实例的通气适配器的分解图。
图38A描绘了根据本技术的一个实例的热湿交换器(HME)壳体的透视图。
图38B描绘了根据本技术的一个实例的HME壳体的另一透视图。
图38C描绘了根据本技术的一个实例的HME壳体的分解图。
图39A描绘了根据本技术的一个实例的热湿交换器(HME)壳体的透视图。
图39B描绘了根据本技术的一个实例的HME壳体的另一透视图。
图39C描绘了根据本技术的一个实例的HME壳体的分解图。
图40描绘了根据本技术的一个实例的具有患者接口的通气适配器的透视图。
图41描绘了根据本技术的一个实例的具有患者接口的通气适配器的透视图。
图42A示出了根据本技术的一个实例的通气壳体的顶部透视图。
图42B示出了根据本技术的另一个实例的通气壳体的顶部视图。
图42C示出了根据本技术的另一个实例的通气壳体的底部视图。
图42D示出了根据本技术的另一个实例的通气壳体的底部透视图。
图42E示出了根据本技术的另一个实例的通气壳体的侧视图。
图42F示出了根据本技术的另一个实例的通气壳体通过图42B的线42F-42F截取的横截面视图。
图42G示出了根据本技术的另一个实例的通气壳体通过图42B的线42G-42G截取的横截面视图。
图43A示出了根据本技术的一个实例的通气口系统的顶部透视图。
图43B示出了根据本技术的另一个实例的通气口系统的顶部视图。
图43C示出了根据本技术的另一个实例的通气口系统的顶部视图。
图43D示出了根据本技术的另一个实例的通气口系统的底部透视图。
图43E示出了根据本技术的另一个实例的通气口系统的侧视图。
图43F示出了根据本技术的另一个实例的通气口系统通过图43B的线43F-43F截取的横截面视图。
图43G示出了根据本技术的一个实例的通气口系统通过图43B的线43G-43G截取的横截面视图。
5具体实施方式
在更进一步详细描述本技术之前,应当理解的是本技术并不限于本文所描述的特定实例,本文描述的特定实例可改变。还应当理解的是本公开内容中使用的术语仅是为了描述本文所描述的特定实例的目的,并不意图进行限制。
提供与可共有一个或多个共同特点和/或特征的各种实例有关的以下描述。应该理解的是任何一个实例的一个或更多个特征可以与另一个实例或其他实例的一个或多个特征组合。另外,在实例的任一项中,任何单个特征或特征的组合可以组成另外的实例。
5.1治疗
在一种形式中,本技术包括用于治疗呼吸障碍的方法,所述方法包括向患者1000的气道入口施加正压的步骤。
在本技术的某些实例中,经由一个或两个鼻孔向患者的鼻道提供正压下的空气供给。
在本技术的某些实例中,限定、限制或阻止口呼吸。
5.2治疗系统
在一种形式中,本技术包括用于治疗呼吸障碍的设备或装置。所述设备或装置可包括RPT装置4000,其用于经由通往患者接口3000的空气回路4170向患者1000供应加压空气。
5.3患者接口
根据本技术的一个方面的无创患者接口3000包括以下功能方面:密封形成结构3100、充气室3200、定位和稳定结构3300、通气口3400、用于连接到空气回路4170的一种形式的连接端口3600以及前额支架3700。在一些形式中,可通过一个或多个物理部件来提供功能方面。在一些形式中,一个实体部件可提供一个或多个功能方面。在使用时,密封形成结构3100被布置成围绕患者气道的入口,以便有利于将正压下的空气供应至气道。
5.3.1密封形成结构
在本技术的一种形式中,密封形成结构3100提供密封形成表面,并可另外提供缓冲功能。
根据本技术的密封形成结构3100可由诸如硅树脂的柔软、柔性和有回弹力的材料构造而成。
在一种形式中,密封形成结构3100包括密封法兰和支撑法兰。密封法兰包括厚度小于约1mm,例如约0.25mm至约0.45mm的相对薄的构件,该构件在充气室3200的周边周围延伸。支撑法兰可以比密封法兰相对厚一些。支撑法兰设置在密封法兰和充气室3200的边缘之间,并延伸围绕周长的路径的至少一部分。支撑法兰是或者包括弹簧状元件,并且作用为在使用时支撑密封法兰防止其弯曲。在使用时,密封法兰能够很容易地响应充气室3200中对其底面起作用的系统压力,从而使其与面部形成紧密的密封接合。
在一种形式中,无创患者接口3000的密封形成部分包括一对鼻喷或鼻枕,各鼻喷或鼻枕都被构造并布置为与患者鼻部的相应鼻孔形成密封。
根据本技术的一个方面的鼻枕包括:截头圆锥体,其至少一部分在患者鼻部的底面上形成密封;柄;在截头圆锥体底面上并且将截头圆锥体连接到柄的柔性区域。此外,本技术的鼻枕相连接的结构包括邻近柄底部的柔性区域。柔性区域可共同作用以有利于通用接合结构,所述通用连接结构能够随着截头圆锥体和鼻枕相连接的结构之间的位移和角度两者的相对移动进行适应。例如,可朝向柄相连接的结构轴向移动截头圆锥体的位置。
在一种形式中,无创患者接口3000包括密封形成部分,所述密封形成部分在使用时在患者面部的上唇区域(即上唇)上形成密封。
在一种形式中,无创患者接口3000包括密封形成部分,所述密封形成部分在使用时在患者面部的颏区域上形成密封。
5.3.2充气室
在使用时形成密封的区域中,充气室3200具有被成形为与普通人面部的表面轮廓互补的周边。在使用时,充气室3200的边界边缘被定位成与面部的相邻表面靠的很近。通过密封形成结构3100提供与面部的实际接触。密封形成结构3100可在使用时沿充气室3200的整个周边延伸。
5.3.3定位和稳定结构
本技术的患者接口3000的密封形成结构3100可在使用时通过定位和稳定结构3300而保持为密封状态。
在本技术的一种形式中,提供定位和稳定结构3300,其以与由患者在睡觉时佩戴一致的方式构造。在一个实例中,定位和稳定结构3300具有较小的侧面或横截面厚度,以减小仪器的感测或实际体积。在一个实例中,定位和稳定结构3300包括至少一条横截面为矩形的绑带。在一个实例中,定位和稳定结构3300包括至少一条扁平绑带。
在本技术的一种形式中,定位和稳定结构3300包括由织物患者接触层、泡沫内层和织物外层的层压物构造而成的绑带。在一种形式中,泡沫是多孔的,以使得湿气(例如,汗)能够通过绑带。在一种形式中,织物外层包括环材料,其用于与钩材料部分接合。
在本技术的某些形式中,定位和稳定结构3300包括绑带,其为可延长的,例如可弹性延长的。例如,绑带可被构造为在使用时处于张紧状态,并引导力使垫子与患者面部的一部分密封接触。在一个实例中,绑带可被构造为系带。
在本技术的某些形式中,定位和稳定结构3300包括绑带,其为可弯曲的并且例如非刚性的。这个方面的优势是绑带令患者在睡觉时躺在其上更舒适。
5.3.4通气口
在一种形式中,患者接口3000包括为允许冲洗呼出的气体例如二氧化碳而构造和布置的通气口3400。
根据本技术的通气口3400的一种形式包括多个孔,例如,约20到约80个孔,或约40到约60个孔,或约45到约55个孔。
通气口3400可位于充气室3200中。可替代地,通气口3400位于解耦结构例如旋轴中。
5.3.5解耦结构
在一种形式中,患者接口3000包括至少一个解耦结构,例如旋轴或球头和球窝。
5.3.6连接端口
连接端口3600允许连接到空气回路4170。
5.3.7前额支架
在一种形式中,患者接口3000包括前额支架3700。
5.3.8反窒息阀
在一种形式中,患者接口3000包括反窒息阀。
5.3.9端口
在本技术的一种形式中,患者接口3000包括一个或多个端口,其允许进入充气室3200内的体积。在一种形式中,这使得临床医生可以供应补充氧。在一种形式中,这使得可以直接测量充气室3200内的气体的性质,诸如压力。
5.4通气适配器
5.4.1恒定流量通气口
图16示出了常规通气口(FFM标称流量)与恒定流量通气口(CFV)之间的通气流量比较。常规通气口是标准模制通气口,例如形成在图3A中的患者接口3000上的通气口3400。如在图中可以看出,通气流量在4-20cm H2O之间的面罩压力范围内进行比较,该范围是SDB和OSA呼吸压力治疗的标准压力范围。可以看出,随着压力的增加,通气流量以对数形式增加。相比之下,CFV显示更平坦的曲线,其中通气流量似乎在相同的压力范围内更恒定且更低。
通气流量应当至少为16L/min以冲洗系统内的足够CO2,使得由患者进行的CO2再呼吸最小化。已经表明,在20-27L/min之间的通气流量提供呼吸舒适性(患者没有由于CO2再呼吸增加觉醒)和安全性(避免因CO2再呼吸过多而引起的窒息)。本技术的一个方面包括提供最小(或最小范围)的通气流量来确保足够的CO2被冲洗出。任何高于最小值的通气流量都可以被认为浪费。例如,当查看图16所示的曲线图时,CFV通气流量与FFM标称流量之间的面积可以被认为是浪费的流量。CFV可在治疗压力范围内实现所需的16L/min的最小通气流量,并且在4-20cm H2O的压力范围内保持此通气流量在16-27L/min之间。相比之下,FFM标称流量在22-55L/min的范围内。因此,使用FFM标称流量通气口可能会有更大的不必要的流量损失。
为了补偿不必要流量损失,可能需要气流发生器或RPT装置以增加其流量来实现与CFV相比相同的压力。因此,需要更多的功率并且需要更复杂的气流发生器以允许更大的流量摆动(例如,在16-55L/min的通气流量之间)以补偿该通气口。然而,CFV可以根据压力变化调节通气流量,以随着压力增加而减小通气流量。因此,CFV可以通过气流发生器而实现更大的功率节省,并且由于避免对复杂的压力/流量控制的需要而增加了简单性。
根据本技术,恒定流量通气口(CFV)可以是通气流量调节阀(可移动膜)9140,其对面罩压力作出反应以调节通气流量。示例性CFV在图21A-21F中描绘出。阀9140可被调整成使得流量在预定的压力范围内保持相对恒定。也就是说,当面罩/系统中的压力增加时,阀瓣9140覆盖更多的内部通气孔9126以减小通气流量(通气流量在较高压力下增加);当面罩/系统中的压力较低时,阀瓣9140覆盖较少的通气孔并且实现更多的通气流量(在较低的压力下补偿低通气流量)。这种调整可以在压力范围内实现基本恒定的通气流量。图18中的曲线图示出了在CFV存在和不存在下在压力变化下流量的变化。图18中用曲线图表示的示例性CFV的性能随着压力从0-40cm H2O的增加而具有最多至24L/min的流量。
根据本技术的一个实例,CFV可包括可移动阀瓣或膜CFV 9140,并且可以由弹性材料制成,诸如硅树脂或其他TPE(热塑性弹性体)制成。阀瓣9140可以被配置为使得面罩中压力的增加促使阀瓣覆盖更多的内部通气孔9126并且逐渐地减小流量。阀瓣9140可以被定位成垂直于流向患者的加压气体的流动。内部通气孔9126的通气通道也可垂直于流动并远离患者行进以排出至大气。阀瓣9140被定位成使得在面罩中累积的压力可促使阀瓣朝向内部通气孔9126。
图21F示出了在横截面中示例性CFV的配置。CFV单元可以放置成一排(即在空气输送导管回路内)。如图21F所示,如果压力在面罩中累积,则阀瓣9140的位置使得阀瓣9140可以朝向内部通气孔9126移动。到达未被阀瓣9140阻挡的内部通气孔9126的加压气体接着可以经由外部通气孔9125排放至大气。
该CFV的特征在于可实现RPT系统的简化。在压力范围内具有基本恒定的通气流量意味着气流发生器或RPT装置的复杂性可以降低,因为不再需要大量的压力控制来补偿由于通气造成的变化的压力损失。此外,由于不再需要功率来补偿不同压力下的流量变化,因此CFV可实现降低功率消耗。也就是说,CFV被动地(压力驱动)调节压力并且能够由于通气流量变化而调节压力,否则这些通气流量变化将通过来自RPT装置的压力/流量输送的变化主动地补偿。这种简化允许更简单的RPT装置输送治疗,例如,该装置可具有更少的部件、可能更小、可能不需要动力加湿,和/或可能需要更少的总体功率来输送治疗(这是由于其不需要补偿通气流量变化的事实)。CFV也可以允许经由热湿交换器(HME)进行被动加湿,如下文所述。
已知CFV概念的一个问题是,当调节通气流量使可能存在相关噪声。阀瓣9140和内部通气孔9126可能存在一些相互作用,该相互作用干扰通气流量并引起噪声。例如,假定当在压力下移动时,可移动阀瓣9140未完全覆盖一些内部通气孔9126。当气体在阀瓣9140与内部通气孔9126之间流动时,这种相互作用可能导致湍流和相关噪声。
一种减少湍流并且因此减少噪声的方式可以是减少与所述阀瓣9140相互作用的孔9126的数目。然而,需要最小通气流量以防止面罩中的CO2再呼吸并且减少与阀瓣9140相互作用的通气孔9126的数目可能未允许足够的通气。因此,根据本技术的解决方案可以涉及使得一些通气孔9126由径向盘形阀瓣9140调节,而其他通气孔9126不与阀瓣9140接合并且始终保持打开。使一些通气孔9126始终打开,即是静态通气口根据伯努利方程意味着通气流量将随着系统中的压力增加而增加。
为了补偿这个增加的通气流量使得总通气流量在治疗压力范围内基本上是恒定的,剩余的通气孔,即调节型通气口的通气流量可以随着压力的增加而降低。这些通气孔9126可以通过可移动阀瓣9140来调节,其中通气孔9126随着压力增加而逐渐被覆盖,由此减小通气流量。然后可以将静态通气口的整体流量与调节型通气口的流量取平均,以在治疗压力范围内实现总体上基本恒定的流量。通气的较低噪声水平也可归因于模制通气口技术,当压力和通气流量增加时产生低水平的噪声(例如通过模制具有会聚外形的小通气口)。该技术与调节型通气口相结合可以实现恒定流量通气口的低总体噪声替代方案。
通气适配器9100或流体连接器可以包括恒定流量通气口(CFV)单元。CFV单元可以包括:CFV环9150;平坦的环形阀9140;和通气壳体9120。CFV环9150可以将阀9140保持在抵靠通气孔9126的适当位置。通气壳体9120可以包括具有多个通气孔9126的环形表面。环形表面可以包括中心孔口,其用于允许加压气体流动到面罩室中(入口流)。环形表面可以包括多个通气孔9126以允许通气流。阀9140可以与通气孔9126相邻并且可以自由地保持在,即夹置在CFV环9150与通气壳体9120的环形表面之间,即阀瓣9140未固定到CFV环9150或通气壳体9120。在面罩压力增加时,这增加了朝向通气口的压力,其中阀门9140被推向通气孔9126并覆盖更多的通气孔9126。相反,在面罩压力降低时,对阀门9140施加较小的压力,因此阀门9140远离通气孔9126并覆盖较少的通气孔9126。
减少恒定流量通气口设计的通气噪声可以通过使用流量调节阀或膜9140改变通气流量特性而实现。然而,相比于传统的模制或静态的通气口,即通气孔在压力变化期间不改变形式或形状,膜9140可以增加通气噪声。这种噪声可以归因于许多因素,包括:1)当通气孔9126通过膜9140打开或关闭时,通过调节型通气口的流速变化和/或2)由膜9140引起的流动干扰,其产生噪声,即,湍流。例如,改变通气流的方向可能会导致湍流,从而可能会导致来自多个因素的噪声。这可能是由于气体碰撞到通气口(通气壁或CFV膜)9140的表面或空气通过通气口(通气壁和/或膜)9140的表面引起的。因此,部分地关闭通气孔9126可产生由于上述因素1)和/或2)导致的更多噪声。
如上面所提到的,本技术的一个方面包括在治疗压力范围(即,4-20cm H2O或2-40cm H2O)内具有基本恒定的流量的通气口。为了在压力变化下满足期望的通气流量曲线,通气孔9126的流量曲线可以在治疗压力范围内动态地变化。这可以通过改变通气孔的尺寸、数目和/或形状来完成。改变此类特性可能会导致通过通气孔的气体流动特性发生变化,这可导致通气噪声增加。使用包括会聚通气孔形状的模制通气口技术,在气体从通气口排放至大气时,即,从内部通气孔9126会聚到外部通气孔9125时,通气流的噪声可以被调整到最小。但是,应该理解的是,模制通气孔在压力变化下不会改变尺寸、形状或数目。因此,在压力下移动以关闭或打开通气口的可变形膜或阀瓣9140可用于改变通过通气孔9126的流动。然而,可变形膜或阀瓣9140可能由于在通气孔9126通过膜9140打开或关闭时和/或因具有部分关闭的通气孔9126通过调节型通气口的流速变化而产生不希望的噪声水平。
可以通过包括在压力增加时逐渐关闭通气孔9126的膜阀瓣9140来减少这种噪声,其中,阀瓣9140固定在一端,使得阀瓣9140根据压力变化而偏转。该技术的问题在于膜9140可能仅部分地关闭给定的通气孔9126,这可能导致以高速在通气孔9126与膜9140之间通过的流。当空气沿着通气孔9126和膜9140的表面通过或碰撞到这些表面时,这又产生噪声。
有可能通过减少调节型通气孔的数目来克服这个问题,同时在治疗压力范围内保持总体上基本恒定的通气流量以减少通气噪声。使用模制通气孔(即静态通气口)可以保持期望的噪声水平。然而,这些通气孔可能不能实现期望的流量曲线(即,在4-20cm H2O之间的治疗压力范围内基本恒定的流量)。这可以通过将一些调节型通气孔与静态通气孔组合使得总体通气流量在治疗压力范围内是基本恒定的来实现。增加不受膜调节的静态通气口的数量可能会导致总体通气噪声的降低。
然而,模制通气孔的这种引入可能引入新的问题,由此可能难以使用静态通气口和调节型通气口的组合在治疗压力范围内确保基本恒定的通气流量。如图16所示,已知模制静态通气孔的通气流动特性是对数曲线,其中通气流量随压力增加而增加。为了补偿静态通气口的流量,调节型通气口应该提供反向流量曲线,其中通气流量随着压力增加而减小。因此,调节通气孔9126的膜9140可以被调整成提供这种通气流量。
存在许多的方法来调整膜9140,以提供反向于静态模制通气口的对数流量曲线的通气流量。例如,可以改变膜9140的形状/结构以调整调节型通气口的流量曲线,并且可以改变膜9140的材料以调整调节型通气口的流量曲线。
如在图20中所示,CFV膜的环形盘状膜9140结构可以允许膜9140以多种方式调整使得其改变调节型通气口流量。通过在固定压力下覆盖/打开通气孔9126的多少可以改变调节型通气口流量。在固定压力下覆盖更多通气口的膜9140与覆盖更少通气口的膜相比具有更低的通气流量。环形盘结构9140可允许膜9140容易地调整以在固定压力下覆盖变化量的通气口。一种可能实现方式是通过改变中心孔口的直径或改变通气口接合表面的宽度。
膜9140的总体尺寸受CFV单元壳体9120的尺寸的限制,然而,希望尽可能地减小CFV的尺寸。因此,可以通过调节中心孔口的尺寸来调节通气孔接合表面的宽度。中心孔口尺寸的增加导致通气孔接合表面的宽度也减小。宽度的这种减小又导致膜9140的表面积减小。表面积的减小意味着在固定压力下对变形的抵抗性较小,由此与更宽的膜9140(即更多的表面积)相比在固定压力下覆盖更多通气孔。该原理在预定的表面积范围内成立。也就是说,如果表面积太小以至于没有足够的表面(即,通气孔接合表面的宽度太小),则需要更大的力来使膜9140变形(即,表面积小到极点)。
膜9140厚度也可以进行变化使得其在固定压力下更容易变形。例如,在与在相同压力下具有相同形状的较厚膜9140相比时,较薄膜9140在15cm H2O面罩压力下更容易变形。
膜9140也可以被构造为使得其自由移动,以在固定压力下覆盖通气孔9126。例如,在相关技术中,膜9140可以固定在例如通气壳体9120上的某点处使得其相对于固定点铰接,并且膜9140将由于压力变化而围绕固定点偏转。
根据本技术的一个实例的CFV膜9140的设计允许其在保持结构与通气孔表面之间自由地移动。当与阀瓣设计,即,膜固定在一端并相对于固定端移动相比时,这种配置可以允许膜9140更容易调整以调节通气流量。
更具柔性/顺应性的膜9140可以在固定的压力/负荷下更容易变形,从而相比于更硬的膜覆盖更多通气孔9126。因此,将膜9140的材料改变为更柔性的材料(虽然在其他方面具有相同尺寸和结构)将允许膜9140在相同压力下更容易地变形以覆盖更多的通气孔9126并减少通气流量。因此,这可以允许调整膜9140以在治疗压力范围内提供期望的通气流量曲线。
如上所述,可以使用多种方式来提供响应于目标治疗范围内的压力的膜9140,以提供预定的通气流量曲线,即,在4-30cm H2O的压力之间提供总体上基本恒定的通气流量。也可能期望提供这种恒定通气流量同时最小化通气噪声,一种解决方案可以是最大化静态非膜调节型通气口的数目并且具有最小数目的提供基本恒定的平均总通气流量的膜调节型通气口。这种流量曲线由图19中名称为“仅被动通气口”的较粗实线示出。在该实例中,虚线表示静态的非膜调节型通气口,而名称为“CFV和被动通气口”的较细实线表示组合的通气口流量。值得注意的是,随着压力增加,静态通气口的通气流量逐渐增加,而CFV膜调节型通气孔逐渐降低至阈值。
噪声的另一个原因可归因于CFV膜9140引起的通气流量干扰,其还可以影响流过静态通气口的空气流量。在相关技术中,静态通气口定位在CFV膜调节型通气口的近侧,即,通气孔定位在CFV壳体9120的同一表面上。此举甚至对于非调节型静态通气口也产生噪声,因为膜对静态通气流的流动特性具有影响。因此,可能期望将静态通气口远离CFV膜调节型通气口定位,使得膜9140不会影响通过其中的静态通气流。在本技术的一个实例中,静态通气孔定位在CFV调节型通气孔的远侧表面上。例如,静态通气孔可以定位在与CFV壳体9120不同的部件上。静态通气口的定位可能受到限制,因为它们也可能不能冲洗CO2。当静态通气孔定位成更靠近患者时,冲洗CO2的能力增加。然而,静态通气孔也可以相对于患者位于HMX的相对侧以防止呼气期间的湿气损失,如下文说明的。
5.4.1.1通气壳体
图42A至42G描绘了根据本技术的一个实例的通气系统13400的实例。通气系统13400包括通气壳体13401,该通气壳体13401可以包括外壁13402,并且外壁13402可以限定通气壳体13401的外周边。通气壳体13401还可以包括内壁13410,该内壁13410可以限定用于由RPT装置4000产生并被引导到充气室3200并导向患者用于治疗的气体流的入口。如可以看出,在该实例中,外壁13402和内壁13410形成为同心圆。
在外壁13402与内壁13410之间定位的是基部。基座可以进一步包括外基部13403和内基部13406。外基部13403可以从外壁13402的内周边延伸,并且内基部13406可以从内壁13410的外周边延伸。如可以看出,在该实例中,外基部13403和内基部13406也形成为同心圆。
外基部13403可包括围绕外基部13403径向分布的一个或多个外孔口13404。这些外孔口13404可以完全穿过外基部13403以提供从通气系统13400的内部至大气的流动路径。外孔口13404可以是直的,即,垂直于外基部13403,或者外孔口13404可以弯曲路径或倾斜路径穿过外基部13403。外孔口13404的直径可以沿其长度不变,或者直径可以变化。外孔口13404可以全部相同或者一些外孔口可以不同于其他外孔口。外孔口13404的边缘可以具有倒角或圆角。外基部13403可以至少部分地支撑膜13430以防止膜13430完全堵塞内孔口13407。因此,外基部13403可以比内基部13406更高地向上延伸,如可以在图42A至42G中看到的那样。
通气壳体13401还可以包括分布在外基部13403和外壁13402的内周边周围的侧向膜支撑件13405。侧向膜支撑件13405可以邻接膜13430并防止膜13430在使用期间横向移动,从而覆盖外孔口13404。如下面将要解释的,可能期望不堵塞外孔口13404,使得通气系统13400将能够在典型治疗压力范围的大部分内保持基本恒定的通气流量。因此,侧向膜支撑件13405可以径向向内突出超过外孔口13404的边缘。侧向膜支撑件13405可以是半圆形的,如图42A至42G中那样。在图42A至42G所描绘的实例中,外孔口13404以三组均匀分布在围绕外基部13403的圆周的相邻侧向膜支撑件13405之间。
通气壳体13401也可以具有圆形形状。然而,通气壳体13401也可以是椭圆形的,或者通气壳体13401可以具有多边形形状,诸如三角形、正方形、矩形、五边形、六边形等。在任何这些构造中,膜13430可以被成形为与通气壳体13401的形状相对应。
内基部13406可以定位在外基部13403的径向内侧,并且内基部13406和外基部13403可以通过径向分布在两者间的基部连接器13408接合。在相邻基部连接器13408之间以及在内基部13406与外基部13403之间存在一个或多个内孔口13407。在这些实例中,内孔口13407被成形为具有弧形横截面的狭槽。然而,可以设想的是,与外孔口13404类似,内孔口13407可以是圆孔。内孔口13407完全延伸通过通气壳体13401、在内基部13406与外基部13403之间。如下面将要解释的,可能期望允许内孔口3407至少部分地被膜13430阻塞以允许通气系统13400在典型治疗压力范围的大部分内保持基本恒定的通气流量。内孔口13407的边缘可以具有倒角或圆角。
通气壳体13401的内基部13406还可以包括若干个膜间隔件13409。膜间隔件13409可以围绕内基部13406径向均匀分布。如图42A至42G所示,膜间隔件13409可以位于内基部13406的边缘上以便渐隐到内壁13410中。膜间隔件13409被设置为至少部分地支撑膜13430,如将在下文中更详细描述的。膜间隔件13409可以从内基部13406以半圆柱形形状或矩形形状延伸,如图42A至42G中那样。膜间隔件13409的边缘可以具有倒角或圆角。
通气壳体13401还可以包括一个或多个凹陷部13415,其围绕外基部的相对侧间隔开,如可以在图中42A至42G中看到的那样。凹陷部13415可以被凹陷部分隔件13414分开。外孔口13404可以延伸穿过外基部13403并且通向对应的凹陷部13415,并且多个外部开口13404可以通向单个凹陷部13415。
在替代性实例中,通气壳体13401可仅包括与上述内孔口13407类似的一组孔口,因为通过其中的通气流量可能受到膜13430位置的限制。因此,也可以在患者接口3000上的别处设置另一组孔口,其与上述外孔口13404类似,因为穿过其中的通气流量不受膜13430的限制,与膜13430的位置无关。不受膜13430限制的后一组孔口可以位于充气室3200、密封形成结构3100、解耦结构3500、通气口连接管4180或比通气壳体13401更靠近患者的其他部件中的任一者上。可以设想的是,上述通气系统13400的操作原理将适用于这种替代性布置,但是将不受膜13430限制的孔口定位成靠近患者的能力可以改善呼出CO2的排放。
通气壳体13401可以由单一的均匀材料件制成。通气壳体13401的材料可以是相对刚性的。通气壳体13401的材料可以是聚碳酸酯。
5.4.1.2膜
图43A至43G还描绘了具有通气系统13400并邻近通气壳体13401定位的示例性膜13430的视图。示例性膜13430可以与上文公开的各种通气壳体13401构造中的任何一种一起使用。膜13430可以呈扁平圆盘的形状。换句话说,膜13430(参见图43F和43G)的厚度可以相对于其外径较小。膜13430的厚度可以整体是均匀的,如图43F和43G所示。可替代地,膜13430的厚度可以在径向方向上变化。
膜13430包括膜开口13431,使得当组装到通气壳体13401上时,通过入口13411的空气流也穿过膜开口13431并一直到患者。膜13430还包括使用中面向患者的患者侧表面13432和使用中面向大气、与患者侧表面13432相反的大气侧表面13433。另外,大气侧表面13433在组装时面向通气壳体13401。膜13430还包括限定膜开口13431的内表面13434和与内表面13434相反的外表面13435。
内半径,即,内表面13434的半径,和外半径,即,外表面13435的半径可以被选择成使得膜13430可以在使用中位于内孔口13407上而不覆盖外孔口13404。另外,可以选择内半径和外半径,使得膜13430覆盖内基部13406的相对大部分,同时支撑于在内表面13434的近侧的膜间隔件13409上和外基部13403上。
膜13430可以由单一的均匀材料件制成。材料可以弹性变形,使得膜13430可以在使用时通过来自空气流动的压力偏转。材料可以是硅树脂。膜13430可以被“调整”成通过改变其厚度、长度、材料、形状、内半径和/或外半径中的一者或多者而以期望的方式变形。
5.4.1.3恒定流量通气系统
图43A至43G描绘了示例性通气系统13400的若干个视图,其中膜13430与通气壳体13401组装在一起。在图43A至43G中,内壁13410并未延伸到内基部13406上方在内壁13410从内基部13406向上延伸的实例中,内壁13410可提供挡板功能,该挡板功能将经由入口13411行进到通气系统13400中的气体流与离开通气系统13400的通气流分开,这又可以减少从入口13411进入然后直接从通气系统13400出去的流量。
在图43A至43G的实例中,膜13430的在外表面13435近侧的部分可被看到支撑在外基部13403的内部部分上。另外,膜13430的在内表面3434近侧的部分可被看到正好支撑在膜间隔件13409上方。然而,即使可能没有任何导致变形的气压,膜13430可以凭借其自身的重量朝向膜间隔件13409变形,使得膜13430也支撑在膜间隔件13409上。
图43A至43G还示出了由侧向膜支撑件13405约束的膜13430的位置。如上所述,膜13430的形状和尺寸经设定可以仅覆盖内孔口13407而不覆盖外孔口13404。然而,膜13430可以不覆盖直接附接到通气壳体13401,并且因此可以自由移动。因此,足够数目的侧向膜片支撑件13405可防止膜13430的侧向移动,使得膜13430在使用中不能覆盖一个或多个外孔口13404。
也可以设想这些实例的反转,其中外孔口13404可以由膜13430而内孔口13407不被膜13430阻挡。因此,侧向膜支撑件13405可以被提供以防止膜13430覆盖内孔口13407。
如上所述,示例性通气系统13400可包括定位在内孔口13407上方以至少部分地限制通过内孔口13407的气体流的膜13430,而通过外孔口13404的通气流量并不受膜13430限制。
还应当理解的是,在章节5.4.1.1至5.4.1.3中描述的通气系统的13400的特征可以被并入到章节5.4.5中公开的通气适配器9100的任一种中。
5.4.2通气扩散器
通气适配器9100还可以包括用于容纳扩散器9146的一部分。扩散器9146可以是可移除的以便替换。扩散器9146可以具有环形盘形状,该环形盘形状与在面向大气的一侧(即在入口流的外部)的通气壳体9120的环形表面的形状互补。扩散器9146可以覆盖通气孔9125并且可以在通气流离开多个通气孔9125之后扩散通气流。也就是说,流过模制通气孔9125的通气流可以在到达大气之前流过扩散器9146。
扩散器9146还可以充当吸声材料,以减少由CFV膜9140调节型通气口和静态通气口产生的一些噪声。
图26示出了通过一些孔口3402的横截面。孔口3402被示出为穿过充气室3200的壁3404的孔。然而,孔口3402可位于除壁3404之外的位置。例如,孔口3402可位于解耦结构3500与连接端口3600之间或位于空气回路4170的一部分中,优选地靠近连接端口3600或在通气适配器9100中。孔的直径被示出小于孔的轴向长度。可以选择长度和/或直径,使得当充气室3200加压至治疗压力时产生适当的流量。在治疗压力下(例如,在4cm H2O或更高的压力下),通过孔口3402的流动可能被扼流(例如马赫数为1),或者流动可能产生不足以被扼流的压降。扼流可以导致通气孔3400中的由孔口3402引起的基本上所有的压降。箭头在概念上示出了当充气室3200被加压到环境压力以上时的流动方向。
孔口3402通过壁3404的材料厚度形成。每个孔口3402限定例如沿着孔口的中心的轴线。该轴线与壁3404的表面的法线形成锐角。该角度可以在15与75度之间或在30与60度之间,包括在所述范围内的任何整数。例如,角度可以是约45度。
孔口3402由扩散构件3406覆盖,使得离开孔口3402的流撞击在扩散部件3406上并至少部分地流动到扩散部件3406中。扩散构件3406可以由材料,诸如多孔材料形成,该材料允许气体流过材料但扩散离开孔口3402的任何射流或其他流动形成。扩散材料的一些合适实例包括非织造纤维材料;编织纤维材料;或开孔泡沫材料。扩散材料可以与过滤介质相似或相同。扩散构件3406可以减少由使用中(例如,当施加治疗压力时)的通气口3400产生的可感知噪声。
扩散构件3406被示出为阻挡构件由3408覆盖,该阻挡构件3408防止气体流出孔口3402并直接通过扩散构件3406。阻挡构件3408可以被至少部分地由不透气材料构造。不透气材料可以是任何合适的柔性或刚性材料。例如,不透气材料可以是刚性塑料(例如,模制聚碳酸酯)或柔性塑料(例如,可商购的片材形式塑料)。阻挡构件3408可以与扩散构件3406一体地形成,分开地形成但永久地附连到扩散构件3406,分开地形成并且与扩散构件3406可移除地接触,或其组合。阻挡构件3408被示出为相对于扩散构件3406的厚度与出口孔口3402相对。
阻挡构件可导致流在离开扩散部件3406之前改变方向(相对于通过孔口3402的方向)。阻挡构件3408和/或扩散构件3406可被构造为使得从孔口3402出来的流在排出至环境大气之前必须通过扩散构件3406流动至少预定距离。阻挡构件3408还可以构造为对离开通气口3400的流提供特定的方向和/或取向以最小化由流动引起的对佩戴者和/或床伴的任何干扰。例如,阻挡构件3408可以使气体流过扩散构件3406并且大致平行于最靠近扩散构件3406的阻挡构件3408的表面。
在图26中,孔口3402和扩散构件3406相对于彼此进行取向,使得每个孔口的中心轴线不垂直于扩散构件3406的最近表面,但是垂直布置可以也如图8所示那样设置。
通道3410也可以设置在壁3404的外表面上。通道3410被示为具有V形横截面,但可以形成为具有任何合适的横截面,诸如U形。通道3410可被构造为允许液体从孔口3402的一个或多个出口排出。孔口3402可形成为V形或U形的腿。
图27示出了阻挡构件3408的替代性构造。在图27中,阻挡构件3408包括孔3412。孔3412可以将引导流在孔口3402的相对侧但以不同方向流出扩散部件3406。因此,流动路径不是直通孔口3402和扩散构件3406。尽管与孔3412相关联的箭头被示出为平行,但这仅仅是为了便于说明。孔3412可以被构造成将流重新引导在多个方向上。
孔3412各自限定既不对齐于由每个孔口3402限定的轴线也不平行于所述轴线的轴线。当在图27的横截面中观察时,通过孔3412限定的任何一个轴线和由孔口3402限定的任何一个轴线形成角度。该角度可以在15与75度之间或在30与60度之间,包括在所述范围内的任何整数。例如,角度可以是约45度。
图28-30示出了通气口3400的替代性构造。图28示出了局部分解图,图29示出了简化的组装图,并且图30示出了沿着图29的线30-30截取的截面图。在这些图中,孔口3402被示出为围绕中心孔3414的圆形阵列。圆形阵列被示出为包括三个圆形孔排,其中两个最内侧圆形排比最外侧圆形排更靠近在一起,但是可以提供任何数目的圆形排,排之间的间隔可以相等。中心孔3414允许充气室3200与连接端口3600并且因此与空气回路4170之间的流体连通。扩散构件3406和阻挡构件3408也被示出为围绕中心孔3414设置。通过这种构造,阻挡构件3408可以可移除地附接(例如,可移除的搭扣配合或螺纹接合)或固定附接(例如,永久性粘合剂或者必须折断才能拆卸的搭扣配合),并且扩散构件3406可以固定到阻挡构件3408或者不固定到阻挡构件3408,但是由阻挡构件3408保持。如在图29中最佳地看到的,设置径向开口3416以使气体从中心孔3414径向向外地逸出扩散构件3406。
图31A至31C示出了通气口3400的另一个替代性构造。图31A示出了呈弯管3418形式的流动通道的局部视图,该弯管3418可以设置在解耦结构3500与连接端口3600之间并且包括通气口3400。该构造大量地隐藏了通气口3400的特征,因此剩余的描述是相对于图31B和9C的。
图31B示出了轴向视图,其中帽3422和扩散构件3406省略去。这提供了出口孔口3402的清晰视图。示出了两个环形排,每个排包括四十个出口孔口3402。孔口被偏置以使得内排和外排中的出口孔口3402不径向对齐。这种构造可以允许环形排具有更近的径向间隔。尽管示出了两排,但可以提供任何数目的排,例如一排或三排或更多排。尽管在每个环形排中示出了四十个出口孔口3402,但可根据需要设置更多或更少的孔口以保持适当水平的气体冲洗。例如,每个环形排可设置一个、五个、十个、十五个、二十个、二十五个、三十个、三十五个、四十个、四十五个、五十个或更多个出口孔口3402,或其间的任何数目。
在图31C中,孔口3402的环形阵列在通过壁3420的横截面中是可见的。壁3420类似于壁3404,不同之处在于壁3420被示出为远离充气室3200;然而,壁3420可以是充气室3200的一部分。
扩散构件3406被示出为环形形状,其具有矩形横截面。阻挡构件3408被示出为在扩散构件3406的与孔口3402相对的一侧上的相对薄的片状环。阻挡构件3408可以通过任何合适的手段例如通过粘合剂附连到扩散构件3406。
帽3422被示出为覆盖扩散构件3406和阻挡构件3408。帽3422可以与阻挡构件接触3408,使得扩散构件3406压靠在壁3420上。可替代地,扩散构件3406可以不压靠在壁3420上。帽3422可以充当阻挡构件3408,在这种情况下,可以省略图31C中示出的环形阻挡构件3408。
帽3422可以包括成角度环形凸缘3424,其可以与壁3420间隔开以形成环形间隙3426。环形凸缘3424还可以被认为是裙状或截头圆锥形。环形间隙3426可以提供到环境大气的流动路径,使得气体流冲洗不被过度限制。可替换地,可以在环形凸缘3424中设置一个或多个开口(诸如径向开口3416)以提供通向环境大气的流动路径,其也可以允许全部或部分地消除环形间隙3426。
帽3422被示出为具有与环形突出部3430配合的环形沟槽3428以将帽3422保持在适当位置。环形突出部可以是连续的以形成搭扣配合,或者可以是多个环形间隔开的环形突出部,以提供在轴向插入时实现最小限度干涉或不干涉,然后扭转以提供轴向干涉并将帽3422保持在适当位置的构造。在图31C中,环形突出部3430被示出为三个环形间隔开的环形突出部。环形沟槽3428的唇缘3432可以在三个对应的位置和尺寸中省略,以在轴向插入期间减少对帽3422的干涉或不干涉帽3422。其他形式的附接是可能的。例如,可以提供螺纹紧固装置,帽3422可以用粘合剂或焊接保持在适当位置。诸如所示构造或螺纹连接的可释放紧固可允许在例如扩散构件损坏、阻塞或弄脏的情况下替换扩散构件3406。
虽然通气口3400被示出为在弯管3418的弯曲部的一侧(例如,相对于呼气方向的上游),但是通气口3400可以在弯曲部的上游或下游。
图32A至图32C示出了通气口3400的另一个替代性构造。类似的附图标记与上面描述的附图标记类似,因此除了下面提到的以外,省略进一步的描述。这些图中的通气口3400形成在解耦结构3500的实例的周围,该解耦结构3500包括作为弯管3418的一部分的球头3434和球窝3436。在这里示出的形式中,球头3434和球窝3436允许三个旋转自由度。然而,旋转自由度可能更少,例如旋转自由度为一个或二个。
如在图32D中最佳地看到的,帽3422通过搭扣配合连接3438的方式连接,其中第一半部3440位于帽3422并且第二半部3442位于配合部件上。第一半部3440和第二半3442中的每一个都设置在六个径向开口3416之间,其中三个在图32A中可见。然而,可以根据需要或多或少地提供以通过足够的保持和/或流量。
如在图32C中最佳地看到的,示出了44个孔口3402,其在单个环形排中等距间隔开。然而,孔口3402的数目和间距可以采取其他构造。例如,如果例如需要较低的流量,则可以提供较少的孔口3402,或者如果例如需要较大的流量,则可以提供更多的孔口3402。并且如上所述,可以提供更多个排。另外,孔口不需要呈环形阵列。例如,如果孔口位于除所示位置之外的位置,则可以基于笛卡尔坐标将孔口布置在网格中。可替代地,孔口3402不需要处于任何类型的排中,并且可以位于随机或伪随机位置中。
5.4.3热湿交换器(HME)
热湿交换器(HME)可以包括具有保水特性的材料。呼吸压力治疗(RPT)可能导致呼吸道干燥,导致患者呼吸不适。为了防止这种情况发生,可以将湿化器与呼吸压力装置结合使用,以向患者输送加湿空气。这种增加的湿化器可能会增加RPT装置的尺寸和功率要求。
已知的是,患者在呼气时生成加湿空气的水平,该加湿空气来源于呼吸道的粘膜。HME可用于通过在呼气时从加湿空气捕捉湿气然后将其重新输送至患者来再循环该呼出的湿气。使用HME的一个挑战是它们的功效(即能够捕获足够的热量和湿气的功效)及其对治疗的影响(即,HME可以被置于流动回路中并因此导致流动阻抗)。
为了改善功效,一方面是减少由HME捕获的热量和湿气的任何损失。在RPT中使用HME的问题可能是由患者呼出的热量和湿气在到达HME之前由于通气而损失。为了使这种损失最小化,可以将HME放置在患者气道(即,湿度源)的近侧,并将通气口放置在HME的相对侧,即远离患者。这种配置可以确保呼出的加湿气体流过HME,使得湿气在通过通气口离开之前被HME捕获。通气适配器可以被配置为使得HME位于患者气道与恒定流量通气口之间。
在HME设置在通气适配器中的示例中,RPT系统可以不包括加湿器。进入的加压可呼吸气体的加湿可以通过HME充分地实现,使得加湿器(例如,使用诸如图5A和5B中描绘的布置的动力加湿)可以是不必要的并且可以被排除。可替代地,如果当提供HME时在RPT系统中包括加湿器,则加湿器可以被停用或简单地不通电。在又一个替代方案中,HME和RPT加湿器可以彼此协同作用以提供所希望的总湿度,例如HME提供所希望的湿度的一部分并且RPT加湿器提供所希望的湿度的第二部分。
通气适配器还可以包括HME单元,其是可移除的。也就是说,通气适配器可以与或可以不与HME一起使用。HME单元可以包括将HME保持在合适位置的壳体。壳体可以打开(壳体可以包括前部部件和后部部件)以移除HME。
HME可以被设计成最大化用于热量和湿气交换的每单位体积的表面积。此外,HME也可以被设计成减小其对流阻抗的影响。该设计可以包括多个波纹以使流通过所述波纹。HME可以形成为包括波纹的HME材料的卷绕层。
如上文所述,CFV可以通过将通气流量调控至高于但接近最小要求的通气流量的水平来减少流量浪费。由于流量浪费减少,治疗系统中的湿度损失水平也可以降低。本领域已知,患者呼出湿化空气,这可能又导致粘膜干燥。对SDB应用RPT治疗可能会加剧这种干燥。因此,减少实现治疗压力所需的流量并且同时降低来自系统的加湿空气损失的水平可能导致粘膜干燥的减少。
增加输送至患者的加湿空气水平的一种方式是使用动力加湿。另一种加湿输送至患者的空气的方式是使用热湿交换器(HME),它们捕获空气中的水蒸气,使得这些水蒸气可以被输送回患者。HME可用于从患者呼气中捕获湿气,进而可将这种湿气重新输送回患者。如图17所示,HME应当被定位成其从呼出的气体流捕获足够的湿气,但允许这种湿气通过治疗流重新输送。为确保从呼出的气体流中捕获的湿度最大化,应当将HME置于患者与通气口之间。如果将通气口放置在患者与HME之间,这将导致呼出气体流中的湿气在到达HME用于捕获和重新输送之前被排放。然而,图17所示的配置也可能经由通过HME的治疗流接着直接从通气口出来(在患者输送之前)而使湿气因通气而损失。该流在图17中被标记为“HME通气流”。当治疗流量增加时,HME通气流变得更成问题。如图18中的曲线图所示,随着面罩压力增加,流量可能增加。该流量可以被增加以补偿通气流量损失。当流量增加时,治疗流的速度增加,这可能导致治疗流更深地穿透HME。然而,这种渗入流中的一些被输送至患者,该流的一部分也可以在患者输送之前被引导至通气口(如HME通气流所示)。因此,HME通气流也可能通过干燥HME而导致湿气损失。
如在图18的曲线图所示,CFV可相比于标准FFM标称流量通气口在相同压力范围内减少通气流量。流量的这种减少可以减少HME通气流量,从而降低湿气损失。换句话说,当与标准通气系统相比时,在CFV系统中在相同压力下流量发生较少,因此减少了HME通气流量。HME通气流量的这种减少增强了HME从呼出的气体流中捕获和重新输送湿气的能力,从而协同增强HME效应来减少粘膜干燥。
减少HME通气流量的另一种方式可以是重定向流动方向,使得较少的流通过通气口并重新引导回系统中。重定向可以通过定位于HME与通气口之间的流动路径中的结构(例如挡板)来实现,使得较少的流从通气口引导到大气中。
本发明的技术能够实现接近动力加湿水平,而无需使用动力加湿。由于不再需要动力加湿,因此气流发生器可以进一步简化,因为它不再需要水贮存器和加热机构来向治疗流输送动力加湿。因此,CFV和HME都可以允许与本技术相关的气流发生器在为OSA和其他SDB提供RPT治疗方面是有效的,而不需要复杂的压力/流量控制和动力加湿,这最终可以通过提供伴有更少控制的更小气流发生器而使患者受益。
图25A至图25D示出了根据本技术的HME的实例。图25A示出了包括波纹状结构7002的HME 7000的横截面,该波纹状结构7002包括位于基本上平坦的基底顶部结构7010与基本上平坦的基底基部结构7020之间的多个波纹7030以形成波纹管层7001。层7001包括形成在波纹状结构7002的上表面与顶部结构7010之间的多个上通道7012。此外,层7001包括在波纹状结构7002的下表面与基部结构7020之间的多个下通道7022。HME 7000允许可呼吸气体和呼气气体的流沿着波纹状结构的表面流过多个上通道7012和下通道7022以交换热量和湿气。湿气从患者呼出的呼气气体吸收并保留在波纹状结构7002的材料中。波纹7030、顶部结构7010和/或基部结构7020的材料可以包括纸或能够吸收水和/或热量的基于纸的材料。波纹7030、顶部结构7010和/或基部结构7020的材料可以是多孔的、透水的和/或透气的。随后可通过加湿输送至患者气道的可呼吸气体流来将保留的湿气重新输送至患者。换句话说,输送至患者气道的可呼吸气体流可以从HME 7000吸收湿气。图25B描绘了根据这些实例的HME的各种尺寸。
多个波纹7030增加了波纹状结构7002的表面积,从而使得用于波纹状结构7002与通过多个上通道7012与多个下通道7022提供的周围体积之间发生的热湿交换的活性表面积增加。顶部结构7010和基部结构7020也可以由与波纹状结构7022相同的热湿交换材料形成。可替代地,顶部结构7010和/或基部结构7020可以由不吸收湿气的刚性或半刚性材料形成以支撑波纹状结构7002。
HME 7000的加湿性能取决于在固定空间体积中提供的HME 7000的有效表面积。有效表面积是HME 7000的暴露于沿着HME表面流动的可呼吸气体流的表面积,在其中发生热湿交换。HME 7000的每单位体积的表面积可以通过在HME 7000的热湿交换部分内提供波纹7030来调节。此外,每单位体积的表面积也可以通过修改对HME 7000的每单位体积的表面积具有影响的翅片厚度、波纹或槽纹的间距或高度中的任一者来调节。
如图25C所示,HME 7000可以包括沿着HME 7000的垂直轴线堆叠的多个层7001。层7001可以垂直堆叠,使得基部结构7020堆叠在下面的相邻层7001的波纹状结构7002的顶部上。也可以存在HME的在水平方向上堆叠的多个层7001。具有包括沿着HME 7000的垂直轴线堆叠的波纹状结构7002的多个层7001进一步增加了HME的每单位体积的表面积。在预定体积内增加的这种表面积使得增加HME7000的热湿交换的效率。此外,如图25D所描绘,层7001可以在预负荷下而压缩,以增加固定体积内的层数,从而增加每单位体积的表面积。预负荷由以下公式计算:
Figure BDA0003648407510000401
其中P是预负荷,并且h起始是压缩之前的波纹或槽纹高度,并且其中h最终是波纹压缩后的高度。
可替代地,HME 7000的最终三维形状可以通过组合不同尺寸和形状的层7001而形成,以产生适于配合在患者接口3000的充气室3200内的不规则形状的HME 7000。层7001可以被激光切割以形成期望的形状和尺寸。
如在显示替代性实例的图25E中所示,HME 7000可以由单个条带层7001卷起,该单个条带层7001包括从基部结构7020的表面延伸以形成多个波纹7030的波纹状结构7002。单个条带层7001可以被卷起,使得波纹7030的上折叠部分7031接合基部结构7020的下表面。这种构造确保多个通道7012被保持在单个条带层7001的每个卷之间。
如上面所提到的,CFV可相比于标准FFM标称流量通气口在相同压力范围内减少通气流量。流量的这种减少可以减少HME通气流量,从而降低湿气损失。换句话说,当与标准通气系统相比时,在CFV系统中在相同压力下流量发生较少,因此减少了HME通气流量。HME通气流量的这种减少可以增强HME从呼出的气体流中捕获和重新输送湿气的能力,从而协同增强HME效应来减少粘膜干燥。
CFV膜可允许通气流量保持在治疗压力范围内维持为在或高于最小所需水平,并且也可以将通气流量调控为低于在标准静态通气口下发生的通气流量。因此,CO2冲洗将始终保持在足够的水平。通气流量可以被调整成使得其实现CO2清洗所需的最低水平。这将导致通气流量最小化,进而将来自HME的湿气损失最小化。
减少HME通气流量的另一种方式是重定向流动方向,使得较少的流通过通气口并重新引导回空气输送回路中。也就是说,流可以被重新定向,使得其最小化HME通气流,其中流穿透HME,然后直接流出通气口。流的重定向可以通过定位于HMX与通气口之间的流动路径中的结构(例如挡板)来实现,使得较少的流从通气口引导到大气中。
图38A至图38C描绘了根据本技术的一个实例的HME壳体9400的实例。HME壳体9400可以具有包括患者侧HME壳体部分9402和大气侧HME壳体部分9404的两部分构造。患者侧HME壳体部分9402和大气侧HME壳体部分9404可以是组装在一起以在其中保留HME材料。患者侧HME壳体部分9402可以包括患者侧HME壳体部分横杆9406,以在使用中将HME材料在轴向方向上保持为朝向患者,并且大气侧HME壳体部分9404可以包括大气侧HME壳体部分横杆9408,以在使用中将HME材料在轴向方向上保持为朝向大气。大气侧HME壳体部分9404还可以包括一个或多个开口9410,其连接到患者侧HME壳体部分9402的对应突片9412以将两个部分接合在一起。开口9410与突片9412之间的连接可以包括搭扣配合并且可以是可释放的以允许拆卸HME壳体9400,从而可以移除HME材料以进行清洁或更换。
图39A至图39C描绘了根据本技术的一个实例的HME壳体9400的另一个实例。HME壳体9400可以具有包括患者侧HME壳体部分9402和大气侧HME壳体部分9404的两部分构造。患者侧HME壳体部分9402和大气侧HME壳体部分9404可以是组装在一起以在其中保留HME材料。患者侧HME壳体部分9402可以包括患者侧HME壳体部分横杆9406,以在使用中将HME材料在轴向方向上保持为朝向患者,并且大气侧HME壳体部分9404可以包括大气侧HME壳体部分横杆9408,以在使用中将HME材料在轴向方向上保持为朝向大气。大气侧HME壳体部分9404还可以包括一个或多个开口9410,其连接到患者侧HME壳体部分9402的对应突片9412以将两个部分接合在一起。开口9410与突片9412之间的连接可以包括搭扣配合并且可以是可释放的以允许拆卸HME壳体9400,从而可以移除HME材料以进行清洁或更换。大气侧HME壳体部分9404还可以包括大气侧HME壳体部分环9414并且从大气侧HME壳体部分环9414延伸的是可以容纳HME材料的HME内壳体9416。HME内壳体9416连同患者侧HME壳体部分9402和大气侧HME壳体部分9404可形成HME旁路通道9418,以允许行进通过HME壳体9400的流的一部分绕过HME材料。
5.4.4定制连接
图6a示出了具有彼此配合的第一端9002和第二端9004的流体连接器9000的侧视图。可以是空气回路4170的一部分的流体导管9006的一部分连接到第二端9004。代替流体导管9006,可以设置到流体导管的适配器或连接器。RPT装置4000的出口可以包括本技术的一些形式中的第二端9004。
流体连接器9000可以被配置为可移除形式的密封连接,以允许空气流诸如从RPT装置4000行进穿过其中到患者接口3000。流体连接器9000可以包括多个部件,诸如第一端部9002和第二端部9004,该第一端部9002和该第二端部9004彼此可以可释放地连接以形成和/或打开密封连接。
第一端9002和第二端9004可经由互补的密封部分形成其间的气动路径,并通过互补保持部分彼此保持,这些互补保持部分可以相对于互补密封部分是单独的部分。因此,第一端9002和第二端9004中的每一个可以包括单独的密封部分和保持部分,如在本文件的其他地方进一步详细描述的。
当密封功能和保持功能由单独的互补部分执行时,密封功能和/或保持功能中的每一个可被更容易地优化,以解决竞争性设计要求中的一个或多个。例如,在一对互补部分用于密封和保持两个部件的情况下,紧密密封的形成可能导致高摩擦力,从而降低部件的连接和/或断开的容易性。
此外,在连接/断开的可用性增强的情况下,密封件可能没有那么稳健,诸如在两个部件可能以不同方向和大小经受和/或转矩的情况下。在诸如本文件中描述的那些流体连接器的情况下,佩戴患者接口3000的患者可能在睡着或者准备去睡觉的时候四处移动,导致流体连接器在各个方向被拉动和/或扭曲。
因此,本技术的一个方面涉及流体连接器9000,其中,第一端9002和第二端9004通过互补密封部分和互补保持部分彼此连接。
在一种形式中,第一端9002和第二端9004可以包括互补密封部分以在连接时形成空气密封。空气密封可被构造为形成并保持密封接合以允许空气流从其中行进穿过。密封接合可足以允许加压空气流诸如在4cm H2O至40cm H2O之间的压力下行进穿过其中以提供呼吸治疗。
在一些形式中,第一端9002和第二端9004可包括互补部分以保持第一端9002和第二端9004。保持部分可诸如通过防止意外脱离保持第一端9002和第二端9004彼此密封接合。保持部分可以包括闩锁机构,如将在本文件中进一步详述的。
图6b示出了第一端9002和第二端9004未彼此连接的流体连接器9000的截面图。在这个视图中,密封部分9008是可见的。密封部分9008可以由适合于在向患者提供呼吸气体的装置的空气路径中形成密封的任何材料(例如硅树脂)形成。密封部分9008围绕第一开口9010延伸,该第一开口9010被示出为第一管9022的内部。可以呈凹陷部形式的闩锁部分9012设置在第一端9002。闩锁部分9012可以设置在如图6b所示的相对侧、第一端9002的单侧或周边周围。如图所示,闩锁部分9012是基本上垂直于第一端9002的中心轴线的底切部。根据所需的保持力,其他角度是可能的。
第二端9004包括密封表面9016。密封表面9016可以周向地围绕第二开口9018形成,该第二开口9018被示出为第二管9020的内部。密封表面9016被示出为大致环形表面,其远离第二管9020径向且垂直(即以90°)地延伸。这可以导致密封表面9016基本上垂直于从第一端9002到第二端9004的流体流动的方向。然而,密封表面9016也可以一定角度向外延伸,使得密封表面9016是倾斜的。例如,密封表面可以处于85°、80°、75°、70°、65°、60°、55°、50°或45°角,正值或负值,或其间的任何值。如可以在图6b中看到的,第二管9020可以包括悬垂部分9034,该悬垂部分9034朝向密封部分9008延伸超过密封表面9016。这可以导致第二管9020的悬垂部分9034延伸穿过密封部分9008,如图6c所示。应当理解,在本技术的一些实例中,第二管9020不需要包括悬垂部分。
悬垂部分可以被配置为使第一端9002与第二端9004在一个或多个方向上对齐。悬垂部分9034可以被配置为插入到第一端9002上的引导部分9038中,以充当引入端并且使第二端9004与第一端9002在径向(或横向)方向上对齐。因此,第一端9002和第二端9004可以具有凸/凹关系。另外,可提供止动件9030以限制第二管9020的行程,例如通过在行程极限处邻接悬垂部分9034。虽然悬垂部分9034被示出为管,但悬垂部分可以不围绕第二端9004的周边连续地延伸,因为它将相对于由互补密封部分(密封部分9008和密封表面9016)形成的密封是内部的。悬垂部分可以仅部分地延伸穿过密封部分9008,诸如在堞形延伸部、突片、肋等中。
在图6c所示的构造的情况下,通过第一管9022、第二管9020和止动件9030限定的流体连接器9000的内部流动路径可以具有非常小的流动限制,因为内部流动路径与流体导管9006的内部基本上相同,例如,如在横截面形状和尺寸方面所评估的。因此,当在整个患者的呼吸周期和治疗压力(例如,在4cm H2O至40cm H2O之间的压力下)内空气流动通过流体连接器9000时,流体连接器9000可以具有可忽略的压降。
密封部分9008可以包括以适合于形成面密封的任何形式接触密封表面9016的部分,例如通过两者间的切向接触。如图所示,密封部分9008以类似于波纹管形状或部分波纹管形状的基本截头圆锥形形状接触密封表面9016。可替代地,可以在密封部分9008上提供部分球形或部分圆环形表面。在这些形状中的任何一种的情况下,密封部分9008可以在闩锁部分9012和互补闩锁部分9014完全或甚至部分地部分接合之前接触密封表面9016。可替代地,甚至在闩锁部分9012和互补闩锁部分9014完全接合之后,密封部分9008和密封表面9016也可以被间隙分隔开。在这种情况下,内部加压可能导致密封部分9008移动成与密封表面9016接触并形成密封。
密封部分9008可以包括弹性且柔顺的材料,使得它可以在负荷下变形,而当从其移除负荷时保持其原始构型。密封部分9008可以被构造为在负荷下容易变形以形成和/或保持与密封表面9016的密封。在一些形式中,密封部分9008可以包括由硅树脂构成的膜。硅树脂膜密封部分9008可以具有足够的顺应性,使得其会由于气流引起的压力而变形移动成与密封表面9016接触。另外或可替代地,硅树脂膜密封部分9008可以足够柔顺,从而甚至在从其未变形构造压缩时,它也将保持与密封表面9016的密封接合。
密封部分9008的所提议构造可以提供下述密封,该密封相对于第一端9002与第二端9004之间的配合方向是顺应性的(例如,在图6b中向左)和/或在径向于由第一端9002与第二端9004之间的接合方向限定的轴线的方向上是顺应性的(例如,在图6b中向上和向下)。
压缩密封部分9008所需的力(例如,当需要压缩以形成和/或保持密封)可以是足够低的,以便不会有显著压缩力。例如,压缩密封部分9008所需的力可小于使闩锁部分9012与互补闩锁部分9014接合所需的力,例如以克服连接第二端9004和第一端9002的任何摩擦力。可替代地,压缩密封部分9008所需的力可小于使闩锁部分9012与互补闩锁部分9014接合所需的力的一半。可替代地,压缩密封部分9008所需的力可小于使闩锁部分9012与互补闩锁部分9014接合所需的力的十分之一。因此,在闩锁部分9012和互补闩锁部分9014完全接合之前密封部分9008接触密封表面9016的构造中,使用者可能不会遇到会被误认为完全接合的明显的力。在一些形式中,由密封部分9008的压缩引起的用于连接第二端9004和第一端9002的任何力可以足够小以至于使用者基本上察觉不到。也就是说,在密封部分9008从第一端9002移除的构造中,使用者感知的力可以与密封部分9008必须被压缩以便连接的构造基本上相同。
根据本技术的密封部分9008的形状可以提供下述密封,该密封在第一端部9002和第二端9004之间的配合方向的反侧是顺应性的(例如,在图6b中向右)。这可以实现下述密封部分9008,即使当流体连接器9000未加压时密封部分9008与密封表面9016之间存在间隙,该密封部分9008也可以与密封表面9016密封。当向流体连接器9000的内部(例如,向第一管9022)提供压力时,密封部分9008可朝密封表面9016扩张并接触密封表面9016以形成密封。通过这种构造,使用者应当在将第一端9002连接到第二端9004时不会遇到超过接合闩锁部分9012和互补闩锁部分9014所需的力的任何额外的力。
虽然密封部分9008的具体构造如上所述,但是其他构造也是可能的。例如,密封部分9008的一些形式可以包括o形环或垫圈材料。
密封部分9008或密封表面9016或两者可被构造为使得密封部分9008与密封面9016之间的未对准仍然导致密封部9008和密封表面9016之间密封。例如,密封部分9008和/或密封表面9016可以被构造为在其间形成密封,同时允许径向(或横向)和/或轴向方向上的一定未对准范围。
例如,密封表面9016可包括环形形状(如图6H中所示),该环形形状被构造为在多个径向位置上与密封部分9008的表面形成面密封。也就是说,尽管第一管9022的轴线和第二管9020的轴线可能未对准,例如偏差0.5mm、1mm、1.5mm、2mm、3mm或4mm,但密封部分9008和密封表面9016可以在它们之间形成密封。在一种形式中,密封表面9016可以包括足够宽的环形部分,使得密封部分9008可以能够与其形成密封。
第二端9004也包括互补闩锁部分9014。互补闩锁部分9014被示出为悬臂式钩,其包括与闩锁部分9012配合或接合的突出部。与闩锁部分9012一样,互补闩锁部分9014可以设置在如图6b所示的多个(例如相对)侧上或单侧上。如图6d所示,互补闩锁部分9014可以呈U形或C形切口的形式。互补闩锁部分9014可以被压下以使互补闩锁部分9014与闩锁部分9012接合或脱离,并允许第一端9002与第二端9004之间的接合或脱离。虽然提供多于两个的互补闩锁部分9014是可能的,但是这样做可能使得不必要地难以将第二端9004与第一端9002脱离。
在组合中,止动件9030和闩锁部分9012可以限定第二端9004可相对于第一端9002移动同时两个端部连接的预定距离(行程)。例如,如果止动件9030与闩锁部分9012之间的第一轴向距离大于第二管9020的端部与互补闩锁部分9014上的突出部之间的第二轴向距离,则第一轴向距离与第二轴向距离之间的差值将限定非零的预定行程量。如果第一轴向距离和第二轴向距离相等,则不可存在行程。然而,至少在易制性方面可能存在与非零行程有关的益处,因为非零行程将允许制造公差,这可以降低成本。因此,密封部分9008被构造为在最差情况的制造公差下并且在流体连接器9000中的预定磨损和/或蠕变量之后与密封表面9016形成密封也是有益的。上面讨论的密封部分9008的形状可以允许密封部分9008考虑这种最坏情形。
如在图6b中最佳地看到的,第二端9004可以包括在界面9028处彼此可旋转地联接的内部部分9024和外部部分9026。内部部分9024可包括在密封部分9008并且外部部分9026可以包括互补闩锁部分9014。如图所示,内部部分9024刚性地或固定地连接到流体导管9006,使得内部部分9024和流体导管9006可以相对于外部部分9026一起旋转。流体导管9006的至少一部分可以重叠模塑到内部部分9024上以在它们之间形成刚性连接。在其他形式中,流体导管9006可以摩擦配合或干涉配合到内部部分9024中以形成刚性连接。
如在图6d中最佳地看到的,外部部分9026可具有有四个边但还具有圆形的外轮廓,其可以是相比于典型的圆形轮廓可独特识别的。第一端9002可以包括互补形状的凹陷部。因此,第一端9002包括凹入部分,并且第二端9004包括凸出部分。包括上述形式的凸出和凹入部分,或任何其他非标准形状或构造都可能提供益处。首先,包括非标准形状和/或构造的流体连接器9000可能不符合工业标准(例如,ISO 5356-1),这些工业标准包括使用包括引入锥形的圆形插口,封套(例如,橡胶)插在其上。虽然不符合工业标准可能看起来不符合直觉,但可能有益处。例如,流体连接器9000可以用于连接被设计为最佳地一起操作的RPT装置和患者接口。例如,如果RPT装置提供较低的流量,该流量只能通过被设计为以较低流量操作的患者接口来利用,则具有不匹配于工业标准的流体连接器9000将确保只有正确的RPT装置和患者接口一起使用。第二,特别是对于所示出的轮廓,第一端和第二端9004可以仅在预定数量的相对取向(例如,四个)上彼此配合。本发明的四边形形状还可以提供易于识别和握持以便致动互补闩锁部分9014的良好限定的侧面。第三,诸如本文所述的或其他的非标准形状可允许使用者容易地识别患者导管4170的哪个端部可以是与另一连接器(诸如RPT装置的出口)互补的连接器。
图6e示出了本发明技术的另一个实例,其中端口9032被包括在第一端9002中。端口9032可以用于感测在鼓风机下游和在鼓风机壳体外部的压力,诸如通过感测RPT装置下游的压力。端口9032可以与第二端9004流体连接以确定第二开口9018中的空气的压力。
在一种形式中,端口9032可以与第二开口9018的内部流体连通,诸如通过与密封部分9008的内部中的开口形成流体连接。密封部分9008的内部中的开口又可以与测压孔9036流体连通至第二开口9018。因此,第一端9002和第二端9004当彼此连接时可在它们之间形成两种流体连接。与在RPT装置中测量压力的情况相比,端口9032可以提供能够测量更靠近患者的压力的优点。由于内部流体流动中固有的压力损失以及从鼓风机到患者的整个空气路径中的可能泄漏,测量更接近患者的压力可以提供比远离患者进行的压力测量更精确的测量。
另外,本发明的布置允许第二端9004相对于第一端9002旋转,同时仍保持两种流体连接(即一种输送空气流,另一种测量压力)。这对于允许流体导管9006相对于外部部分9026旋转从而减小施加在流体导管和/或外部部分9026上的扭矩可能是有利的。此外,这种构造还可以允许使用者在保持两种流体连接的同时将第一端9002和第二端9004在多个旋转取向之一上彼此连接。
图6f示出了整合到RPT装置中的第一端9002,其中第二端9004是断开的。图6f示出了整合到RPT装置中的第一端9002,其中第二端9004是连接的。
尽管前面的描述一起概括地描述了连接器系统的两个半部,例如,第一端9002和第二端9004,但应当理解的是,任一半部的描述可以单独地考虑。
确保适当的面罩与膜CFV调节型通气口一起使用也可以是有利的。根据本技术的实例的面罩可以是专门设计为与上述CFV膜调节型通气相容的非通气面罩。该系统可以被设计为使得气流发生器也与通气适配器相容,这意味着气流发生器将被编程为与具有恒定通气流量的面罩系统一起工作。也就是说,每种面罩类型(鼻枕面罩和全脸面罩)都可以连接到相同的通气适配器,因此,通气适配器应当对于每种面罩类型允许足够的CO2冲洗。通常在全脸面罩中看到最低的CO2冲洗量,因为面罩死空间的体积增加。因此,通气适配器必须对全脸面罩允许足够的CO2冲洗(即最坏的情形)。因为本技术的系统(包括气流发生器、通气适配器和每种面罩类型)可以专门设计为一起工作,所以防止不相容的面罩连接到CFV连接器可能是有利的。
这样,连接机构可以被设置成使得在两个可移除地连接的部件之间形成密封通过连接机构实现。如前所述,鼻枕面罩可以连接到短管连接器,然后连接到通气适配器。相反,全脸面罩可以直接连接到通气适配器9100。在另一个实例中,HME可以包括单独的可移除壳体,其可以从通气适配器拆卸。但是,为了减小整体尺寸,可以将HME与CFV单元一起并入通气适配器中,其中HME滑入与CFV相同的壳体中。这样的设计意味着当HME被移除时,通气适配器9100的CFV壳体中可能存在未使用的空的空间。
在根据本技术的全脸型式面罩中,短管连接器端部可以被形成为全脸面罩的入口。也就是说,相同的波纹管接合表面被设计为面罩壳体的一部分,其可以形成面罩充气室的一部分。
波纹管密封膜可以被构造为在压力下移动,使得膜朝向相对连接器上的密封表面移动。压力支持的密封可能意味着CFV单元与连接器之间的密封在高压下保持稳定。
波纹管密封件可以允许CFV单元与连接器之间形成密封而伴随着这两个部件之间的最小摩擦,这允许旋轴连接。例如,在部件之间使用干涉配合、唇形密封件、垫圈配置或其他形式的压缩密封件的密封可能不允许部件之间足够容易的移动,使得部件可以旋转,同时保持牢固的密封。
5.4.5示例性通气适配器
通气适配器9100及其部件的实例示出在图7A-14D中。根据本技术的这个实例的通气适配器9100可以包括导管连接器9110、通气壳体9120、通气扩散器盖9130、隔9140、CFV环9150、通气壳体连接器9160、热湿交换器(HME)夹片9170、HME壳体9180、波纹管密封件9190和通气适配器连接器9200。
通气壳体9120可以包括具有突出部9122的端部9121以在通气适配器端部9112处将通气壳体9120连接到导管连接器9110。端部9121可限定通气壳体9120的中心孔口,通过该中心孔口将加压气体流提供至患者。通气壳体9120可以包括外部通气孔9125和内部通气孔9126,它们限定用于从RPT系统排放加压气体的通道,即,气体可以从内部通气孔9126通过所述通路排放到外部通气孔9125,并排出到大气。通气壳体9120还可以包括经由支撑件9128接合到唇缘9124的突片9123,以将通气壳体9120可释放地附接到通气壳体连接器9160和通气适配器连接器9200。患者可以致动突片9123以压下支撑件9128使得唇缘9124与通气壳体连接器9160和通气适配器连接器9200脱离。当附接时,唇缘9124允许通气壳体9120在保持连接的同时相对于通气适配器连接器9200旋转。通气壳体9120也可以是肩部9127,以装配到通气壳体连接器9160的对应凹口9164中。通气壳体9120还可以包括凹口9129以容纳对应的波纹管密封件连接器9191,该波纹管密封件连接器9191将波纹管密封件9190附接到通气壳体9120以在组装时将通气适配器9100的内部抵靠通气适配器连接器9200密封。
通气壳体连接器9160可以包括形成容座9163的第一杆9161和第二杆9162,该容座9163接收通气壳体9120的对应唇缘9124以将通气壳体连接器9160附连到通气壳体9120。如上所述,9164还接收通气壳体9120的肩部9127。通气壳体连接器9160还可以包括弯曲的外表面9165。
波纹管密封件9190可以是类似于上文关于图6A-6H所述的特征的波纹管密封件。波纹管密封件9190可具有带波纹管密封件连接器9191的肩部表面9194,以将波纹管密封件9190附接到通气壳体9120的凹口9129。波纹管密封件9190还可具有内表面9193,在组装时其与加压气体接触并且向外推动,使得外表面9192抵靠通气适配器连接器9200形成密封。
通气适配器连接器9200可以具有孔口9201,在治疗期间加压气体通过其从通气适配器9100通过至患者。另外,呼出气体可以经由孔口9201排放到通气适配器9100中。通气适配器连接器9200可以在孔口9201处经由另一管(未示出)连接到患者接口。通气适配器连接器9200还可以具有边缘9202以连接到通气壳体9120的唇缘9124,以允许通气壳体9120连接到通气适配器连接器9200并且相对于通气适配器连接器9200旋转。应当理解的是,在本技术的另一种形式中,通气适配器连接器9200可以直接连接到患者接口,或者其可以与患者接口例如面罩外壳一体地形成。
如上所述,通气适配器9100还可包括HME夹片9170和HME壳体9180,以将HME材料保持在通气适配器9100内、位于内部通气孔9126与患者之间的位置中。HME材料(未示出)可以是螺旋或圆柱形结构,其被插入到HME壳体9180中并且通过HME夹片9170保持在其中。HME夹片9170可以具有从中心轴9172延伸的一对臂9171。中心轴9172可以延伸穿过HME材料的中心,以将轴端部9173固定到悬挂在HME壳体9180的横向构件9182上的接收器9183中,以将HME材料固定在HME壳体9180内部。HME壳体9180还可包括在外壁9184中的一对狭槽9181,其对应于臂9171并接收臂端部9174,使得当组装时HME夹片9170不相对于HME壳体9180旋转。因此,HME材料将被固定在臂9171与横向构件9182之间。外壁9184可以包括多个切口9185。
导管连接器9110可包括通气适配器端部9112和导管端部9111。如上所述,通气适配器端部9112可连接到通气壳体9120并且导管端部可连接到一导管(未示出),该导管的另一端连接到RPT装置以接收加压气体流。导管连接器9110还可以包括反窒息阀(AAV)开口9113。
通气适配器9100及其部件的另一个实例示出在图15A-15F中。这个实例包括与上文图7A-14D中示出的实例类似的可能性特征。在该实例中,通气适配器连接器9200包括边缘9203,其连接到通气壳体9120的突片9123以将通气适配器连接器9200连接到通气壳体9120。另外,该实例示出了可以安装在导管连接器9110中的反窒息阀(AAV)9135。导管连接器9110还可以具有环9115以连接到导管(未示出)。另外,在该实例中,可以看到波纹管密封件9190附接到通气壳体连接器9160。通气壳体连接器9160还具有脊部以允许通过突片9123附接到通气壳体9120。此外,示出了HME材料9145和扩散器9146的实例。
通气适配器9100及其部件的另一个实例示出在图21A-21F中描绘出。该实例包括与上文图7A-14D和图15A-15F中示出的实例类似的可能性特征。在该实例中,HME壳体9180并未完全容纳在通气适配器9100的内部。相反,其部分地暴露,使得它形成将通气壳体9120连接到通气适配器连接器9200的结构的一部分。
通气适配器9100及其部件的另一个实例示出在图22中。该实例包括与上文图7A-14D和图15A-15F中示出的实例类似的可能性特征。图22还包括阀瓣保持结构9141,该阀瓣保持结构9141可以在一侧附接到HME夹片9170并且在另一侧邻接阀瓣9140以将阀瓣9140相对于通气壳体9120保持在操作位置中。
通气适配器9100及其部件的另一个实例示出在图24A-24B中。该实例包括与上文图7A-14D和图15A-15F中示出的实例类似的可能性特征。
图23描绘了通气适配器9100可以附接到不同的患者接口的方法的图。在鼻衬垫患者接口3000A或鼻枕患者接口3000B的情况下,通气适配器9100可以通过短管9210接合到任一患者接口。短管9210的一端可以接合到患者接口3000A、3000B,并且另一端可以接合到上述的通气适配器连接器9200。可替代地,在全脸患者接口3000C的情况下,通气适配器9100不包括通气适配器连接器9200,并且通气适配器9100直接连接到全脸患者接口3000C,使得不提供短管9210。
图33A至33I描绘了根据本技术的一个实例的通气适配器9100的另一个实例。如图35所示,该通气适配器9100可以连接到患者接口3000,以例如提供其部件的功能。
通气适配器包括弯管组件9220,以例如经由充气室3200上的连接端口3600提供与患者接口3000的流体连接。弯管组件9220的这个实例包括弯管框架9222和弯管重叠模塑件9224。弯管组件9220可以在连接端口处提供与充气室3200的可释放连接。弯管框架9222可以包括可弹性变形以用于可释放连接的突片,并且弯管重叠模塑件9224可以在弯管框架9222中的开口周围提供不透流体的密封并且为弯管框架9222增加弹性。弯管组件9220也可以相对于充气室3200旋转以减小来自通气适配器9100和空气回路4170的其他部件的管阻力的影响。弯管组件9220还可以可移除地连接到患者接口3000并且可以能够相对于患者接口3000旋转。
通气适配器9100还可以包括短管组件9210。短管组件9210可以将通气适配器9110的其他部件,例如,通气壳体9320和通气芯结构9300从与充气室3200连接的弯管组件9220解耦。通过以这种方式将通气转接器9110的其他部件解耦,可以减少必须经由患者接口3000直接携带在患者头部上的重量,这又为患者提供了更轻松和更舒适的体验。短管组件9210可以包括管9212,其可以由一个或多个螺旋线圈组成。短管组件9210可以包括管-弯管连接器9216以提供与弯管组件9220的连接。管-弯管连接器9216与弯管组件9220之间的连接可以包括搭扣配合。管-弯管连接器9216与弯管组件9220之间的连接可以是永久性的–换句话说,连接可以是只有损坏部件的情况下才能分开。短管组件9210可以包括管-壳体连接器9214以提供与排气壳体连接器9160的连接。管-壳体连接器9214与通气壳体连接器9160之间的连接可以包括搭扣配合。管-壳体连接器9214与通气壳体连接器9160之间的连接可以是永久性的-换句话说,连接可以是只有损坏部件的情况下才能分开。
通气适配器9100可包括通气壳体连接器9160以将短管组件9210与通气壳体9320接合。如上所述,通气壳体连接器9160可通过管-壳体连接器9214接合到短管组件9210,该接合可以是搭扣式并且可以是永久性的。通气壳体连接器9160还可以包括卡口连接器9166,以有利于与通气壳体9320或热湿交换器(HME)壳体9400的可释放卡口式连接,诸如图38A至39C中所示的那些。因此,与HME壳体9400相关联的HME可以是任选的,并且因此未示出在图33A至33F中。卡口连接器9166可以是凸的或凹的。另外,使通气壳体9320可移除地连接到排通气壳体连接器9160允许通气部件移除和拆卸以进行清洁。
HME壳体9400还可以至少部分地封闭在通气适配器9100内。图33G至33I示出了图33A至33F的通气适配器9100的示例,其中HME壳体9400封装在其中。图33G的截面图和图33I的分解图中所示的示例包括图38A至38C的HME壳体9400。在图33H的截面图中描绘的示例包括图39A至39C的HME壳体9400。图33G至33I所示的示例省略了HME材料9145,使得通气适配器9100和HME壳体9400的特征在附图中不被阻碍。然而,应当理解,当通气适配器9100用于治疗时,HME材料9145可以包括在其中。图33F示出了没有HME壳体9400的通气适配器9100,图33G和33H示出了具有HME壳体9400的通气适配器9100——应当理解,通气壳体连接器9160和通气壳体9320以如上所述的相同方式连接,而不管HME壳体9400是否存在。
HME壳体9400在这些示例中示出为安装在空腔9167内,空腔9167至少部分地由通气壳体连接器9160和/或通气壳体9320限定。当通气壳体连接器9160和通气壳体9320连接在一起时,形成空腔9167。可替代地,通气壳体连接器9160或通气壳体9320可以包括基本上所有的空腔9167。如果没有提供HME壳体9400,则空腔9167可以是空的,如图33F所示。通气壳体9320和通气壳体连接器9160的形状和尺寸可以形成为使得HME壳体9400的外表面与通气壳体9320和通气壳体连接器9160的内表面直接接触或邻近。当HME壳体9400安装在其中时,HME壳体9400可以占据基本上所有的空腔9167。
通气壳体9320或通气壳体连接器9160还可包括便于与HME壳体9400的相应结构可移除连接的结构。例如,通气壳体9320的内部还可以包括围绕通气壳体9320的全部或部分内周的环形唇缘9326。环形唇缘9326可以包括至少一个保持突起9328以将HME壳体9400可移除地连接到通气壳体9320。图34C示出了具有四个保持突起9328的通气壳体9320的示例。保持突起9328也围绕图34C中的环形唇缘9326大致均匀地间隔开。HME壳体9400还可以包括围绕大气侧HME壳体部分9404的外周的环形凹陷部9405,该环形凹陷部9405可移除地接收保持突起9328。环形凹陷部9405可以围绕大气侧HME壳体部分9404的外周是连续的,这允许HME壳体9400附接到通气壳体9320而不考虑部件的相对定向。
环形凹陷部9405和保持突起9328之间的可移除连接可以是搭扣配合或摩擦配合。环形凹陷部9405与保持突起9328之间的可移除连接可充分地固定(例如由于摩擦)以防止HME壳体9400与通气壳体9320之间的相对旋转,同时允许患者或临床医生手动地分离部件以用于更换和/或清洁。
在HME壳体9400的外周中还设想了一种替代的布置,该布置包括凸起,这些凸起可以可移除地由围绕通气壳体9320的内周的凹陷部接纳。还可以设想,HME壳体9400和通气适配器9100之间的可移除连接接口可以产生在患者侧HME壳体部分9402和通气壳体连接器9160之间,而不是大气侧HME壳体部分9404和通气壳体9320之间。代替环形凹陷部9405和保持突起9328,还可以设想HME壳体9400和通气适配器9100可以各自具有螺纹以提供可移除的螺纹连接。在另一替代方案中,HME壳体9400可以用卡口连接连接到通气壳体连接器9160或通气壳体9320。
可替代地,HME壳体9400可以通过夹设在通气壳体连接器9160与通气壳体9320之间而由通气适配器9100保持。HME壳体9400和通气适配器9100之间可以没有正连接,并且HME壳体9400可以仅通过由通气壳体连接器9160和通气壳体9320封闭来保持。
图34A至34G示出了通气壳体9320、阀瓣或膜9140、通气芯结构9300、扩散构件9146、扩散器保持环9148和通气扩散器盖9330的实例。这些部件可以组装成子组件,如图34A至34G中所示,并且接合至通气壳体连接器9160以供使用。图34A至34G中描绘的子组件的部件可以经由永久性搭扣配合而不可分离,或者这些部件可能由使用者分离。在不可分离的情况下,搭扣配合可以是永久性的,使得部件只有在损坏它们的情况下才能分开。
通气壳体9320还可以包括卡口连接器9322以相应地与通气壳体连接器9160的卡口连接器9166连接,以将通气壳体9320可移除地连接到通气壳体连接器9160。通气口9320壳体还可以包括膜保持器9324以在组装时将膜9140保持为靠在通气芯结构9300上。膜保持器9324可以包括开放的、径向的且笼状的结构以允许通气流行进通过膜保持器9324以通过通气芯结构9300排出。膜保持器9324也可以在其中心开放以允许治疗流从RPT装置4000一直传递至患者。
阀瓣或膜9140可被定位在膜保持器9324与通气芯结构9300之间。膜9140可以保持在这两个结构之间的位置中,但也可以其他方式在通气适配器9100内通过压力自由地变形。膜9140可以类似于以上公开的膜9140的其他实例起作用。
通气芯结构9300可以包括入口9301以允许由RPT装置4000产生的气体流通过通气适配器9100并且一直到患者用于治疗。通气芯结构9306可以包括通气芯延伸部9306,通过该通气芯延伸部9306可以限定入口9301。通气芯延伸部9306可以轴向延伸并且可以包括空气回路连接器9302以将通气芯9300连接到空气回路4170。如可以看出的,通气芯延伸部9306的形状和尺寸经设计成延伸穿过扩散器保持环9148、扩散器9146和通气扩散器盖9330以在通气适配器9100被组装时对准这些部件。通气芯结构9300还可以包括在对准结构9312上的夹片,这些夹片9304连接到通气扩散器盖9330的连接表面9334。夹片9304可以通过搭扣配合连接到连接表面9334,以允许通气扩散器盖9330被拆卸移除,以允许清洁和/或更换通气适配器部件9100,诸如扩散器9146。对准结构9312还可以借助于对应的形状来有利于通气芯结构9300与扩散器9146和通气扩散器盖9330的轴向对准。
通气芯结构9300还可以包括多个外孔口9308和多个内孔口9310。多个内孔口9310可被构造为使得在使用中通过内孔口9310至大气的通气流可以受到膜9140的阻碍或限制。多个外孔口9308可被构造为使得在使用中通过外孔口9308至大气的通气流可以不受到膜9140的阻碍或限制。然而,膜9140也可以被构造为使得它不会在至少在典型的治疗压力范围(例如在约6cm H2O与约20cm H2O之间)内的任何压力下完全堵塞内孔口9310。换句话说,通气流可以在典型的治疗压力范围内的任何压力下通过内孔口9310和外孔口9308两者排放,同时通气适配器9110内的压力使膜9140变形以改变行进通过外孔口9308和内孔口9310的通气流量以保持恒定的通气流量,如上所述。
扩散器9146可以包括芯延伸部9306可穿过的扩散器开口9147。扩散器9146可以包括与上述扩散器类似的特征。
扩散器9146可以通过扩散器保持环9148和通气扩散器盖9330而相对于通气流保持在内孔口9310和外孔口9308的下游位置。扩散器保持环9148可以固定到通气扩散器盖9330,例如通过搭扣配合以保持扩散器9146。扩散器保持环9148可包括径向扩散器保持器9149以将扩散器9146保持为靠在通气扩散器盖9330上。扩散器保持环9148和径向扩散器保持器9149可限定通气壳体9320周围的后侧通气出口9342。离开通气芯结构9300的通气流可通过扩散器9148并通过后侧通气出口9340出来。通气扩散器盖9332可以包括围绕通气扩散器盖9330径向间隔开的一系列盖间隔件9332,以限定前侧通气出口9342。离开通气芯结构9300的通气流可通过扩散器9148并通过前侧通气出口9342出来。
以上公开且在图33A至34G中的示例性通气适配器9100被示出为连接到图35中的患者接口3000。在该实例中排除弯管组件9220,因为充气室3200包括连接端口3600,该连接端口3600是成角度的以在使用中相对于患者指向下位方向,从而引导通气适配器9100远离患者的头部。另外,短管组件9210可以在连接端口3600处永久性地连接到充气室3200。
图37A至37E描绘了根据本技术的通气适配器9100的另一个实例。通气适配器9100可以包括充气室连接器9700以将通气适配器9100直接连接到充气室3200的连接端口3600和/或其护罩3305(参见图41)以提供来自通气适配器9100的加压气体流与充气室3200的流体连接。
通气适配器9100还可以包括挡板9600。挡板9600可以将从RPT装置4000进入的加压气体流与经由通气壳体9120的外孔口9308和内孔口9310离开的流出通气口流分开。挡板9600可以定位在充气室连接器9700的内部。当连接形成同心圆时,挡板9600和充气室连接器9700可以对准。
通气适配器9100还可以包括唇形密封件9500,其配合在充气室连接器9700的外周边周围。唇形密封件9500可以与充气室3200的连接端口3600和/或其护罩3305的内部周边的密封以提供气动密封,同时允许通气适配器9100相对于患者接口3000旋转。
根据上文所述实施例,例如图33A至34G中画出的实例,通气适配器9140还可以包括阀瓣或膜9140以调控通气壳体9120的内孔口9310和外孔口9308的通气流量。
通气壳体9120可以包括内孔口9310和外孔口9308,并且这些孔口可允许通气流从通气适配器9100离开至大气,如上面的实例,诸如在图33A至34G中的实例所述。
通气壳体9120还可以包括突片9123和唇缘9124,以提供与充气室3200的连接端口3600和/或其护罩3305的可释放且可旋转的连接。突片9123可以被手动压下以将唇缘9123从充气室3200的连接端口3600和/或其护罩3305的对应环形突出部(未示出)释放。当连接时,唇缘9124允许通气适配器9100在可旋转的同时保持与充气室3200的连接端口3600和/或其护罩3305的连接,以减小管阻力的影响。
通气壳体9120可以连接到导管连接器9110,它又可将通气适配器9100连接到空气回路。导管连接器9110可以是弯管形式。导管连接器9110可以具有连接到空气回路4170的导管端部9111和连接到通气部壳体9120的通气适配器端部9112。导管连接器9110的通气适配器端部9112与通气壳体9120之间的连接可以包括搭扣配合,可以是永久性的,使得连接只有在损坏至少一个部件的情况下才能分开,和/或可以是不可旋转的,以防止导管连接器9110接触突片9123。导管连接器9110还可以包括一个或多个用于AAV 9135的反窒息阀(AAV)开口9113。
通气适配器9100还可以包括空气回路连接器9116,其可以被附接到导管接头9110的导管端部9111。空气回路连接器9116可以包括卡口式连接器9117以对应地连接到图36A至36C的示例性空气回路4170的连接器4175。空气回路连接器9116与空气回路4170之间的连接可以是可释放的。
图37A至37E中描绘的通气适配器可以不包括热湿交换器(HME)材料9145。定位在通气流路径内的热湿交换器材料9145的缺失可以使通气流阻抗最小化,从而使充气室3200内累积的CO2最小化。所描绘的通气适配器9100可以例如适合与如图41所描绘的全脸患者接口一起使用。
图37A至37E中描绘的通气适配器9100可以形成可以可移除地连接到患者接口3000的弯管组件,例如,如图41所示,并且可以能够相对于患者接口旋转。
图40和41示出了接合到患者接口3000的通气适配器9100的进一步实例。
图40描绘了具有密封形成结构3100的患者接口3000,该密封形成结构3100仅在使用中在患者的鼻子(即,鼻面罩)周围形成密封。示出的通气适配器9100接合到覆盖充气室3200的一部分的护罩3305。在该实例中,通气适配器9100特征结合在直接且可旋转地附接到护罩3305的弯管中,以提供与充气室3200的流体连接。然而,应当理解的是,图33A至33I的通气适配器可以附接到护罩3305以经由弯管组件9220与充气室3200形成流体连接。护罩3305具有在铰链3307处接合至护罩3305的刚性臂3301。侧臂3301可以包括上附接点3302和下附接点3304以附接定位和稳定结构3300的绑带。上附接点3302可以形成环,上绑带可以穿过该环,并且下部连接点3304可以接收夹片3306,夹片3306又接收下绑带。
图40描绘了示例性患者接口3000,其可以包括密封形成结构3100以在使用中在患者的鼻子和嘴上形成密封。通气适配器9100,诸如37A至37E中描绘的实例可连接到护罩3305以提供与充气室3200的流体连接。护罩3305可接合至刚性臂3301,该刚性臂3301可具有上附接点3302以附接定位和稳定结构3300的绑带。护罩3305可以连接到与刚性臂3301分开的下绑带连接器3303,以将定位和稳定结构3300的绑带附接在下连接点3304处。上附接点3302可以形成环,上绑带可以穿过该环,并且下部连接点3304可以接收夹片3306,夹片3306又接收下绑带。
5.5RPT装置
根据本技术一个方面的RPT装置4000包括机械和气动部件4100、电气部件4200,并经配置以执行一个或多个算法4300。RPT装置可具有外部壳体4010,其以两部分构成:上部4012和下部4014。此外,外部壳体4010可包括一个或多个面板4015。RPT装置4000包括底盘4016,其对RPT装置4000的一个或多个内部部件进行支撑。RPT装置4000可包括手柄4018。
RPT装置4000的气动路径可包括一个或多个空气路径物件和消音器4120,例如入口空气过滤器4112、入口消音器4122、能够正压供给空气的压力发生器4140(例如,鼓风机4142)、出口消音器4124、以及一个或多个转换器4270,诸如压力传感器和流量传感器。
一个或多个空气路径物件可设置于可移除的单独结构内,可移除的单独结构将称为气动块4020。气动块4020可设置于外部壳体4010内。在一种形式中,气动块4020由底盘4016支撑,或构成其一部分。
RPT装置4000可具有电源4210、一个或多个输入装置4220、中央控制器4230、治疗装置控制器4240、压力发生器4140、一个或多个保护电路4250、存储器4260、转换器4270、数据通信接口4280以及一个或多个输出装置4290。电气部件4200可安装在单个印刷电路板组件(PCBA)4202上。在一种替代形式中,RPT装置4000可包括多于一个PCBA 4202。
5.5.1RPT装置的机械&气动部件
RPT装置可在整体单元中包括一个或多个以下部件。在一种替代形式中,一个或多个以下部件可被设置为各自分离的单元。
5.5.1.1空气过滤器
根据本技术的一种形式的RPT装置可包括一个空气过滤器4110,或多个空气过滤器4110。
在一种形式中,入口空气过滤器4112被定位在压力发生器4140上游的气动路径的起点处。参见图4B。
在一种形式中,出口空气过滤器4114,例如抗菌过滤器被定位在气动块4020的出口与患者接口3000之间。参见图4B。
5.5.1.2消音器
在本技术的一种形式中,入口消音器4122被定位在压力发生器4140上游的气动路径中。参见图4B。
在本技术的一种形式中,出口消音器4124被定位在压力发生器4140与患者接口3000之间的气动路径中。参见图4B。
5.5.1.3压力发生器
在本技术的一种形式中,用于产生正压下的空气流或空气供给的压力发生器4140为可控鼓风机4142。例如,鼓风机4142可包括无刷DC电动机4144,其具有容纳在蜗壳中的一个或多个叶轮。鼓风机可以例如以高达约120升/分钟的速率,并以约4cm H2O至约20cm H2O范围内的正压或高达约30cm H2O的其他形式输送空气供给。鼓风机可如以下专利或专利申请中任何一个所述,这些专利或专利申请以引用的方式整体并入本文:美国专利号7,866,944;美国专利号8,638,014;美国专利号8,636,479;和PCT专利申请号WO 2013/020167。
压力发生器4140在治疗装置控制器4240的控制下。
换言之,压力发生器4140可为活塞驱动泵、与高压源连接的压力调节器(例如,压缩空气贮存器)或波纹管。
5.5.1.4转换器
转换器可以在RPT装置内部,或RPT装置外部。外部转换器可被定位于例如空气回路例如患者接口上或构成其一部分。外部转换器可以是非接触传感器的形式,诸如传送或传递数据至RPT装置的多普勒雷达运动传感器。
在本技术的一种形式中,一个或多个转换器4270可以被定位于压力发生器4140的上游和/或下游。一个或多个转换器4270可被构造和布置为测量在气动路径中在该点处的诸如流量、压力或温度等特性。
在本技术的一种形式中,一个或多个转换器4270可被定位在患者接口3000的近侧。
在一种形式中,可诸如通过低通滤波、高通滤波或带通滤波对来自转换器4270的信号进行滤波。
5.5.1.4.1流量传感器
根据本技术的流量传感器可基于压差转换器,例如来自SENSIRION的SDP600系列压差转换器。
在一种形式中,通过中央控制器4230接收来自流量传感器的表示流量诸如总流量Qt的信号。
5.5.1.4.2压力传感器
根据本技术的压力传感器被定位成与气动路径流体连通。合适的压力转换器的实例是来自HONEYWELL ASDX系列的传感器。替代性合适的压力转换器是来自GENERALELECTRIC的NPA系列的传感器。
在一种形式中,可以通过中央控制器4230接收来自压力传感器的信号。
5.5.1.4.3电动机转速转换器
在本技术的一种形式中,电动机转速转换器用于确定电动机4144和/或鼓风机4142的转动速度。可将来自电动机转速转换器的电动机转速信号提供给治疗装置控制器4240。电动机转速转换器可以是例如速度传感器,诸如霍尔效应传感器。
5.5.1.5防溢回阀
在本技术的一种形式中,防溢回阀4160被定位在湿化器5000与气动块4020之间。防溢回阀4160被构造和布置为降低水从湿化器5000向上游流动到例如电动机4144的风险。
5.5.1.6空气回路
根据本技术一个方面的空气回路4170为导管或管子,其在使用时被构造和布置为允许空气流在两个部件诸如气动块4020与患者接口3000之间行进。
具体地,空气回路4170可与气动块的出口和患者接口流体连接。空气回路可称为空气输送管。在一些情况下,可具有用于吸气和呼气回路的独立分支。在其他情况下,使用单个分支。
在一些形式中,空气回路4170可包括一个或多个加热元件,所述加热元件被配置为加热空气回路中的空气,例如以维持或升高空气的温度。换句话说,空气回路4170可以是加热的空气回路4171。加热元件可以是加热丝回路的形式,并且可包括一个或多个转换器,诸如温度传感器。在一种形式中,可绕空气回路4170的轴螺旋缠绕加热丝回路。加热元件可与诸如中央控制器4230的控制器相连通。在美国专利申请号US/2011/0023874中描述了包括加热丝回路的空气回路4170的一个实例,该专利申请以引用的方式整体并入本文。
图36A至图36C描绘了根据本技术的一个实例的空气回路4170的实例。空气回路4170可以包括管4172,其由一个或多个螺旋线圈组成。空气回路4173可以包括在一端处的RPT装置连接器4173,其被配置为连接到RPT装置4000以接收加压气体流。在另一端,空气回路4170可以包括通气适配器连接器4174,其可以连接到通气适配器9100,诸如在图33A至34G中公开的实例中。通气适配器连接器4174可以包括连接器4175以与通气适配器9300的对应空气回路连接器9302接合。连接器4175可以呈对应于空气回路连接器9302的凹形卡口连接器的形式。通气适配器连接器4174还可以包括握持凹陷部4176,以允许患者握持通气适配器连接器4174旋转空气回路4170来连接到通气适配器9100或与通气适配器9100断开。通气适配器连接器4174还可以包括密封件4177以在通气适配器连接器4174与将通气适配器连接器4174连接到管4172的管连接器4178之间形成气动密封。
5.5.1.7氧气输送
在本技术的一种形式中,补充氧气4180被输送至气动路径中的一个或多个点(诸如气动块4020的上游)处、空气回路4170和/或患者接口3000。
5.5.2RPT装置电气部件
5.5.2.1电源
电源4210可被定位在RPT装置4000的外部壳体4010的内部或外部。
在本技术的一种形式中,电源4210仅向RPT装置4000提供电力。在本发明技术的另一种形式中,电源4210向RPT装置4000和湿化器5000两者提供电力。
5.5.2.2输入装置
在本技术的一种形式中,RPT装置4000包括形式为按钮、开关或拨盘的一个或多个输入装置4220,以允许人员与装置进行交互。按钮、开关或拨盘可以为经由触摸屏幕访问的物理装置或者软件装置。在一种形式中,按钮、开关或拨盘可以物理连接到外部壳体4010,或者在另一种形式中,可以与接收器无线通信,该接收器与中央控制器4230电连接。
在一种形式中,输入装置4220可以被构造或布置为允许人员选择值和/或菜单选项。
5.5.2.3中央控制器
在本技术的一种形式中,中央控制器4230为一个或多个适于控制RPT装置4000的处理器。
合适的处理器可包括x86因特尔处理器、基于来自ARM Holdings的
Figure BDA0003648407510000551
处理器的处理器,诸如来自ST MICROELECTRONIC的STM32系列微控制器。在本技术的某些替代性形式中,32位RISC CPU诸如来自ST MICROELECTRONICS的STR9系列微控制器,或16位元RISC CPU诸如来自由TEXAS INSTRUMENTS制造的MSP430系列微控制器的处理器可同样适用。
在本技术的一种形式中,中央控制器4230为专用电子回路。
在一种形式中,中央控制器4230为专用集成电路。在另一种形式中,中央控制器4230包括分立电子部件。
中央控制器4230可被配置为接收来自一个或多个转换器4270、一个或多个输入装置4220以及湿化器5000的输入信号。
中央控制器4230可被配置为向一个或多个输出装置4290、治疗装置控制器4240、数据通信接口4280和湿化器5000提供输出信号。
在本技术的一些形式中,中央控制器4230被配置为实施本文所述的一种或多种方法,诸如一种或多种表示为计算机程序的算法4300,这些计算机程序存储在非暂时性计算机可读存储介质诸如存储器4260中。在本技术的一些形式中,中央控制器4230可与RPT装置4000集成。然而,在本技术的一些形式中,一些方法可通过远程定位装置来执行。例如,远程定位装置可通过对比诸如来自本文所述的任何传感器的存储数据进行分析来确定呼吸机的控制设定值或检测呼吸相关事件。
5.5.2.4时钟
RPT装置4000可包括连接到中央控制器4230的时钟。
5.5.2.5治疗装置控制器
在本技术的一种形式中,治疗装置4350可以包括治疗装置控制器4240,其为治疗控制模块4330,其构成由中央控制器4230执行的算法4300的一部分。
在本技术的一种形式中,治疗装置控制器4240为专用电动机控制集成电路。例如,在一种形式中,使用由ONSEMI制造的MC33035无刷直流DC电动机控制器。
5.5.2.6保护电路
根据本技术的一个或多个保护电路4250可包括电气保护电路、温度和/或压力安全电路。
5.5.2.7存储器
根据本技术的一种形式,RPT装置4000包括存储器4260,例如非易失性存储器。在一些形式中,存储器4260可包括电池供电的静态RAM。在一些形式中,存储器4260可包括易失性RAM。
存储器4260可被定位于PCBA 4202上。存储器4260可以是EEPROM或NAND闪存的形式。
另外地或可替代地,RPT装置4000包括可移除形式的存储器4260,例如根据安全数字(SD)标准制成的存储卡。
在本技术的一种形式中,存储器4260用作非暂时性计算机可读存储介质,其上存储表示本文所述的一种或多种方法的计算机程序指令,诸如一个或多个算法4300。
5.5.2.8数据通信系统
在本技术的一种形式中,提供了数据通信接口4280,并且其连接到中央控制器4230。数据通信接口4280可连接到远程外部通信网络和/或本地外部通信网络。远程外部通信网络可连接到远程外部装置。本地外部通信网络可连接到本地外部装置。
在一种形式中,数据通信接口4280为中央控制器4230的一部分。在另一种形式中,数据通信接口4280与中央控制器4230分离,并可包括集成电路或处理器。
在一种形式中,远程外部通信网络为因特网。数据通信接口4280可使用有线通信(例如,经由以太网或光纤)或无线协议(例如,CDMA、GSM、LTE)连接到因特网。
在一种形式中,本地外部通信网络利用一种或多种通信标准,诸如蓝牙或消费者红外协议。
在一种形式中,远程外部装置可以为一台或多台计算机,例如网络计算机的群集。在一种形式中,远程外部装置可以为虚拟计算机,而非实体计算机。在任一情况下,此远程外部装置可以由适当授权人员(诸如临床医生)进行访问。
本地外部装置可以为个人计算机、移动电话、平板或远程控制装置。
5.5.2.9包括任选的显示器、警报器的输出装置
根据本技术的输出装置4290可以采取视觉、音频和触觉单元中的一种或多种的形式。视觉显示器可以是液晶显示器(LCD)或者发光二极管(LED)显示器。
5.5.2.9.1显示器驱动器
显示器驱动器接收作为输入的字符、符号或图像用于显示在显示器上,并将它们转换成使显示器显示那些字符、符号或图像的命令。
5.5.2.9.2显示器
显示器被配置为响应于从显示器驱动器接收的命令可视地显示字符、符号或图像。例如,显示器可为八段显示器,在这种情况下,显示器驱动器将每个字符或者符号(诸如数字“0”)转换成八个逻辑信号,所述逻辑信号指示这八个相应的节段是否将被激活以显示特定的字符或符号。
5.5.3RPT装置算法
5.5.3.1预处理模块
根据本技术的一种形式的预处理模块4310接收来自转换器4270(例如流量传感器或压力传感器)的信号作为输入,并执行一个或多个处理步骤以计算将被用作另一个模块(例如治疗引擎模块4320)的输入的一个或多个输出值。
在本技术的一种形式中,输出值包括界面或面罩压力Pm、呼吸流量Qr和泄漏流速Ql。
在本技术的各种形式中,预处理模块4310包括以下算法中的一个或多个:压力补偿4312、通气流量估计4314、泄漏流量估计4316和呼吸流量估计4318。
5.5.3.1.1压力补偿
在本技术的一种形式中,压力补偿算法4312接收指示在气动块出口近侧的气动路径中压力的信号作为输入。压力补偿算法4312估计通过空气回路4170的压降,并提供患者接口3000中估计的压力Pm作为输出。
5.5.3.1.2通气流量估计
在本技术的一种形式中,通气流量估计算法4314接收患者接口3000中估计的压力Pm作为输入,并估计来自患者接口3000中通气口3400的空气通气流量Qv。
5.5.3.1.3泄漏流量估计
在本技术的一种形式中,泄漏流量估计算法4316接收总流量Qt和排气流量Qv作为输入,并提供对泄漏流量Ql的估计值作为输出。在一种形式中,泄漏流量估计算法通过计算足够长以包括若干呼吸周期的时间段(例如约10秒)内总流量Qt与通气流量Qv之差的平均值来估计泄漏流量Ql。
在一种形式中,泄漏流量估计算法4316接收总流速Qt、通气流量Qv和患者接口3000中估计的压力Pm作为输入,并通过计算泄露传导率并将泄漏流量Ql确定为泄漏传导率和压力Pm的函数来提供泄漏流量Ql作为输出。泄漏传导率计算为等于总流量Qt与通气流量Qv之差的低通滤波非通气流量与压力Pm的低通滤波平方根的商,其中低通滤波器时间常数具有足够长以包括若干呼吸周期的值(例如约10秒)。泄漏流量Ql可被估计为泄漏传导率和压力Pm函数的乘积。
5.5.3.1.4呼吸流量估计
在本技术的一种形式中,呼吸流量估计算法4318接收总流量Qt、通气流量Qv和泄漏流速Ql作为输入,并通过从总流量Qt中减去通气流量Qv和泄漏流量Ql来估计至患者的空气呼吸流量Qr。
5.5.3.2治疗引擎模块
在本技术的一种形式中,治疗引擎模块4320接收患者接口3000中的压力Pm和至患者的空气呼吸流量Qr中的一个或多个作为输入,并且提供一个或多个治疗参数作为输出。
在本技术的一种形式中,治疗参数是治疗压力Pt。
在本技术的一种形式中,治疗参数是压力支持水平、基础压力和目标通气量中的一个或多个。
在各种形式中,治疗引擎模块4320包括以下算法中的一个或多个:相位确定4321、波形确定4322、通气量确定4323、吸气流量限制确定4324、呼吸暂停/呼吸不足确定4325、打鼾确定4326、气道开放性确定4327、目标通气量确定4328和治疗参数确定4329。
5.5.3.2.1相位确定
在本技术的一种形式中,RPT装置4000不确定相位。
在本技术的一种形式中,相位确定算法4321接收指示呼吸流量Qr的信号作为输入,并提供患者1000的当前呼吸周期的相位Φ作为输出。
在被称为离散相位确定的一些形式中,相位输出Φ是离散变量。离散相位确定的一个实施方式在检测到自发吸气和呼气开始时分别提供具有吸气或呼气值的双值相位输出Φ,例如分别表示为0和0.5转的值。进行“触发”和“循环”的RPT装置4000有效地执行离散相位确定,因为触发和循环点分别是从呼气到吸气以及从吸气到呼气的相位变化的时刻。在双值相位确定的一个实施方式中,当呼吸流速Qr具有超过正阈值的值时,相位输出Φ被确定为具有0的离散值(从而“触发”RPT装置4000),并且当呼吸流量Qr具有比负阈值更负的值时,相位输出Φ被确定为0.5次离散值(从而“循环”RPT装置4000)。
离散相位确定的另一种实施方式提供三值相位输出Φ,其具有吸气、吸气暂停中点和呼气之一的值。
在被称为连续相位确定的其他形式中,相位输出Φ是连续值,例如从0到1转或0到2π弧度变化。执行连续相位确定的RPT装置4000可以分别在连续相位达到0和0.5转时触发和循环。在连续相位确定的一个实施方式中,使用呼吸流量Qr的模糊逻辑分析来确定相位Φ的连续值。在该实施方式中确定的相位的连续值通常被称为“模糊相位”。在模糊相位确定算法4321的一个实施方式中,将以下规则应用于呼吸流量Qr:
1.如果呼吸流量为零并且快速增加,则相位为0转。
2.如果呼吸流量大量为正并且稳定,则相位为0.25转。
3.如果呼吸流量为零并且快速下降,则相位为0.5转。
4.如果呼吸流量大量为负并且稳定,则相位为0.75转。
5.如果呼吸流量为零且稳定并且呼吸流量的5秒低通滤波绝对值大,则相位为0.9转。
6.如果呼吸流量为正并且为呼气阶段,则相位为0转。
7.如果呼吸流量为负并且为吸气阶段,则相位为0.5转。
8.如果呼吸流量的5秒低通滤波绝对值大,相位以等于患者呼吸速率的稳定速率增加,则低通滤波具有20秒的时间常数。
每个规则的输出可以表示为矢量,其相位是规则的结果并且其幅度是规则为真的模糊程度。呼吸流量“大”、“稳定”等的模糊程度用适当的隶属函数确定。然后,表示为矢量的规则的结果通过某些函数进行组合,诸如采取质心。在这样的组合中,规则可被等同地加权,或者不同地加权。
在连续相位确定的另一实施方式中,首先根据呼吸流量Qr估计吸气时间Ti和呼气时间Te。然后将相位Φ确定为从先前触发时刻起已经过的吸气时间Ti比例的一半,或0.5转加上自先前循环时刻起已经过的呼气时间Te的比例的一半(以较新的为准)。
5.5.3.2.2波形确定
在本技术的一个形式中,治疗参数确定算法4329在患者的整个呼吸周期中提供近似恒定的治疗压力。
在本技术的其他形式中,治疗参数确定算法4329控制压力发生器4140,以根据波形模板提供在整个患者呼吸周期内变化的治疗压力Pt。
在本技术的一种形式中,波形确定算法4322在相位确定算法4321提供的相位值Φ的域上提供值在[0,1]的范围内的波形模板∏(Φ)以供治疗参数确定算法4329使用。
在一种适用于离散或连续值相位的形式中,波形模板П(Φ)是方波模板,对于最多至并包括0.5转的相位值,其值为1,对于0.5转以上的相位值,其值为0。在一种适用于连续值相位的形式中,波形模板П(Φ)包括两个平滑弯曲的部分,即对于最多至0.5转的相位值为从0增加到1的平滑弯曲(例如,升余弦)上升,并且对于0.5转以上的相位值为从1到0的平滑弯曲(例如指数)衰减。在一种适用于连续值相位的形式中,波形模板П(Φ)基于方波,但是对于最多至显著小于0.5转的“上升时间”的相位值具有从0到1的平滑上升,并且对于0.5转之后的“下降时间”内的相位值平滑地从1下降到0。
在本技术的一些形式中,波形确定算法4322根据RPT装置的设定值从波形模板库中选择波形模板П(Φ)。库中的每个波形模板П(Φ)可以提供为值∏相对于相位值Φ的查找表。在其他形式中,波形确定算法4322使用可能由一个或多个参数(例如,指数曲线部分的时间常数)参数化的预定函数形式来计算“实时”波形模板Π(Φ)。函数形式的参数可以是预定的或取决于患者1000的当前状态。
在本技术的适用于吸气(Φ=0转)或呼气(Φ=0.5转)的离散双值相位的一些形式中,波形确定算法4322计算“实时”波形模板Π作为自最近触发时刻起测量的离散相位Φ和时间t两者的函数。在一种这样的形式中,波形确定算法4322如下计算两部分(吸气和呼气)中的波形模板Π(Φ,t):
Figure BDA0003648407510000601
其中Πi(t)和Πe(t)是波形模板Π(Φ,t)的吸气和呼气部分。在一种这样的形式中,波形模板的吸气部分∏i(t)是由上升时间参数化的从0到1的平滑上升,并且波形模板的呼气部分Πe(t)是由下降时间参数化的从1到0的平滑下降。
5.5.3.2.3通气量确定
在本技术的一种形式中,通气量确定算法4323接收呼吸流量Qr作为输入,并且确定指示当前患者通气量Vent的测量值。
在一些实施方式中,通气量确定算法4323确定通气量Vent的测量值,其是实际患者通气量的估计值。一种这样的实施方式是将呼吸流量Qr的绝对值的一半任选地由低通滤波器(诸如角频率为0.11Hz的二阶贝塞尔低通滤波器)滤波。
在其他实施方式中,通气量确定算法4323确定通气量Vent的测量值,其与实际患者通气量大致成比例。一种这样的实施方式估计在周期的吸气部分上的峰值呼吸流量Q峰值。这个和许多其他涉及取样呼吸流量Qr的程序产生与通气量大致成正比的测量值,前提条件是流量波形形状不会变化很大(在此,当时间和幅值正常的呼吸的流量波形相似时,两次呼吸的形状被认为是相似的)。一些简单的实例包括中值为正的呼吸流量、呼吸流量绝对值的中值和流量的标准偏差。使用正系数的,甚至一些同时使用正负系数的呼吸流量绝对值的任意顺序统计量的任意线性组合与通气量大致成比例。另一实例是吸气部分的中间K比例(按时间)的呼吸流量的平均值,其中0<K<1。如果流量形状保持恒定,则可存在任意数量与通气量精确地成比例的测量值。
5.5.3.2.4吸气流量限制确定
在本技术的一种形式中,中央控制器4230执行用于确定吸气流量限制程度的吸气流量限制确定算法4324。
在一种形式中,吸气流量限制确定算法4324接收呼吸流量信号Qr作为输入,并且提供呼吸的吸气部分表现出吸气流量限制程度的度量作为输出。
在本技术的一种形式中,每次呼吸的吸气部分通过零交点检测器识别。表示时间点的许多均匀间隔的点(例如,六十五个)通过内插器沿着每次呼吸的吸气流量-时间曲线内插。然后将通过点描述的曲线通过缩放器缩放以具有单位长度(持续时间/周期)和单位面积以去除改变的呼吸速率和深度的影响。然后将缩放的呼吸在比较器中与表示类似于图6A中所示的呼吸的吸气部分的正常无阻塞呼吸的预先存储的模板进行比较。如由测试元件确定的,来自该模板的在吸气期间的任何时间处由于咳嗽、叹气、吞咽和打嗝引起的偏离超过指定阈值(通常为1个缩放单位)的呼吸都被拒绝。对于未拒绝的数据,通过中央控制器4230针对在前的若干个吸气事件计算第一个这样的缩放点的移动平均值。在相同的吸气事件上对于第二个这样的点重复此举,依次类推。因此,例如,由中央控制器4230生成六十五个缩放数据点,并且这些数据点表示在前的若干个吸气事件例如三个事件的移动平均值。在下文中将(例如,六十五个)点的连续更新值的移动平均值称为“缩放流量”,命名为Qs(t)。可替代地,可以使用单个吸气事件而不是移动平均值。
根据缩放流量,可以计算与确定部分阻塞相关的两个形状因子。
形状因子1是中间(例如三十二)缩放流量点的平均值与平均总体(例如六十五)缩放流量点的比率。如果这个比率超过1,则呼吸将被视为正常。如果比率是1或更小,则呼吸将被视为是阻塞的。约1.17的比率被认为是部分阻塞呼吸和无阻塞呼吸之间的阈值,并且等同于将允许维持典型患者的充分氧合的阻塞程度。
形状因子2被计算为在中间(例如三十二)点上获取的与单位缩放流量的RMS偏差。约0.2个单位的RMS偏差被认为是正常的。零RMS偏差被认为是完全限流的呼吸。RMS偏差越接近零,呼吸将被视为流更受限制。
形状因子1和2可以用作替代方案或组合使用。在本技术的其他形式中,采样点数、呼吸次数和中间点数可以不同于上述那些。此外,阈值可以不同于所描述的那些。
5.5.3.2.5呼吸中止和呼吸不足确定
在本技术的一种形式中,中央控制器4230执行呼吸中止/呼吸不足确定算法4325来确定呼吸暂停和/或呼吸不足的存在。
呼吸暂停/呼吸不足确定算法4325接收呼吸流量信号Qr作为输入,并且提供指示已经检测到的呼吸暂停或呼吸不足的标记作为输出。
在一种形式中,当呼吸流量Qr的函数在预定时间段内降到低于流量阈值时,将可视为检测到呼吸暂停。该函数可以确定峰值流量、相对短期的平均流量或相对短期的平均流量和峰值流量(例如RMS流量)的中间流量。流量阈值可以是相对长期的流量的测量值。
在一种形式中,当呼吸流量Qr的函数在预定时间段内降到低于第二流量阈值时,将可视为检测到呼吸不足。该函数可以确定峰值流量、相对短期的平均流量或相对短期的平均流量和峰值流量(例如RMS流量)的中间流量。第二流量阈值可以是相对长期的流量的测量值。第二流量阈值大于用于检测呼吸中止的流量阈值。
5.5.3.2.6打鼾确定
在本技术的一种形式中,中央控制器4230执行用于确定打鼾程度的一种或多种打鼾确定算法4326。
在一种形式中,打鼾确定算法4326接收呼吸流量Qr的信号作为输入,并且提供打鼾存在程度的度量作为输出。
打鼾确定算法4326可以包括确定30-300HZ范围内的流量信号强度的步骤。此外,打鼾确定算法4326可以包括对呼吸流量Qr的信号进行滤波以降低背景噪声(例如,系统中来自鼓风机的空气流的声音)的步骤。
5.5.3.2.7气道开放性确定
在本技术的一种形式中,中央控制器4230执行用于确定气道开放性的一种或多种气道开放性确定算法4327。
在一种形式中,气道开放性确定算法4327接收呼吸流量信号Qr作为输入,并且确定信号在约0.75Hz和约3Hz的频率范围内的功率。在这个频率范围内出现峰值被认为是指示气道开放。没有峰值被认为是气道闭合的指示。
在一种形式中,寻求峰值所处的频率范围是处理压力Pt中的小的受迫振荡的频率。在一个实施方式中,受迫振荡频率为2Hz,幅值约为1cm H2O。
在一种形式中,气道开放性确定算法4327接收呼吸流量信号Qr作为输入,并且确定心原性信号的存在或不存在。没有心源性信号被认为是气道闭合的指示。
5.5.3.2.8目标通气量确定
在本技术的一种形式中,中央控制器4230将当前通气量Vent的测量值作为输入,并且执行一个或多个目标通气量确定算法4328以确定用于测量通气量的目标值Vtgt。
在本技术的一些形式中,没有目标通气量确定算法4328,并且目标值Vtgt被预先确定,例如通过在配置RPT装置4000期间的硬编码或者通过输入装置4220的手动输入。
在本技术的其他形式,诸如自适应伺服通气(ASV)中,目标通气量确定算法4328从指示患者的典型近期通气量的值Vtyp计算目标值Vtgt。
在自适应伺服通气的一些形式中,目标通气量Vtgt计算为典型近期通气量Vtyp的高比例但小于Vtyp。此类形式中的高比例可能在(80%,100%)、或(85%,95%)、或(87%,92%)的范围内。
在自适应伺服通气的其他形式中,目标通气量Vtgt计算为稍微大于典型近期通气量Vtyp的一数倍。
典型的近期通气量Vtyp是在一些预定时间量程内的多个时刻上的当前通气量Vent测量值围绕其分布趋于集群的值,即,当前通气量的测量值在近期历史上的集中趋势的量度。在目标通气量确定算法4328的一个实施方式中,近期历史是几分钟的数量级,但是在任何情况下都应该比潮式渐强和渐弱周期的时间量程更长。目标通气量确定算法4328可以使用多种已知的集中趋势量度来由当前通气量Vent的测量值确定典型的近期通气量Vtyp。一个这样的测量值是在当前通气量Vent的测量值上低通滤波器的输出,具有等于100秒的时间常数。
5.5.3.2.9治疗参数确定
在本技术的一些形式中,中央控制器4230执行一个或多个治疗参数确定算法4329,以使用治疗引擎模块4320中的一个或多个其他算法返回的值来确定一个或多个治疗参数。
在本技术的一种形式中,治疗参数是瞬时治疗压力Pt。在该形式的一个实施方式中,治疗参数确定算法4329使用下述方程确定治疗压力Pt
Pt=AΠ(Φ,t)+P0 (1)
其中:
·A是幅值,
·Π(Φ,t)是相位当前值Φ和时间t的波形模板值(处于0到1的范围),并且
·P0是基础压力。
如果波形确定算法4322提供波形模板Π(Φ,t)作为由相位索引的数值查找表,则治疗参数确定算法4329通过将最近的查找表条目定位到由相位确定算法4321返回的相位当前值Φ,或通过跨越相位当前值Φ的两个条目之间的插值来应用方程(1)。
根据选择的呼吸压力治疗模式,幅值A和基础压力P0的值可以下述方式由治疗参数确定算法4329设定。
5.5.3.3治疗控制模块
根据本技术的一个方面的治疗控制模块4330从治疗引擎模块4320的治疗参数确定算法4329接收治疗参数作为输入,并且控制压力发生器4140以按照治疗参数输送空气流。
在本技术的一种形式中,治疗参数是治疗压力Pt,并且治疗控制模块4330控制压力发生器4140输送空气流,患者接口3000处的空气流的面罩压力Pm等于治疗压力Pt。
5.5.3.4故障状况检测
在本技术的一种形式中,中央控制器4230执行用于检测故障状况的一种或多种方法4340。由一种或多种方法检测的故障状况可以包括以下中的至少一个:
·电力故障(无电,或电量不足)
·转换器故障检测
·无法检测部件的存在
·操作参数超出推荐范围(例如压力、流量、温度、PaO2)
·测试报警器无法产生可检测的报警信号。
在检测到故障状况后,对应的算法通过以下中的一个或多个来发信号通知存在故障:
·启动听觉、视觉和/或动力(例如振动)报警
·向外部装置发送消息
·记录事件
5.6湿化器
5.6.1湿化器概况
在本技术的一种形式中,提供了湿化器5000(例如,如图5A所示),以相对于环境空气改变用于输送至患者的空气或气体的绝对湿度。通常,湿化器5000用于在输送至患者的气道之前增加空气流的绝对湿度并增加空气流的温度(相对于环境空气)。
湿化器5000可以包括湿化器贮存器5110、用于接收空气流的湿化器入口5002以及用于输送加湿的空气流的湿化器出口5004。在一些形式中,如图5A和图5B所示,湿化器贮存器5110的入口和出口可以分别是湿化器入口5002和湿化器出口5004。湿化器5000还可以包括湿化器基座5006,该湿化器基座可以适于接收湿化器贮存器5110并且包括加热元件5240。
5.6.2湿化器的机械部件
5.6.2.1水贮存器
根据一种布置方式,湿化器5000可包括水贮存器5110,其被配置为保持或保留液体(例如,水)容量以被蒸发用于加湿空气流。水贮存器5110可被配置为保持预定最大水容量以便提供充分加湿持续至少呼吸疗程的持续期间,诸如睡眠的一个晚上。通常,贮存器5110被配置为保持几百毫升的水,例如,300毫升(ml)、325ml、350ml或400ml。在其他形式中,湿化器5000可被配置为接收来自外部水源诸如建筑的供水系统的水供给。
根据一个方面,水贮存器5110被配置为当空气流行进通过其中时为来自RPT装置4000的空气流增加湿度。在一种形式中,水贮存器5110可被配置为促进空气流在与其中的水体积接触的同时在通过贮存器5110的弯曲路径中行进。
根据一种形式,贮存器5110可例如沿如图5A和图5B所示的横向方向从湿化器5000移除。
贮存器5110还可被配置为诸如当贮存器5110从其正常工作方向移位和/或转动时,阻止液体诸如通过任一孔和/或在其子部件中间从其流出。由于待由湿化器5000加湿的空气流通常被加压,所以贮存器5110还可被配置为避免通过泄露和/或流动阻抗导致气动压力的损失。
5.6.2.2传导性部分
根据一种布置方式,贮存器5110包括传导性部分5120,其被配置为允许热量从加热元件5240至贮存器5110中的液体容量的有效传递。在一种形式中,传导性部分5120可被布置为板,但是其他形状也可同样适用。传导性部分5120的全部或一部分可由导热材料制成,诸如铝(例如,厚度为大约2mm,诸如1mm、1.5mm、2.5mm或3mm)、另一种导热金属或一些塑料。在某些情况下,可用传导性较低的适当几何结构的材料来实现适当的热传导性。
5.6.2.3湿化器贮存器底座(dock)
在一种形式中,湿化器5000可包括湿化器贮存器底座5130(如图5B所示),其被配置为接收湿化器贮存器5110。在一些布置方式中,湿化器贮存器底座5130可包括锁定结构,诸如被配置为将贮存器5110保持在湿化器贮存器底座5130中的锁定杆5135。
5.6.2.4水位指示器
湿化器贮存器5110可包括如图5A-5B所示的水位指示器5150。在一些形式中,水位指示器5150可为用户(诸如患者1000或护理者)提供一种或多种关于湿化器贮存器5110中水体积的量的指示。由水位指示器5150所提供的一种或多种指示可包括水的最大预定体积、其任何部分,诸如25%、50%、75%或诸如200ml、300ml或400ml的体积的指示。
5.6.3湿化器电气&热部件
湿化器5000可包括若干个电气和/或热部件,诸如以下所列举的那些部件。
5.6.3.1湿化器转换器
湿化器5000可以包括替代或除了上述转换器4270外的一个或多个湿化器转换器(传感器)5210。如图5C所示,湿化器转换器5210可以包括空气压力传感器5212、空气流量转换器5214、温度传感器5216或湿度传感器5218的一者或多者。湿化器转换器5210可以产生一个或多个可以与控制器(诸如中央控制器4230和/或湿化器控制器5250)通信的输出信号。在一些形式中,在将输出信号通信到控制器时,湿化器转换器可以在外部设置到湿化器5000(诸如在空气回路4170中)。
5.6.3.1.1压力转换器
替代或除了RPT装置4000中提供的压力传感器外,一个或多个压力转换器5212可以设置到湿化器5000。
5.6.3.1.2流量转换器
替代或除了RPT装置4000中提供的流量传感器外,一个或多个流量转换器5214可以设置到湿化器5000。
5.6.3.1.3温度转换器
湿化器5000可以包括一个或多个温度转换器5216。一个或多个温度转换器5216可被配置为测量一个或多个温度,诸如加热元件5240的和/或湿化器出口5004下游空气流的温度。在一些形式中,湿化器5000可以进一步包括用于检测环境空气温度的温度传感器5216。
5.6.3.1.4湿度转换器
在一些形式中,湿化器5000可以包括一个或多个检测气体(诸如环境空气)湿度的湿度传感器5218。在一些形式中,湿度传感器5218可以设置成朝向湿化器出口5004,以测量从湿化器5000中输送的气体的湿度。湿度传感器可以是绝对湿度传感器或相对湿度传感器。
5.6.3.2加热元件
在一些情况下,加热元件5240可以设置到湿化器5000,以将热量输入提供到湿化器贮存器5110中水容量中的一个或多个并且/或者提供到空气流。加热元件5240可以包括发热部件,诸如电阻性电加热轨。加热元件5240的一个合适的实例是层状加热元件,诸如在PCT专利申请公开号WO 2012/171072中所描述的层状加热元件,其以引用的方式整体并入本文。
在一些形式中,加热元件5240可以设置在湿化器基座5006中,其中如图5B中所示可以主要通过传导将热量提供到湿化器贮存器5110。
5.6.3.3湿化器控制器
根据本技术的一种布置,如图5C中所示湿化器5000可以包括湿化器控制器5250。在一种形式中,湿化器控制器5250可以是中央控制器4230的一部分。在另一种形式中,湿化器控制器5250可以是独立的控制器,其可以与中央控制器4230通信。
在一种形式中,湿化器控制器5250可以接收,例如贮存器5110和/或湿化器5000中空气流、水流的特征(诸如温度、湿度、压力和/或流量)的测量值作为输入。湿化器控制器5250还可以被配置为执行或实施湿化器算法和/或输送一个或多个输出信号。
如图5C中所示,湿化器控制器5250可以包括一个或多个控制器,诸如中央湿化器控制器5251、被配置为控制加热空气回路4170的温度的加热空气回路控制器5254和/或被配置为控制加热元件5240的温度的加热元件控制器5252。
5.7呼吸压力治疗模式
在本技术的一种形式中,根据治疗参数确定算法4329使用的治疗压力方程(1)中的参数A和P0的值,RPT装置4000可以实施各种呼吸压力治疗模式。
5.7.1 CPAP治疗
在本技术的这种形式的一些实施方式中,幅值A相同地为零,因此治疗压力Pt在整个呼吸周期中相同地等于基础压力P0。此类实施方式通常分组在CPAP治疗的标题下。在这种实施方式中,治疗引擎模块4320不需要确定相位Φ或波形模板Π(Φ)。
在CPAP治疗模式中,基础压力P0可以是硬编码或手动输入到RPT装置4000的恒定值。这种替代性方法有时被称为恒定CPAP治疗。可以经由称为滴定的方法为给定患者选择基础压力P0的恒定值。在滴定过程中,临床医生通常响应于滴定阶段期间对流量限制、呼吸暂停、呼吸不足、开放性和打鼾的观察结果来调整治疗压力Pt。滴定的基础压力P0然后可以作为滴定阶段期间的治疗压力Pt的统计汇总来计算。
可替代地,治疗参数确定算法4329可以在CPAP治疗期间连续计算基础压力P0。在这个替代性方法中,治疗参数确定算法4329连续地计算作为由治疗引擎模块4320中的相应算法返回的睡眠呼吸障碍(诸如流量限制、呼吸暂停、呼吸不足、开放性和打鼾的一个或多个)的指标或测量值的函数的基础压力P0。这种替代性方法有时被称为APAP治疗。因为基础压力P0的连续计算类似于临床医生在滴定期间手动调节治疗压力Pt,所以APAP治疗有时也被称为自动滴定CPAP。
5.7.2双水平治疗
在本技术的这种形式的其他实施方式中,方程(1)中的幅值A的值可以是正的。此类实施方式被称为双水平治疗,因为在使用具有正幅值A的方程式(1)确定治疗压力Pt时,治疗参数确定算法4329在与患者1000的自发呼吸努力同步的两个值或水平之间使治疗压力Pt振荡。也就是说,基于上述的典型波形模板Π(Φ,t),治疗参数确定算法4329在治疗开始时或期间或吸气时将使治疗压力Pt增加至P0+A(称为IPAP)并在治疗开始时或期间、吸气时将治疗压力Pt降低至基础压力P0(称为EPAP)。
在双水平治疗的某些形式中,IPAP是规定的治疗压力,其与CPAP治疗模式中的治疗压力具有相同的目的,并且EPAP是IPAP减去幅值A,其具有“小”值(几cm H2O),有时被称为呼气压力减轻(EPR)。此类形式有时被称为具有EPR的CPAP治疗,通常认为这比直接CPAP治疗更舒适。在具有EPR的CPAP治疗中,IPAP和EPAP中的一个或两个可以是硬编码或手动输入到RPT装置4000的恒定值。可替代地,治疗参数确定算法4329可以在具有EPR的CPAP期间连续地计算IPAP和/或EPAP。在该替代性方法中,治疗参数确定算法4329连续地计算作为由治疗引擎模块4320中的相应算法返回的睡眠呼吸障碍的指标或测量值的函数的EPAP和/或IPAP,其类似于在上述APAP治疗中基础压力P0的计算。
在双水平治疗的其他方式中,幅值A足够大,使得RPT装置4000完成患者1000的呼吸的一些或全部工作。在此类称为压力支持通气治疗的形式中,幅值A被称为压力支持或摆动。在压力支持通气治疗中,IPAP是基础压力P0加上压力支持A,而EPAP是基础压力P0
在称为固定压力支持通气治疗的压力支持通气治疗的一些形式中,压力支持A被固定在预定值,例如,10cm H2O。预定压力支持值是RPT装置4000的设置,并且可以例如通过在RPT装置4000的配置期间通过硬编码或通过输入装置4220的手动输入来设置。
在称为伺服通气的压力支持通气治疗的一些形式中,治疗参数确定算法4329将通气量当前测量值Vent和由目标通气量确定算法4328提供的通气量目标值Vtgt作为输入,并连续地调整方程(1)的参数以使通气量当前测量值Vent向通气量目标值Vtgt调整。在已被用于治疗CSR、称为自适应伺服通气(ASV)的伺服通气形式中,通过目标通气量确定算法4328根据典型的近期通气量Vtyp计算目标通气量Vtgt,如上所述。
在伺服通气的一些形式中,治疗参数确定算法4329应用控制方法来连续计算压力支撑件A,以便使通气量当前测量值Vent向目标通气量Vtgt调整。这样的一种控制方法是比例积分(PI)控制。在PI控制的一种实施方式中,适用于其中目标通气量Vtgt被设置为略小于典型的近期通气量Vtyp的ASV模式,压力支持被计算为:
A=G∫(Vent-Vtgt)dt (2)
其中G是PI控制的增益值。较大的增益G值可导致治疗引擎模块4320中的正反馈。较小的增益G值可以允许一些剩余的未治疗CSR或中枢性睡眠呼吸暂停。在一些实现方式中,增益G被固定在预定值,诸如0.4cm H2O/(L/min)/s。可替代地,增益G可以在治疗阶段之间有所变化,从小值开始,并且在阶段之间逐渐增加,直到达到几乎消除CSR的值。在此类实施方式中可以采用用于回顾性地分析治疗阶段的参数以评估治疗阶段期间的CSR的严重性的常规手段。在又其他实施方式中,增益G可以根据通气量当前测量值与目标通气量Vtgt之间的差异而变化。
可以由治疗参数确定算法4329应用的其他伺服通气控制方法包括比例(P)、比例-微分(PD)和比例-积分-微分(PID)。
经由公式(2)计算出的压力支持A的值可以被限定在定义为[Amin,Amax]的范围内。在这种实施方式中,压力支持A默认位于最小压力支撑Amin处,直到当前通气量测量值Vent低于目标通气量Vtgt,此时A开始增加,而仅当Vent再次超过Vtgt时,回落到Amin。
压力支持限制Amin和Amax是RPT装置4000的设置值,例如通过在RPT装置4000的配置期间通过硬编码或通过输入装置4220的手动输入来设置。3cm H2O的最小压力支持值Amin为执行稳定状态下典型患者的所有呼吸功所需的压力支持的约50%。12cm H2O的最大压力支持Amax是执行典型患者的所有呼吸功所需的压力支持的大约两倍,因此如果停止进行任何努力,足以支持患者的呼吸,但低于使不舒服或危险的值。
在压力支持通气治疗模式中,EPAP是基础压力P0。与CPAP治疗中的基础压力P0一样,EPAP可以是在滴定期间规定或确定的恒定值。这种恒定EPAP可以例如通过在RPT装置4000的配置期间通过硬编码或通过输入装置4220的手动输入来设置。这种替代性方法有时被称为固定EPAP压力支持通气治疗。对于给定患者的EPAP的滴定可以在滴定阶段期间由临床医生借助PSG执行,目的是防止阻塞性呼吸暂停,由此维持用于压力支持通气治疗的开放气道,其方式类似于在恒定CPAP治疗中基础压力P0的滴定。
可替代地,治疗参数确定算法4329可以在压力支持通气治疗期间连续计算基础压力P0。在此类替代性方法中,治疗参数确定算法4329连续地计算作为由治疗引擎模块4320中的相应算法返回的睡眠呼吸障碍(诸如流量限制、呼吸暂停、呼吸不足、开放性和打鼾的一个或多个)的指标或测量值的函数的EPAP。因为EPAP的连续计算类似于在EPAP滴定期间临床医生手动调节EPAP,因此该过程有时也称为EPAP的自动滴定,并且整体治疗被称为自动滴定EPAP压力支持通气治疗,或自动EPAP压力支持通气治疗。
5.8术语表
为了实现本技术公开内容的目的,在本技术的某些形式中可应用下列定义中的一个或多个。本技术的其他形式中,可应用另选的定义。
5.8.1通则
空气:在本技术的某些形式中,空气可以被认为意指大气空气,并且在本技术的其他形式中,空气可以被认为是指可呼吸气体的一些其他组合,例如富含氧气的大气空气。
环境:在本技术的某些形式中,术语环境可具有以下含义(i)治疗系统或患者的外部,和(ii)直接围绕治疗系统或患者。
例如,相对于湿化器的环境湿度可以是直接围绕湿化器的空气的湿度,例如患者睡觉的房间内的湿度。这种环境湿度可以与患者睡觉的房间外部的湿度不同。
在另一实例中,环境压力可以是直接围绕身体或在身体外部的压力。
在某些形式中,环境(例如,声学)噪声可以被认为是除了例如由RPT装置产生或从面罩或患者接口产生的噪声外的患者所处的房间中的背景噪声水平。环境噪声可以由房间外的声源产生。
呼吸压力治疗(RPT):以典型相对于大气为正的治疗压力向气道入口施加空气供给。
持续气道正压通气(CPAP)治疗:其中在患者的呼吸周期的整个过程中治疗压力可以是近似恒定的呼吸压力治疗。在一些形式中,气道入口处的压力在呼气期间将略微更高,并且在吸气期间略微更低。在一些形式中,压力将在患者的不同呼吸周期之间变化,例如,响应于检测到部分上气道阻塞的指示而增大,以及缺乏部分上气道阻塞的指示而减小。
患者:人,不论他们是否患有呼吸道疾病。
自动气道正压通气(APAP)治疗:其中治疗压力在最小限度和最大限度之间是可自动调整的CPAP治疗,例如随每次呼吸而不同,这取决于是否存在SBD事件的指示。
5.8.2呼吸周期的方面
呼吸暂停:根据一些定义,当流量降到低于预定阈值达持续一段时间(例如10秒)时认为发生呼吸暂停。当即使患者努力,气道的一些阻塞也不允许空气流动时,认为发生阻塞性呼吸暂停。当尽管气道是开放(patent)的,但是由于呼吸努力的减少或不存在呼吸努力而检测到呼吸暂停时,认为发生中枢性呼吸暂停。当呼吸努力的减少或不存在与阻塞的气道同时发生时,认为发生混合性呼吸暂停。
呼吸速率:患者的自发呼吸的速率,其通常以每分钟呼吸次数来测量。
占空比:吸气时间Ti与总呼吸时间Ttot的比值。
努力(呼吸):呼吸努力将被说成是自发呼吸者尝试呼吸所做的工作。
呼吸周期的呼气部分:从呼气流量开始到吸气流量开始的时间段。
流量限制:流量限制将被认为是患者呼吸中的状态,其中患者的努力增加不会导致流量的相应增加。在呼吸周期的吸气部分期间发生流量限制的情况下,可以将其描述为吸气流量限制。在呼吸周期的呼气部分期间发生流量限制的情况下,可以将其描述为呼气流量限制。
流量限制的吸气波形的类型:
(i)平坦化的:具有一个上升,后跟一个相对平坦的部分,然后是下降。
(ii)M形:具有两个局部峰,一个在前沿处,一个在后沿处,并且两个峰之间具有相对平坦的部分。
(iii)椅形:具有单一的局部峰,峰处于前沿处,然后是相对平坦的部分。
(iv)反向椅形:具有相对平坦的部分,然后是单个局部峰,峰位于后沿处。
呼吸不足:优选地,呼吸不足将被认为是流量的减少,而不是流量的停止。在一种形式中,当流量降低到阈值以下持续存在一段时间时,可以认为发生呼吸不足。当由于呼吸努力的减少而检测到呼吸不足时,认为发生中枢性呼吸不足。在成年人的一种形式中,以下的任一种均可以看做是呼吸不足:
(i)患者呼吸减少30%持续至少10秒加相关的4%去饱和;或者
(ii)患者呼吸减少(但小于50%)持续至少10秒,伴随相关的至少3%的去饱和或觉醒。
呼吸过度:流量增大到高于正常的水平。
呼吸周期的吸气部分:从吸气流量开始到呼气流量开始的时间段被认为是呼吸周期的吸气部分。
开放性(气道):气道被打开的程度或气道是打开的程度。开放的气道是打开的。气道开放性可以被定量,例如值(1)为开放的,并且用值零(0)为封闭的(阻塞的)。
呼气末正压通气(PEEP):存在于呼气末的肺中的高于大气压的压力。
峰值流量(Q峰值):呼吸流量波形的吸气部分期间的流量的最大值。
呼吸流量、空气流量、患者空气流量、呼吸空气流量(Qr):这些同义词术语可被理解成指RPT装置对呼吸空气流量的估算,与“真实呼吸流量”或“真实呼吸空气流量”相对,其是由患者所经历的实际呼吸流量,通常以升/每分钟表示。
潮气量(Vt):当不施加额外的努力时,在正常呼吸期间吸入或呼出的空气体积。
(吸气)时间(Ti):呼吸流量波形的吸气部分的持续时间。
(呼气)时间(Te):呼吸流量波形的呼气部分的持续时间。
(总)时间(Ttot):一个呼吸流量波形的吸气部分的开始与随后的呼吸流量波形的吸气部分的开始之间的总持续时间。
典型的近期通气量:在一些预定时间量程内近期值围绕其趋于集群的通气值,也就是通气量近期值的集中趋势的量度。
上气道阻塞(UAO):包括部分和全部上气道阻塞。这可能与流量限制的状态相关联,其中随着上气道上的压力差增加流量水平仅稍微增加,或者甚至降低(Starling阻抗行为)。
通气量(Vent):由患者的呼吸系统所交换的气体总量的测量值。通气量的测量值可以包括吸气和呼气流量(每单位时间)中的一者或两者。当表达为每分钟的体积时,此量通常被称为“每分钟通气量”。每分钟通气量有时简单地作为体积给出,并理解成是每分钟的体积。
5.8.3RPT装置参数
流量:每单位时间输送的空气瞬时体积(或质量)。当流量和换气量每单位时间具有相同的体积或质量尺度时,在更短的时间周期内测量流量。在一些情况下,对流量的参考将是对标量的参考,即仅具有大小的量。在其他情况下,对流量的参考将是对向量的参考,即具有大小和方向两者的量。在其被称为有标量的情况下,流量对于患者的呼吸周期的吸气部分而言可以在标称上是正的,并且因此对于患者的呼吸周期的呼气部分而言是负的。流量可以符号Q给出。‘流量’有时简单地缩写成‘流’。总流量Qt是离开RPT装置的空气流量。通气流量Qv是离开通气口以允许冲洗呼出气体的空气流量。泄漏流量Ql是从患者接口系统的泄漏流量。呼吸流量Qr是被接收到患者的呼吸系统中的空气流量。
泄漏:单词泄漏将被认为是非期望的空气流动。在一个实例中,可由于面罩与患者面部之间的不完全密封而发生泄漏。在另一实例中,泄漏可发生在到周围环境的回转弯管中。
噪声,传导的(声学的):本文件中的传导噪声是指通过气动路径(诸如空气回路和患者接口以及其中的空气)带给患者的噪声。在一种形式中,传导噪声可以通过测量空气回路端部处的声压水平来进行量化。
噪声,辐射的(声学的):本文件中的辐射噪声是指通过周围空气带给患者的噪声。在一种形式中,辐射噪声可以通过根据ISO 3744测量所讨论的物体的声功率/压力水平来进行量化。
噪声,通气的(声学的):本文件中的通气噪声是指由通过穿过任何通气口(诸如患者接口中的通气口)的空气流动所产生的噪声。
压力:每单位面积的力。压力可以在单位(包括cm H2O、g-f/cm2、百帕斯卡)的范围内测量。1cm H2O等于1g-f/cm2且为大约0.98百帕斯卡。在本说明书中,除非另有说明,否则压力以cm H2O为单位给出。患者接口中的压力以符号Pm给出,而治疗压力以符号Pt给出,该治疗压力表示在当前时刻通过面罩压力Pm所获得的目标值。
声功率:每单位时间由声波携带的能量。声功率与声压平方乘以波前面积成正比。声功率通常以分贝SWL给出,即相对于参考功率的分贝,所述参考功率通常取作10-12瓦。
声压:由于声波行进穿过介质而在给定的时刻与环境压力的局部偏差。声压通常以分贝SPL给出,即相对于参考压力的分贝,所述参考压力通常取作20×10-6帕斯卡(Pa),其被认为是人类听力阈值。
5.8.4用于呼吸机的术语
自适应伺服呼吸机(ASV):具有可变的而不是固定的目标通气量的伺服呼吸机。可以从患者的一些特征(例如患者的呼吸特征)中获知可变的目标通气量。
备用速率:呼吸机的参数,其确定呼吸机将输送至患者的最小呼吸速率(通常以每分钟呼吸次数计),如果不是由自发呼吸努力触发的话。
循环的:呼吸机的吸气阶段的终止。当呼吸机向自发呼吸的患者输送呼吸时,在呼吸周期的吸气部分的末期处,认为呼吸机循环以停止输送呼吸。
呼气气道正压力(EPAP):将呼吸内变化的压力加到其中以产生呼吸机在给定时间将尝试实现的期望面罩压力的基础压力。
呼气末压力(EEP):呼吸机在呼气部分的末期时尝试实现的期望面罩压力。如果压力波形模板Π(Φ)在呼气的末期时为零值,即Π(Φ)=0,当Φ=1时,则EEP等于EPAP。
吸气气道正压力(IPAP):呼吸机在呼吸的吸气部分期间尝试实现的最大期望面罩压力。
压力支持:指示呼吸机吸气期间压力增加超过呼吸机呼气期间的压力的数字,并且通常意指吸气期间的最大值与基础压力之间的压力差(例如,PS=IPAP-EPAP)。在一些情况下,压力支持意指呼吸机旨在实现的差异,而不是实际实现的差异。
伺服呼吸机:测量患者通气量的呼吸机,其具有目标通气量并调整压力支持的水平以使患者通气量达到目标通气量。
自发的/定时的(S/T):呼吸机或其他装置的模式,其试图检测自发呼吸患者的呼吸的开始。然而,如果装置在预定的时间段内不能检测到呼吸,则装置将自动启动呼吸的输送。
摆动:与压力支持等同的术语。
触发的:当呼吸机将呼吸的空气输送至自发呼吸的患者时,认为通过患者的努力在呼吸周期的呼吸部分开始时被触发。
典型的近期通气量:典型的近期通气量Vtyp是在一些预定时间量程内近期通气量测量值围绕其趋于集群的值。例如,近期历史上通气量测量值的集中趋势的量度可以是典型的近期通量值的合适值。
呼吸机:向患者提供压力支持以执行一些或全部呼吸工作的机械装置。
5.8.5面部的解剖结构
鼻翼(Ala):各鼻孔的外部外壁或“翼”(复数:鼻翼(alar))
鼻翼端:鼻翼上的最外侧点。
鼻翼弯曲(或鼻翼顶)点:各鼻翼的弯曲基线中最后部的点,其在由鼻翼与面颊的结合所形成的褶皱中发现。
耳廓:耳朵的整个外部可见部分。
(鼻)骨架:鼻骨架包括鼻骨、上颌骨的额突以及额骨的鼻部。
(鼻)软骨架:鼻软骨架包括中隔、外侧、大以及小软骨。
鼻小柱:分离鼻孔且从鼻突点延伸到上唇的皮肤条。
鼻小柱角:通过鼻孔中点绘制的线与垂直于法兰克福平面绘制的线(同时两线相交于鼻中隔下点)之间的夹角。
法兰克福水平面:从眼窝边缘的最下面的点延伸到左耳蜗的线。耳蜗是耳廓的耳屏上部的切迹中的最深点。
眉间:位于软组织上,前额正中矢状平面中最突出的点。
鼻外软骨:呈基本上三角形的软骨板。其上缘附接到鼻骨和上颌骨额突,并且其下缘连接到鼻翼大软骨。
鼻翼大软骨:位于鼻外软骨下面的软骨板。它围绕鼻孔的前部弯曲。其后端通过包含鼻翼的三块或四块小软骨的坚韧纤维膜连接到上颌骨额突。
鼻孔(鼻眼):形成鼻腔入口的近似椭圆形的孔。鼻孔(nare)的单数形是鼻孔(naris)(鼻眼)。鼻孔由鼻中隔分隔开。
鼻唇沟或鼻唇褶皱:鼻从鼻部的每一侧延伸到嘴角的皮肤褶皱或沟,其将脸颊与上唇分隔开。
鼻唇角:鼻小柱与上唇(同时相交于鼻中隔下点)之间的夹角。
耳下基点:耳廓附接到面部皮肤的最低点。
耳上基点:耳廓附接到面部皮肤的最高点。
鼻突点:鼻部的最突出的点或尖端,其可以在头部的其余部分的侧视图中被识别。
人中:从鼻中隔的下边界延伸到上唇区域中的唇顶部的中线沟。
颏前点:位于软组织上,下巴的最前部的中点。
脊(鼻):鼻脊是鼻部的从鼻梁点延伸到鼻突点的中线突起。
矢状平面:从前部(前面)到后部(后面)经过的将身体分为右半部和左半部的垂直平面。
鼻梁点:位于软组织上,覆盖额鼻缝区域的最凹点。
中隔软骨(鼻):鼻中隔软骨形成中隔的一部分并分开鼻腔的前部。
后上侧片:在鼻翼基部下缘处的点,在此处鼻翼基部与上部(上面)唇的皮肤接合。
鼻下点:位于软组织上,正中矢状平面中鼻小柱与上唇交汇处的点。
下颌牙槽座点:下唇的中线中位于下唇中点与软组织颏前点之间的最大凹度的点
5.8.6头骨的解剖结构
额骨:额骨包括较大的垂直部分(额鳞),其对应于称为前额的区域。
下颌骨:下颌骨形成下颌。颏隆凸是形成下巴的下颌的骨隆凸。
上颌骨:上颌骨形成上颌并位于下颌上面和眼眶下面。上颌骨额突由鼻部的侧面向上突出,并且形成侧部边界的一部分。
鼻骨:鼻骨是两块小的椭圆形骨,其在不同个体中尺寸和形式有所变化;它们并排位于面部的中部和上部,并且通过它们的接合点形成鼻部的“梁”。
鼻根:额骨和两块鼻骨的相交部,直接位于眼睛之间且位于鼻部的鼻梁上部的凹陷区域。
枕骨:枕骨位于颅骨的后部和下部。它包括椭圆形的孔(枕骨大孔),颅腔通过所述孔与椎管连通。枕骨大孔后面的弯曲板是枕鳞。
眼眶:容纳眼球的颅骨中的骨腔。
顶骨:顶骨是当接合在一起时形成颅骨的顶盖和两侧的骨骼。
颞骨:颞骨位于颅骨的底部和两侧,并且支撑被称为太阳穴的那部分面部。
颧骨:面部包括两块颧骨,其位于面部的上面和侧面部分并形成面颊的突出部。
5.8.7呼吸系统的解剖结构
隔膜:横跨肋骨架的底部延伸的肌肉片。隔膜将包含心脏、肺以及肋的胸腔从腹腔中分隔开。随着隔膜收缩,胸腔的体积增加且空气被吸入肺中。
喉:喉或喉头容纳声带并将咽的下部(下咽部)与气管连接。
肺:人类的呼吸器官。肺的传导区包含气管、支气管、细支气管以及末端细支气管。呼吸区包含呼吸细支气管、肺泡管和肺泡。
鼻腔:鼻腔(或鼻窝)是面部中间的鼻部上面和后面较大的充满空气的空间。鼻腔由称为鼻中隔的垂直翅分成两部分。在鼻腔的侧面有三个水平分支,其称为鼻甲(nasalconchae)(单数为“鼻甲(concha)”)或鼻甲。鼻腔的前面是鼻部,而背面经由内鼻孔结合到鼻咽中。
咽:位于紧靠鼻腔下部(下面)和在食道和喉上部的咽喉的一部分。咽常规上被分成三个区段:鼻咽部(上咽部)(咽的鼻部分)、口咽部(中咽部)(咽的口部分)以及喉咽部(下咽部)。
5.8.8材料
硅树脂或硅树脂弹性体:合成橡胶。在本说明书中,对硅树脂的参考是指液体硅橡胶(LSR)或压模硅橡胶(CMSR)。可商购的LSR的一种形式是SILASTIC(包括在此商标下出售的产品范围中),其由道康宁公司(Dow Corning)制造。LSR的另一制造商是瓦克集团(Wacker)。除非另有相反的规定,否则LSR的示例性形式具有如使用ASTM D2240所测量的约35至约45范围内的肖氏A(或类型A)压痕硬度。
聚碳酸酯:典型是双酚A碳酸酯的透明热塑性聚合物。
5.8.9患者接口的方面
反窒息阀(AAV):通过以故障安全方式向大气开放,降低了患者过度的CO2再呼吸的风险的面罩系统的部件或子部件。
弯管:引导空气流的轴线经一定角度改变方向的导管。在一种形式中,所述角度可以是大约90度。在另一种形式中,所述角度可以小于90度。导管可以具有近似圆形的横截面。在另一种形式中,导管可以具有椭圆形或矩形的横截面。
框架:框架将被认为意指承载两个或两个以上与头带的连接点之间的张力负荷的面罩结构。面罩框架可以是面罩中的非气密的负荷承载结构。然而,一些形式的面罩框架也可以是气密的。
头带:头带将被认为意指为一种形式的经设计用于头部上的定位和稳定结构。优选地,头带包括一个或多个支撑杆、系带和加强杆的集合,其被配置为将患者接口定位并保持在患者面部上用于输送呼吸治疗的位置。一些系带由柔软的、柔性的、有弹性的材料,诸如泡沫和织物的层压复合材料形成。
膜:膜将被认为意指典型地薄的元件,其优选地基本上不具有抗弯曲性,但是具有抗拉伸性。
充气室:面罩充气室将被认为意指患者接口的具有至少部分包围一定体积空间的壁的部分,所述体积在使用时具有在其中增压至超过大气压力的空气。壳体可以形成面罩充气室的壁的一部分。
密封:名词形式(“密封件”)将被认为意指旨在抵抗空气流动通过两个表面的界面的结构或阻隔件。动词形式(“要密封”)将被认为意指抵抗空气流动。
壳体:壳体将被认为意指具有可弯曲、可伸展和可压缩刚度的弯曲且相对薄的结构。例如,面罩的弯曲结构壁可以是壳体。在一些形式中,壳体可以是多面的。在一些形式中,壳体可以是气密性的。在一些形式中,壳体可以不是气密性的。
加强件:加强件将被认为意指设计成在至少一个方向上增加另一个部件的抗弯曲性的结构性部件。
支撑物:支撑物将被认为是设计成在至少一个方向上增加另一个部件的抗压缩性的结构性部件。
旋轴:(名词)被配置为围绕共同轴旋转的部件的子部件,优选地独立地,优选地在低扭矩下。在一种形式中,旋轴可以经构造成经过至少360度的角度旋转。在另一种形式中,旋轴可以经构造成经过小于360度的角度旋转。当在空气输送导管的情况下使用时,部件的子组件优选地包括一对匹配的圆柱形导管。在使用时可以很少或没有从旋轴中泄漏的空气流。
系带:系带将被认为是设计来抵抗张力的结构部件。
通气口:(名词):允许从面罩内部或导管到环境空气的空气流动例如以允许有效冲洗呼出气体的结构。例如,临床上有效的冲洗可以涉及每分钟约10升至约每分钟约100升的流速,这取决于面罩设计和治疗压力。
5.8.10关于患者接口使用的术语
曲率(表面的):据说具有鞍状形状、在一个方向上向上弯曲并且在不同的方向上向下弯曲的表面区域具有负曲率。据说具有圆顶形状、在两个主方向上以相同方式完全的表面区域具有正曲率。平坦表面将被认为具有零曲率。
松软的:材料、结构或复合材料的以下各项中的一者或多者的品质:
·易于适形于指压。
·当使得支撑其自身重量时不能保持其形状。
·非刚性的。
·用很少作用力就能够拉伸或弹性弯曲。
松软的品质可以具有相关联的方向,因此特定的材料、结构或复合材料可以在第一方向是松软的,但在第二方向上,例如在正交于第一方向的第二方向上是硬性的或刚性的。
有回弹力的:能够基本上弹性地变形,并且在相对短的时间段内诸如1秒内释放基本上全部的能量。
刚性的:对于指压和/或在建立和保持患者接口与患者气道的入口处于密封关系时典型地遇到的张力或负荷不易于变形。
半刚性的:意指在呼吸压力疗法期间典型地施加的机械力的作用下足够刚性以基本不变形。
5.8.11曲率
根据本技术的产品可以包括一个或多个三维机械结构,例如面罩垫子或推进器。三维结构可以通过二维表面结合。这些表面可以使用标记来区分以描述相关表面取向、位置、功能或一些其他特征。例如,结构可以包括前表面、后表面、内表面以及外表面中的一个或多个。在另一个实例中,垫子结构可以包括接触面部的(例如,外部)表面和单独的不接触面部(例如,下侧或内部)表面。在另一个实例中,结构可以包括第一表面和第二表面。
为了有助于描述三维结构和表面的形状,首先考虑通过结构表面的一点p的横截面。参见图3B至图3F,它们示出了在表面上的点p处的横截面的实例以及所得平面曲线。图3B至图3F也示出了在p处的向外法线向量。在p点处的向外法线向量远离表面。在一些实例中,描述了从直立在表面上的想象的小人的观察点的表面。
5.8.11.1一维中的曲率
平面曲线在p处的曲率可以被描述为具有符号(例如,正、负)和数量(例如,仅接触在p处的曲线的圆的半径的倒数)。
正曲率:如果在p处的曲线转向向外法线,则在该点处的曲率将取为正的(如果想象的小人离开该点p,则它们必须向上坡走)。参见图3B(与图3C相比相对大的正曲率)和图3C(与图3B相比相对小的正曲率)。此类曲线通常被称为凹面。
零曲率:如果在p处的曲线是直线,则曲率将取为零(如果想象的小人离开点p,则它们可以水平行走,不用向上或向下)。参见图3D。
负曲率:如果在p处的曲线远离向外法线转向,则在该点处在该方向中的曲率将取为负的(如果想象的小人离开该点p,则它们必须向下坡走)。参见图3E(与图3F相比相对小的负曲率)和图3F(与图3E相比相对大的负曲率)。此类曲线通常被称为凸面。
5.8.11.2二维表面的曲率
在根据本技术的二维表面上的给定点处的形状的描述可以包括多个法向横截面。多个横截面可以切割包括向外法线的平面(“法向平面”)中的表面,并且每个横截面可以在不同方向中截取。每个横截面产生具有对应曲率的平面曲线。在该点处的不同曲率可以具有相同的符号或不同的符号。在该点处的每个曲率具有数量,例如相对小的数量。在图3B至图3F中的平面曲线可以是在特定点处的此类多个横截面的实例。
主曲率和主方向:其中曲线曲率取其最大值和最小值的法向平面的方向被称为主方向。在图3B至图3F的实例中,最大曲率出现在图3B中,并且最小值出现在图3F中,因此图3B和图3F是主方向上的横截面。在p处的主曲率是在主方向上的曲率。
表面的区域:在表面上的一组点。在区域中的该组点可以具有类似的特征,例如曲率或符号。
鞍状区域:其中在每个点处主曲率具有相反的符号,即一个符号是正并且另一个符号是负(根据想象的个人所转向的方向,它们可以向上或向下行走)的区域。
圆顶区域:其中在每个点处主曲率具有相同的符号,例如两个正(“凹面圆顶”)或两个负(“凸面圆顶”)的区域。
圆柱形区域:其中一个主曲率是零(或者例如在制造公差内是零)并且另一个主曲率不是零的区域。
平面区域:其中两个主曲率均是零(或者例如在制造公差内是零)的表面区域。
表面的边缘:表面的边界或界限。
路径:在本技术的某些形式中,‘路径’将被认为意指数学-拓扑学意义上的路径,例如在表面上从f(0)至f(1)的连续空间曲线。在本技术的某些形式中,‘路径’可以被描述为路线或过程,包括例如表面上的一组点。(想象的个人的路径是其中它们在表面行走并且类似于花园路径的路径)。
路径长度:在本技术的某些形式中,‘路径长度’将被认为是沿着表面从f(0)至f(1)的距离,即在表面上沿着路径的距离。在表面上的两个点之间可以存在超过一个路径并且此类路径可以具有不同的路径长度。(想象的个人的路径长度将是它们在表面上沿着路径行走的距离)。
直线距离:直线距离是表面上两个点之间的距离,但是不考虑表面。在平面区域中,在表面上可以存在具有与表面上的两个点之间的直线距离相同的路径长度的路径。在非平面表面中,可以不存在具有与两个点之间的直线距离相同的路径长度的路径。(对于想象的个人,直线距离将对应于作为‘直线’的距离。)
5.9其他备注
本专利文件的公开内容的一部分包含受版权保护的材料。版权所有者不反对由任何人以专利文件或专利公开出现在专利局文档或记录中的形式复制这些专利文件或专利公开,但是另外保留任何所有版权权利。
除非上下文中明确说明并且提供数值范围的情况下,否则应当理解,在该范围的上限与下限之间的每个中间值,到下限单位的十分之一,以及在所述范围内的任何其他所述值或中间值均广泛地包含在本技术内。这些中间范围的上限和下限可独立地包括在中间范围内,也包括在本技术范围内,但受制于所述范围内的任何明确排除的界限。在所述范围包括所述极限值中的一个或两个的情况下,本技术中还包括排除那些所包括的极限值中的任一个或两个的范围。
此外,在本文所述的一个值或多个值作为本技术的部分的一部分进行实施的情况下,应理解的是,此类值可以是近似的,除非另外说明,并且此类值可以实用的技术实施可允许或需要其的程度用于任何适当的有效数位。
除非另外定义,否则本文所使用的所有技术和科学术语均具有与本技术所属领域的普通技术人员通常所理解的相同的含义。尽管类似于或等效于本文所描述的那些的任何方法和材料也可以用于本技术的实践或测试,但是本文描述了有限数量的代表性方法和材料。
当特定材料被鉴定用于构造部件时,具有类似特性的明显替代材料作为其替代物。此外,除非相反规定,否则本文所述的任何和全部部件均被理解为能够被制造且因而可以一起或分开制造。
必须指出,除非上下文明确地另外规定,否则如本文和所附权利要求所使用,单数形式“一个”、“一种”和“所述”包括其复数等同物。
本文提及的全部出版物均以引用的形式整体并入本文,以公开并且描述作为那些出版物的主题的方法和/或材料。提供本文中讨论的公布仅仅是针对它们在本申请的提交日期之前的公开。本文中的任何内容均不应被理解为承认由于先前发明而使本技术无权享有这些公布的优先权。此外,所提供的出版日期可不同于实际出版日期,其可能需要单独证实。
术语“包括(comprises)”和“包括(comprising)”应被理解为:是指各元件、各部件或非排他方式的各步骤,指出可能存在或被利用的所标记的元件、部件或步骤,或者与没有标记的其他元件、部件或步骤的组合。
在详细描述中使用的主题标题仅为了方便读者参考,不应用来限制可在本公开或权利要求书全文中找到的主题。主题标题不应用来解释权利要求书的范围或权利要求的限制。
虽然在本文中已经参照了具体实施例来描述本技术,但应了解,这些实施例仅说明本技术的原理和应用。在一些情况下,术语和符号可以暗含实践本技术所不需要的具体细节。例如,尽管可以使用术语“第一”和“第二”,但是除非另有规定,否则它们并非旨在指示任何顺序,而是可以用来区分不同元件。此外,尽管可以一定顺序来描述或说明方法中的过程步骤,但是此顺序是不需要的。本领域技术人员将认识到,此顺序可以被修改,和/或顺序的其方面可以同时或甚至同步进行。
因此应当了解可对所述示例性实施例进行大量的调整,并且应当了解可在不脱离本技术的精神和范围的情况下设计其他布置。
另外,应当理解,本技术的一个或多个方面可以与以下项中的一个或多个方面组合:2016年9月23日提交且标题为“患者接口(Patient Interface)”的PCT申请号PCT/AU2016/050891,其要求2015年9月23日提交的美国临时申请号62/222,593和2016年8月19日提交的美国临时申请号62/376,961的权益;2016年8月19日提交且标题为“带有具有可变厚度的密封成形结构的患者接口(Patient Interface with a Seal-Forming Structurehaving Varying Thickness)”的美国临时申请号62/377,217;2016年8月19日提交且标题为“带有具有可变厚度的密封成形结构的患者接口”的美国临时申请号62/377,158;2016年9月23日提交且标题为“弯管组件(Elbow Assembly)”的PCT申请号PCT/AU2016/050892,其要求2015年9月23日提交的美国临时申请号62/222,435和2016年8月18日提交的美国临时申请号62/376,718的权益;2016年8月19日提交且标题为“带有具有可变厚度的密封成形结构的患者接口”的美国临时申请号62/377,217;2016年8月19日提交且标题为“带有具有可变厚度的密封成形结构的患者接口”的美国临时申请号62/377,158;和/或2016年3月24日提交且标题为“具有用于密封形成部分的防喷件的患者接口(Patient Interface withBlowout Prevention for Seal-Forming Portion)”PCT申请号PCT/AU2016/050228,其要求2015年3月25日提交的美国临时申请号62/138,009和2015年9月23日提交的美国临时申请号62/222,503的权益;上述申请中的每一个均以引用的方式整体并入本文。
5.10参考符号列表
Figure BDA0003648407510000791
Figure BDA0003648407510000801
Figure BDA0003648407510000811
Figure BDA0003648407510000821
Figure BDA0003648407510000831
Figure BDA0003648407510000841
Figure BDA0003648407510000851
Figure BDA0003648407510000861
Figure BDA0003648407510000871

Claims (10)

1.一种用于呼吸压力治疗(RPT)系统的通气组件,用于从呼吸压力治疗(RPT)装置向患者接口提供治疗压力比环境空气压力高至少6cmH2O的加压气体流以治疗呼吸病症,所述通气组件包括:
通气壳体,所述通气壳体具有第一孔口,所述第一孔口被配置成用于接收来自RPT装置的加压气体流并且所述通气壳体具有多个孔以将加压气体排放到大气中;
通气壳体连接器,所述通气壳体连接器具有第二孔口,所述第二孔口被配置成用于将所述加压气体流引导至患者接口;
在第二孔口处连接到通气壳体连接器的管,所述管被配置成连接到患者接口以将加压气体流引导到患者接口;以及
热湿交换器(HME),所述热湿交换器包括HME壳体以及在HME壳体内的HME材料,
其中通气壳体和通气壳体连接器被配置成至少部分地连接以形成空腔,并且
其中,当所述通气组件被组装时,所述HME被定位在所述空腔中。
2.根据权利要求1所述的通气组件,进一步包括从所述通气壳体的内周周围延伸的环形唇缘和从所述环形唇缘延伸的至少一个保持突起。
3.根据权利要求2所述的通气组件,进一步包括围绕所述HME壳体的外周延伸的环形凹陷部,
其中所述至少一个保持突起和所述环形凹陷部被配置成用于将所述HME壳体可移除地连接至所述通气壳体上。
4.一种RPT系统,包括:
根据权利要求1至3中任一项所述的通气组件;
RPT装置,所述RPT装置被配置为产生加压气体流;
患者接口,所述患者接口被配置为将所述加压气体流输送至患者气道,所述患者接口是非通气型的;以及
输送导管,所述输送导管被配置为将加压气体流从所述RPT装置输送至所述通气组件。
5.根据权利要求4所述的RPT系统,其中所述呼吸治疗系统不包括加湿器。
6.一种在使用高于环境压力的加压气体的治疗流的患者呼吸治疗期间与患者接口一起使用的通气系统,所述通气系统提供通气气体流以将所述患者呼出的气体从加压容积排出,所述通气气体流在所述呼吸治疗期间是连续的,所述通气系统包括:
通气壳体,所述通气壳体包括基部,所述基部具有延伸穿过所述基部以允许气体从所述加压容积排放至大气的至少一个第一孔口;
至少一个第二孔口,以允许气体从所述加压容积排放至大气;
通气壳体连接器,所述通气壳体连接器具有第二孔口,所述第二孔口被配置成用于将所述治疗气体流引导至患者接口;
热湿交换器(HME),所述热湿交换器包括HME壳体以及在HME壳体内的HME材料,以及
邻近所述基部定位的膜,
其中通气壳体和通气壳体连接器被配置成至少部分地连接以形成空腔,并且
其中,当所述通气组件被组装时,所述HME被定位在所述空腔中,
其中所述加压容积在整个治疗压力范围内通过至少一个第一孔口和至少一个第二孔口与大气流体连通,并且
其中所述膜能够由于所述加压容积内的压力而弹性变形以在整个所述治疗压力范围内分配所述至少一个第一孔口与所述至少一个第二孔口之间的所述通气气体流。
7.根据权利要求6所述的通气系统,进一步包括从所述通气壳体的内周周围延伸的环形唇缘和从所述环形唇缘延伸的至少一个保持突起。
8.根据权利要求7所述的通气系统,进一步包括围绕所述HME壳体的外周延伸的环形凹陷部,
其中所述至少一个保持突起和所述环形凹陷部被配置成用于将所述HME壳体可移除地连接至所述通气壳体上。
9.一种患者接口,包括:
密封形成结构;
与所述密封形成结构结合的充气室;
定位和稳定结构,以在使用中将所述患者接口固定在所述患者上;以及
根据权利要求6至8任一项所述的通气系统。
10.根据权利要求9所述的患者接口,还包括通气连接管或解耦结构以将所述通气系统流体连接到所述充气室。
CN202210541164.XA 2017-01-06 2017-12-22 用于呼吸治疗系统的通气适配器 Pending CN115089836A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762443305P 2017-01-06 2017-01-06
US62/443,305 2017-01-06
PCT/AU2017/051456 WO2018126295A1 (en) 2017-01-06 2017-12-22 Vent adaptor for a respiratory therapy system
CN201780087688.3A CN110382030B (zh) 2017-01-06 2017-12-22 用于呼吸治疗系统的通气适配器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780087688.3A Division CN110382030B (zh) 2017-01-06 2017-12-22 用于呼吸治疗系统的通气适配器

Publications (1)

Publication Number Publication Date
CN115089836A true CN115089836A (zh) 2022-09-23

Family

ID=62788836

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780087688.3A Active CN110382030B (zh) 2017-01-06 2017-12-22 用于呼吸治疗系统的通气适配器
CN202210541164.XA Pending CN115089836A (zh) 2017-01-06 2017-12-22 用于呼吸治疗系统的通气适配器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201780087688.3A Active CN110382030B (zh) 2017-01-06 2017-12-22 用于呼吸治疗系统的通气适配器

Country Status (6)

Country Link
US (2) US11351324B2 (zh)
EP (2) EP3565623B1 (zh)
JP (3) JP7027429B2 (zh)
CN (2) CN110382030B (zh)
AU (2) AU2017391760B2 (zh)
WO (1) WO2018126295A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10695521B2 (en) * 2013-07-29 2020-06-30 ResMed Pty Ltd Heat and moisture exchanger for a patient interface
EP3922890B1 (en) 2015-09-23 2023-11-29 ResMed Pty Ltd Vent adaptor for a respiratory therapy system
CN109906098B (zh) 2016-09-21 2021-12-07 瑞思迈私人有限公司 用于患者接口的换气口和换气口适配器
CN110382030B (zh) * 2017-01-06 2022-06-03 瑞思迈私人有限公司 用于呼吸治疗系统的通气适配器
WO2020013907A1 (en) * 2018-07-13 2020-01-16 Aok Tooling Ltd. Super mask respirator system having a face mask and a sub-peak inspiratory flow blower
JP7098842B2 (ja) * 2019-02-22 2022-07-11 レスメド・プロプライエタリー・リミテッド 織物通気アセンブリ
MX2021008521A (es) 2019-03-18 2021-08-11 ResMed Pty Ltd Inserto de la camara de pleno para la interfaz de paciente.
CN113993568B (zh) * 2019-05-31 2024-02-02 瑞思迈私人有限公司 用于患者接口的热湿交换器
USD937411S1 (en) 2019-08-30 2021-11-30 Fisher & Paykel Healthcare Limited Unit end connector
CN111329594B (zh) * 2020-02-20 2022-04-19 深圳迈瑞生物医疗电子股份有限公司 一种机械臂和医疗设备
CN112089943A (zh) * 2020-09-18 2020-12-18 北京怡和嘉业医疗科技股份有限公司 通气保湿装置、呼吸面罩、呼吸面罩组件和呼吸支持设备
JP2024510081A (ja) * 2021-01-29 2024-03-06 ヴィヴィアン カーン,サンドラ 口腔内の負圧を測定することにより舌の位置を判定するために鼻咽頭腔における吸入圧力を測定するための装置、および関連づけられる端末
GB202107383D0 (en) * 2021-05-24 2021-07-07 Smiths Medical International Ltd Heat and moisture exchange devices, elements and assemblies
WO2023283690A1 (en) * 2021-07-14 2023-01-19 ResMed Pty Ltd Flow connector for a pressurized face mask
EP4137187A1 (en) * 2021-08-20 2023-02-22 ResMed Pty Ltd A vent structure for a respiratory therapy system
US11891808B2 (en) 2022-01-19 2024-02-06 Oatey Co. Roof flashing
WO2023237368A1 (en) * 2022-06-10 2023-12-14 Koninklijke Philips N.V. Exhaust diffuser arrangement and cpap mask including same

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2944547A (en) 1955-12-09 1960-07-12 Z And W Machine Products Inc Portable anesthesia machine, oxygen inhalator and resuscitator
EP0088761B1 (en) 1981-04-24 1987-08-12 Somed Pty. Ltd. Device for treating snoring sickness
US4458679A (en) 1982-06-01 1984-07-10 Ward Russell G Cold weather respiratory mask
US4782832A (en) 1987-07-30 1988-11-08 Puritan-Bennett Corporation Nasal puff with adjustable sealing means
US4997217A (en) 1990-05-10 1991-03-05 Mine Safety Appliances Company Breathing mask-hose coupling
US5687715A (en) 1991-10-29 1997-11-18 Airways Ltd Inc Nasal positive airway pressure apparatus and method
DE69232480T2 (de) 1991-12-20 2002-11-21 Resmed Ltd Beatmungsgerät zur Erzeugung von kontinuierlichem positiven Atemwegdruck (CPAP)
US5271601A (en) 1992-07-29 1993-12-21 Fisher Controls International, Inc. Regulator valve with diaphragm support
JP2546499B2 (ja) 1993-06-28 1996-10-23 日本電気株式会社 光信号直接増幅器
US5685296A (en) 1993-07-30 1997-11-11 Respironics Inc. Flow regulating valve and method
JP2599510Y2 (ja) * 1993-08-19 1999-09-13 興研株式会社 空気呼吸器における供給弁固定具
DE19516764A1 (de) 1995-05-06 1996-11-07 Henkel Raycap Produktie Bv Behälter für ein fließfähiges Produkt
US5762382A (en) 1996-07-12 1998-06-09 Ohmeda Inc. Interlocking dual seal cuff/port interface
AUPO126596A0 (en) 1996-07-26 1996-08-22 Resmed Limited A nasal mask and mask cushion therefor
US5896857A (en) 1996-12-20 1999-04-27 Resmed Limited Valve for use in a gas delivery system
AUPO504597A0 (en) 1997-02-10 1997-03-06 Resmed Limited A mask and a vent assembly therefor
US5937851A (en) 1997-02-27 1999-08-17 Respironics, Inc. Swivel device utilizing bearing clearance to allow carbon dioxide laden exhaust
AUPP366398A0 (en) 1998-05-22 1998-06-18 Resmed Limited Ventilatory assistance for treatment of cardiac failure and cheyne-stokes breathing
AUPQ102999A0 (en) 1999-06-18 1999-07-08 Resmed Limited A connector for a respiratory mask and a respiratory mask
AU6570600A (en) 1999-08-05 2001-03-05 Map Medizin-Technologie Gmbh Device for supplying a respiratory gas, humidifying device, respiratory gas tube, and connecting device therefor
US6584977B1 (en) 2000-04-06 2003-07-01 Respironics, Inc. Combined patient interface and exhaust assembly
US6581594B1 (en) 2000-05-15 2003-06-24 Resmed Limited Respiratory mask having gas washout vent and gas washout vent for respiratory mask
CA2350356C (en) 2000-06-14 2009-09-08 Fisher And Paykel Limited A nasal mask
US8439035B2 (en) 2000-12-22 2013-05-14 Resmed Limited Flow regulation vent
DE60142256D1 (de) 2000-12-29 2010-07-08 Resmed Ltd Charakterisierung von maskensystemen
US7347203B2 (en) * 2002-09-16 2008-03-25 Thayer Medical Corporation Heat and moisture filter exchanger and method
EP1585569A4 (en) 2002-12-16 2006-06-14 Childrens Hosp Medical Center TRACHEOTOMIEKLAPPENEINHEIT
DE202004021756U1 (de) 2003-02-21 2010-10-07 ResMed Ltd., Bella Vista Nasale Anordnung
US6792946B1 (en) * 2003-08-13 2004-09-21 James V. Waldo, Jr. Heat-moisture exchanger with aerosol by-pass
EP3527248B1 (en) 2003-12-31 2020-10-14 ResMed Pty Ltd Compact oronasal patient interface
NZ772374A (en) 2005-01-12 2022-07-29 ResMed Pty Ltd Cushion for patient interface
CN107320833B (zh) 2005-06-06 2022-06-03 瑞思迈私人有限公司 面罩系统
US9878117B2 (en) 2005-06-16 2018-01-30 Resmed Limited Swivel elbow for mask assembly
US7634998B1 (en) 2005-07-15 2009-12-22 Fenley Robert C HME shuttle system
WO2007019627A1 (en) 2005-08-15 2007-02-22 Resmed Ltd Compliant coupling or adaptor
US20070239283A1 (en) 2006-04-11 2007-10-11 Berger Richard A Acetabular cup conversion ring
US7856979B2 (en) 2006-05-23 2010-12-28 Ventus Medical, Inc. Nasal respiratory devices
CN103174661B (zh) 2006-05-24 2015-10-28 瑞思迈发动机及马达技术股份有限公司 用于cpap装置的紧凑低噪音高效鼓风机
KR101410869B1 (ko) 2006-10-24 2014-06-25 레즈메드 모터 테크놀로지스 인코포레이티드 베어링을 구비한 브러시리스 dc 모터
CN103418070B (zh) 2006-12-15 2017-03-01 瑞思迈有限公司 呼吸治疗的传送系统
FR2912660B1 (fr) 2007-02-15 2009-11-27 Georges Boussignac Dispositif de respiration artificielle pour une personne en etat d'arret cardiaque.
AU2008202487B2 (en) 2007-06-05 2013-07-04 Resmed Motor Technologies Inc. Blower with Bearing Tube
NZ591310A (en) 2007-07-30 2012-07-27 Resmed Ltd Nasal pillows patient breathing interface with vent in elbow of air supply
US8397727B2 (en) 2007-08-24 2013-03-19 Resmed Limited Mask vent
EP2065068B1 (en) 2007-11-28 2017-07-12 Covidien AG Respiratory filtering device for detecting a dangerous resistance to flow in a flow of gas through a filter
AU2009202232B2 (en) 2008-06-04 2013-10-03 Resmed Limited Patient Interface Systems
WO2010135785A1 (en) 2009-05-29 2010-12-02 Resmed Ltd Nasal mask system
US20120097156A1 (en) * 2009-02-17 2012-04-26 Somnetics Global Pte. Ltd. Positive airway pressure therapy mask humidification systems and methods
AU2010206053B2 (en) 2009-07-31 2014-08-07 ResMed Pty Ltd Wire Heated Tube with Temperature Control System, Tube Type Detection, and Active Over Temperature Protection for Humidifier for Respiratory Apparatus
US9155857B2 (en) 2009-10-20 2015-10-13 Human Design Medical, Inc. CPAP system with heat moisture exchange (HME) and multiple channel hose
US20120266884A1 (en) 2009-12-28 2012-10-25 Koninklijke Philips Electronics N.V. Exhaust port assembly that minimizes noise
JP5879354B2 (ja) 2010-10-14 2016-03-08 ヴェンティフック ホールディングス ピーティーワイ リミテッドVentific Holdings Pty Ltd 呼吸弁装置
NZ773086A (en) 2011-06-16 2022-08-26 ResMed Pty Ltd Humidifier and layered heating element
US9038634B2 (en) 2011-06-22 2015-05-26 Breathe Technologies, Inc. Ventilation mask with integrated piloted exhalation valve
US8844533B2 (en) 2011-06-22 2014-09-30 Breathe Technologies, Inc. Ventilation mask with integrated piloted exhalation valve
CN103906929B (zh) 2011-08-05 2017-12-15 瑞思迈发动机及马达技术股份有限公司 鼓风机
US20130098359A1 (en) * 2011-10-21 2013-04-25 Somnetics Global Pte. Ltd. Nares mask and support apparatus
GB2500061B (en) 2012-03-09 2018-11-28 Intersurgical Ag Connector for respiratory ducts
JP2015536794A (ja) 2012-12-17 2015-12-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 回転式流体結合器
US9878121B2 (en) 2013-03-13 2018-01-30 Breathe Technologies, Inc. Ventilation mask with heat and moisture exchange device
CN108187208B (zh) 2013-06-25 2022-03-01 瑞思迈私人有限公司 出气口连接组件及其制造方法
US10695521B2 (en) * 2013-07-29 2020-06-30 ResMed Pty Ltd Heat and moisture exchanger for a patient interface
SG11201602038PA (en) * 2013-09-17 2016-04-28 Fisher & Paykel Healthcare Ltd Valve with internal member
WO2015052681A1 (en) * 2013-10-11 2015-04-16 Fisher & Paykel Healthcare Limited Hme and compact breathing apparatus
CN117159873A (zh) * 2014-09-18 2023-12-05 瑞思迈私人有限公司 用于患者接口的气体冲洗换气口
WO2016141430A1 (en) 2015-03-10 2016-09-15 Resmed Limited Fluid connector with face seal
WO2016197195A1 (en) * 2015-06-11 2016-12-15 Ventific Holdings Pty Ltd Respiratory mask
EP3922890B1 (en) * 2015-09-23 2023-11-29 ResMed Pty Ltd Vent adaptor for a respiratory therapy system
CN105169541B (zh) * 2015-10-23 2018-12-14 北京怡和嘉业医疗科技股份有限公司 通气控制装置和具有该通气控制装置的呼吸面罩设备
CN109906098B (zh) 2016-09-21 2021-12-07 瑞思迈私人有限公司 用于患者接口的换气口和换气口适配器
CN110382030B (zh) * 2017-01-06 2022-06-03 瑞思迈私人有限公司 用于呼吸治疗系统的通气适配器

Also Published As

Publication number Publication date
US11351324B2 (en) 2022-06-07
JP2023101531A (ja) 2023-07-21
US20220265951A1 (en) 2022-08-25
JP2020505097A (ja) 2020-02-20
AU2023208184A1 (en) 2023-08-17
WO2018126295A1 (en) 2018-07-12
AU2017391760A1 (en) 2019-07-04
EP4005622B1 (en) 2024-02-21
EP3565623B1 (en) 2021-11-03
AU2017391760B2 (en) 2023-08-31
EP3565623A4 (en) 2020-01-15
CN110382030A (zh) 2019-10-25
JP7277627B2 (ja) 2023-05-19
EP4005622A1 (en) 2022-06-01
EP3565623A1 (en) 2019-11-13
US20190351173A1 (en) 2019-11-21
JP7027429B2 (ja) 2022-03-01
JP2022060345A (ja) 2022-04-14
CN110382030B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
CN108136150B (zh) 用于呼吸治疗系统的通气适配器
CN110382030B (zh) 用于呼吸治疗系统的通气适配器
CN108348723B (zh) 弯管组件
CN110869079B (zh) 患者接口
CN109906098B (zh) 用于患者接口的换气口和换气口适配器
CN115252999A (zh) 患者接口
CN111511431A (zh) 用于患者接口的导管头带连接器
CN214713744U (zh) 具有气流调节的双腔室患者接口
CN112805053A (zh) 患者接口
CN111918688A (zh) 连接器组件
CN215351312U (zh) 患者接口及包括该患者接口的呼吸压力治疗系统
NZ754925A (en) Vent adaptor for a respiratory therapy system
NZ795793A (en) Vent adaptor for a respiratory therapy system
NZ795792A (en) Vent adaptor for a respiratory therapy system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination