CN115088719B - 岩藻寡糖的用途 - Google Patents

岩藻寡糖的用途 Download PDF

Info

Publication number
CN115088719B
CN115088719B CN202210856887.9A CN202210856887A CN115088719B CN 115088719 B CN115088719 B CN 115088719B CN 202210856887 A CN202210856887 A CN 202210856887A CN 115088719 B CN115088719 B CN 115088719B
Authority
CN
China
Prior art keywords
plant
fucoidin
genes
immunity
enzymolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210856887.9A
Other languages
English (en)
Other versions
CN115088719A (zh
Inventor
严国富
汤洁
吕东平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING LEILI MARINE BIOINDUSTRY Inc
Original Assignee
BEIJING LEILI MARINE BIOINDUSTRY Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING LEILI MARINE BIOINDUSTRY Inc filed Critical BEIJING LEILI MARINE BIOINDUSTRY Inc
Priority to CN202210856887.9A priority Critical patent/CN115088719B/zh
Publication of CN115088719A publication Critical patent/CN115088719A/zh
Application granted granted Critical
Publication of CN115088719B publication Critical patent/CN115088719B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Agronomy & Crop Science (AREA)
  • Peptides Or Proteins (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明涉及植物生物农药技术领域,尤其涉及岩藻寡糖的用途。本发明采用岩藻寡糖处理植株幼苗,然后对植株进行转录组分析、抗病标志基因的表达分析、促分裂原活化蛋白激酶(MAPK)的活性、和植物对丁香假单胞杆菌的抗性分析。结果表明,岩藻寡糖能够作为植物免疫激活剂用于防治植物细菌病害。

Description

岩藻寡糖的用途
技术领域
本发明涉及植物生物农药技术领域,尤其涉及岩藻寡糖的用途。
背景技术
病害是影响农作物产量的重要因素。例如,丁香假单胞杆菌(Pseudomonassyringae pv.tomato)等其它病原细菌能够引起番茄(Lycopersicon esculentum)斑疹病(tamato bacterial speck)等细菌性病害。同时,丁香假单胞杆菌也能够成功侵染模式植物拟南芥(Arabidopsis thaliana)。
植物对于病原微生物的抵御依赖于其自身的天然免疫系统(plant innateimmunity)。植物模式识别受体(pattern recognition receptor,PRR)识别了来自病原微生物的保守的分子结构以后,会激活一系列其天然免疫反应,包括:MAPK(mitogen-activated protein kinase)级联反应的激活,免疫相关基因的诱导表达,以及对病原微生物的免疫等。
人们把外界环境中能够诱导或激发植物天然免疫的各种诱导因子、激发子等称为植物免疫激活剂。利用植物免疫激活剂,能够提高植物的免疫力,抵御病原微生物的入侵,从而达到农作物稳产、增产的目的;同时也能够减少传统农药的使用和降低环境污染。
岩藻多糖(Fucoidan)是以L-岩藻糖、半乳糖为主和多种单糖残基以及硫酸基的水溶性多糖,存在于所有褐藻中,其结构十分复杂,一方面不同种褐藻的岩藻多糖,化学组成不尽相同,除了主要成分岩藻糖和硫酸酯外,还含有其他单糖(甘露糖、鼠李糖、葡萄糖、木糖、葡萄糖醛酸等)和糖醛酸,还具有乙酰基和蛋白质。藻寡糖(Fucoidanoligosaccharides,FOS)是岩藻多糖经过岩藻多糖裂解酶酶解定向制备获得2~20聚合度的寡糖物质。
目前未见有关于岩藻寡糖处理后提高植物免疫力的报道,特别是未见岩藻寡糖处理有植物转录组分析、免疫标志基因的表达分析、和促分裂原活化蛋白激酶(MAPK)的活性以及提高植物对于丁香假单胞杆菌抗性分析的报道。
发明内容
有鉴于此,本发明要解决的技术问题在于提供岩藻寡糖作为植物免疫激活剂在防治植物细菌病害中的应用。
本发明提供了岩藻寡糖在激活植物免疫力中的应用。
本发明研究表明,岩藻寡糖能够激活植物免疫力,从而起到防治植物病害的作用。特别是能够预防植物病害。
本发明中,所述植物病害是由植物病原引起的病害。所述植物包括单子叶植物或双子叶植物,一些实施例中,所述双子叶植物包括十字花科植物和/或茄科植物。所述十字花科植物包括拟南芥;所述茄科植物包括番茄。一些具体实施例中,以番茄栽培品种秦蔬毛粉为对象,对岩藻寡糖的活性进行验证。
本发明中所述植物病害的病原包括真菌性病原、细菌性病原和/或病毒性病原。一些实施例中,所述病原为细菌性病原,具体实施例中,以丁香假单胞杆菌(Pseudomonassyringae pv.tomato)为病原,对岩藻寡糖的活性进行验证。
本发明显示岩藻寡糖处理番茄导致的差异表达基因在抗病响应,模式结合,和激素响应等一些植物抗病或天然免疫相关的分子功能和生物学过程被明显富集。KEGG分析表明,差异表达基因中植物与病原菌的互作,MAPK信号途径,和植物激素的信号转导等生物学途径被明显富集。反转录-荧光定量PCR结果表明,植物免疫反应标志基因SlNHL10等的表达被岩藻寡糖大量诱导。同时,岩藻寡糖的处理使MAPK被明显激活。尤为重要的是,利用岩藻寡糖对植物进行预处理后,其对丁香假单胞杆菌的抗性明显增强。这些结果表明,岩藻寡糖处理上调了植物抗病相关基因的表达,诱导了植物与病原菌互作途径,激活了植物天然免疫信号转导,从而提高了植物的抗病性。
本发明中,所述激活植物免疫力包括调节植物免疫相关基因的表达和/或激活植物免疫力相关基因。
本发明中,所述激活植物免疫力相关基因包括MPK3和/或MPK6。所述调节植物免疫相关基因包括富集如下生物学途径中的至少一项:
I)、植物中与病原的互作途径;
II)、促分裂原活化蛋白激酶信号途径;
III)、植物激素的信号转导途径。
一些实施例中,所述植物免疫相关基因包括如下基因中的至少一种:OXI1、CNGC2,CNGC3,Calmodulin binding protein的编码基因,WRKY类转录因子的编码基因和NHL10。
本发明还提供了一种提高植物免疫力的产品,其包含岩藻寡糖。
本发明中,所述提高植物免疫力的产品为生物农药。一些实施例中,所述生物农药中包括:岩藻寡糖65wt%,硫酸酯30wt%和水5wt%。
本发明中,所述生物农药由岩藻多糖酶解获得,其中主要包括盐藻寡糖和硫酸酯,所述硫酸酯(亦称为磺酸基)的通式为R-O-SO2-O-R',其中R或R’独立的选自盐藻寡糖。
一些具体实施例中,所述岩藻寡糖的聚合度为2~20,分子量为3000~10000道尔顿。
所述的生物农药制备方法,其特征在于,包括:以岩藻多糖裂解酶酶解岩藻多糖,至85%以上的酶解物聚合度为2~20;灭酶后,取上清液依次经微滤、超滤、纳滤,使99%以上的酶解物聚合度为2~20;经冷冻干燥,制得所述生物农药;
所述酶解的条件包括:在岩藻多糖的水溶液中进行,其中岩藻多糖的质量分数为5%~7%,所述岩藻多糖与岩藻多糖裂解酶的质量比为6:(1~10);所述岩藻多糖裂解酶的酶活为100~1000IU/ml,酶解温度为20~50℃,pH值为5.0~8.0,时间为1~5h。
所述冷冻干燥的温度为-50~-20℃。
一些具体实施例中,所述生物农药的制备方法包括:
(1)岩藻多糖酶解:
向反应罐中加入水100Kg和85%含量的岩藻多糖6Kg,缓慢升温至20-50℃,pH值控制在5.0-8.0,加入1-10Kg岩藻多糖裂解酶(FDS)(酶活100-1000IU/ml),酶解1-5h,检测酶解后粘度和聚合度,酶解物聚合度控制85%以上在2-20聚合度。
(2)岩藻寡糖分离、浓缩、提纯:
将步骤(1)中酶解液升温至95℃,搅拌30min,进行灭酶。冷却至60±5℃后,转入离心装置(3000r/min),离心取上清液。将上清液通过微滤、超滤、纳滤装置,起到分离除去大分子和小分子有机物、小分子无机盐作用,获得岩藻寡糖水剂产品。岩藻寡糖纯化物聚合度控制99%以上在2-20聚合度。
(3)岩藻寡糖固体成品创制:
将步骤(2)中的岩藻寡糖纯化清液在-50~-20℃下冷冻干燥,获得FOS固体成品。其中岩藻寡糖含FOS 65%,硫酸酯30%,水份5%。
本发明还提供了一种提高植物免疫力的方法,其包括施用本发明所述的产品。本发明中,所述施用包括在幼苗期施用。
本发明采用岩藻寡糖处理植株幼苗,然后对植株进行转录组分析、抗病标志基因的表达分析、促分裂原活化蛋白激酶(MAPK)的活性、和植物对丁香假单胞杆菌的抗性分析。结果表明,岩藻寡糖能够作为植物免疫激活剂用于防治植物细菌病害。
附图说明
图1示三组生物学重复样品的相关性分析;分别利用岩藻寡糖(FOS)或水(CK)处理番茄幼苗,各三个重复,提取RNA并开展转录组测序(RNA-Seq)分析;
图2示岩藻寡糖处理引起的番茄差异表达基因的火山图;筛选阈值|log2FC|>1.0,padj<0.05,FC,fold change,No,无显著性差异;
图3示岩藻寡糖处理引起的番茄差异表达基因的聚类图;横坐标代表对照与岩藻寡糖处理的样品名称,纵坐标代表差异基因以及基因的聚类结果,不同的行代表不同的基因,不同颜色代表了相关基因在不同样品中的表达量,log2(FPKM+1);
图4示岩藻寡糖处理引起的番茄差异表达基因GO富集分析;
图5示岩藻寡糖处理引起的番茄差异表达基因的KEGG富集分析;NES为正值表示FOS诱导上调的KEGG通路,NES为负表示FOS处理引起下调的KEGG通路,图中展示了前10条上调KEGG和前5条下调KEGG,红色和蓝色KEGG的FDR<0.05;
图6示植物与病原菌的互作生物学途径基因集富集分析(GSEA);
图7示植物与病原菌的互作生物学途径基因集中被富集到的差异表达基因,红色表示上调基因,蓝色表示下调基因;
图8示岩藻寡糖处理诱导番茄免疫基因SlNHL10的表达;6天苗龄的番茄幼苗,被1000μg/ml的岩藻寡糖处理30min,对照(CK)用水处理,提取总RNA,利用RT-qPCR检测SlNHL10的表达;
图9示岩藻寡糖处理诱导拟南芥免疫基因的表达;7天苗龄的拟南芥幼苗,被400μg/ml的岩藻寡糖处理不同时间,对照(CK)用水处理,提取总RNA,利用RT-qPCR检测免疫基因的表达;
图10示岩藻寡糖处理诱导MAPK3/6的激活;A示6天苗龄的番茄幼苗,被400μg/mL的岩藻寡糖处理0-30分钟;对照(CK)用水处理,提取总蛋白,通过免疫印迹的方法,利用抗Erk1/2抗体检测MAPK3/6的激活;CBB:叶绿体蛋白的考马氏亮蓝染色;B示7天苗龄的拟南芥幼苗,被400μg/mL的岩藻寡糖处理0-30分钟,对照(CK)用水处理,提取总蛋白,通过免疫印迹的方法,利用抗Erk1/2抗体检测MAPK3/6的激活,GAPDH作为内参;
图11示FOS处理能诱导拟南芥对病原细菌产生免疫反应;400μg/mL FOS和1.5μMflg22预处理5周龄Col-0叶片24h再接种Pst.DC3000 48h;数值为每平方厘米叶面积的菌落形成单位(cfu/cm2);单因素方差分析,****P<0.0001。
具体实施方式
本发明提供了岩藻寡糖的用途,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
本发明采用的试材皆为普通市售品,皆可于市场购得。其中,岩藻寡糖是由岩藻多糖经过岩藻多糖裂解酶酶解定向制备获得2-20聚合度的寡糖物质,具有特定有机硫酸基结构,含量90%以上。
下面结合实施例,进一步阐述本发明:
实施例1
(1)用岩藻寡糖(聚合度2-20,含量95%以上)处理番茄小苗:选取长势均匀的6天龄的番茄(栽培品种“秦蔬毛粉”)小苗,置于含有5ml无菌水的10ml离心管中(4颗小苗/离心管),静置过夜平衡。第二天用岩藻寡糖(FOS)处理。处理后用纸巾吸干幼苗表面水分,放置于液氮中速冻备用。
(2)然后进行番茄小苗总RNA的提取。
(3)进行文库的构建及测序:将岩藻寡糖(FOS)处理的番茄小苗和对照材料的总RNA通过Oligo(dT)磁珠富集带有polyA尾的mRNA。随后将得到的mRNA随机打断。以片段化的mRNA为模版,以随机寡核苷酸为引物,利用M-MuLV逆转录酶体系合成cDNA的第一条链。随后,用RNaseH将RNA链降解。以cDNA的第一条链为模板,以dNTPs为原料,在DNApolymerase I体系中合成cDNA第二条链。经纯化后的双链cDNA经过末端修复、加A尾、并连接测序接头。然后,用AMPure XP beads筛选370~420bp左右的cDNA片段进行PCR扩增,并再次纯化PCR产物,最终获得文库。经检验文库合格后,对文库(本发明共6个文库)进行Illumina测序。
(4)接着进行生物信息学分析:1)差异表达基因分析:使用DESeq2软件(1.20.0)对岩藻寡糖处理组和对照组之间的差异表达基因进行分析,阈值设定为|log2foldchange|>1.0,padj<0.05。2)差异表达基因聚类:采用主流的层次聚类方法,对处理组和对照组6个样品的差异基因的FPKM值进行聚类分析。而后,对行(row)进行均一化处理(Z-score),将表达模式相近的基因聚类在一起。3)差异表达基因功能注释和富集分析:利用clusterProfiler(3.8.1)软件对差异表达基因进行GO富集分析。4)基因集富集分析(GeneSet Enrichment Analysis,GSEA)使用预先定义的基因集,通过本地版GSEA分析工具http://www.broadinstitute.org/gsea/index.jsp),对岩藻寡糖处理番茄引起的差异表达基因的KEGG数据集进行GSEA分析。
(5)进行反转录荧光定量PCR(RT-qPCR):用1000μg/ml的岩藻寡糖处理6天苗龄的番茄幼苗30min,或用400μg/ml的岩藻寡糖处理7天苗龄的拟南芥(Col-0)0、0.5h、1h和2h。对照组(CK)用水处理。然后用Trizol法提取总RNA。RNA的反转录采用反转录kit(诺唯赞公司),按照试剂盒的说明书进行。然后采用Bio-Rad CFX Manager 3.1平台进行定量PCR。本发明所用到的定量PCR引物序列如下:
内参基因为SlActin(LOC101262163):
F-CGGTGACCACTTTCCGATCT,R-TCCTCACCGTCAGCCATTTT;
免疫相关标志基因:
SlNHL10:
F端引物,AACGAATCGGGATTTACTACGA,
R端引物,AAACCTTGTCCTTTAAACACCG;
拟南芥NHL10:
F端引物,ACTTTAAACGCGGAGAGGATAT
R端引物,CTTCAAGTCCCCAAGCTTAAAC
拟南芥WRKY30:
F端引物,AACAATGCCGATACAAAACCTC
R端引物,CGCATTTGAAGCATATAGGCAT
拟南芥OXI:
F端引物,GTGTCAGATTCTTCAGGTGAGA
R端引物,GTCGTTTCACCAGTTAGATTCG
(6)进行MAPK激活的检测:6天苗龄的番茄幼苗或7天苗龄的拟南芥(Col-0),用400μg/ml的岩藻寡糖处理不同时间(0-30分钟),对照(CK)用水处理。提取总蛋白,通过免疫印迹的方法,利用抗Erk1/2抗体检测MAPK3/6的激活。
(7)进行植物对病原细菌的抗性的检测
1)活化丁香假单胞杆菌菌株DC3000,挑单菌落至含有利福平霉素(50μg/mL)的KB液体培养基,28℃摇床上培养16h;2)分别用H2O、flg22、岩藻寡糖对4周龄的拟南芥叶片进行预处理24h;3)收集1)中活化后的细菌:3000rpm离心2分钟,用H2O洗两遍,将OD调到10-3;用无针注射器将菌液注射到预处理的植物叶片中,侵染2-3天;4)在1.5mL无菌的离心管中加入100μL无菌水,用打孔器从被细菌侵染的植物叶片取样,无菌水中漂洗,放在上述离心管中,研磨样品后加入900μL无菌水,稀释为10-3,并依次稀释到10-4和10-5;5)将稀释好的样品取10μL涂在含福平霉素(50μg/mL)的KB固体培养基上,28℃培养36h后,统计菌斑数量。
实验结果:
岩藻寡糖处理导致1289个番茄基因上调表达,279个基因下调表达。差异表达基因的基因本体(Gene Ontology,GO)分析表明,抗病响应,模式结合,和激素响应等一些植物天然免疫相关的分子功能和生物学过程在岩藻寡糖处理引起的差异表达基因中被明显富集。KEGG分析表明,植物与病原菌的互作,MAPK信号途径,以及植物激素信号转导等生物学途径被显著富集。反转录-荧光定量PCR结果表明,植物免疫反应标志基因SlNHL10的表达被岩藻寡糖大量诱导。MAPK的激活是植物免疫信号激活的重要标志。岩藻寡糖的处理使番茄和拟南芥中的MAPK被明显激活。利用岩藻寡糖对拟南芥预处理后,其对致病细菌丁香假单胞杆菌的抗性明显增强。这些结果表明,岩藻寡糖处理上调了植物免疫相关基因的表达,诱导了植物与病原菌互作途径,激活了植物天然免疫信号转导,从而提高了番茄的抗病性。
对照组中不同样品的r2介于0.941-0.956之间,处理组中不同样品的r2介于0.951-0.974(图1)。这表明重复样品间具有较强的相关性。
分别利用岩藻寡糖(FOS)或水(CK)处理番茄幼苗,各三个重复。提取RNA并开展转录组测序(RNA-Seq)分析。
岩藻寡糖处理番茄后,有1289基因上调表达,279个基因下调表达(|log2foldchange|>1.0,padj<0.05)(图2)。对差异表达基因中那些具有相似表达模式的基因进行了聚类分析,结果如图3所示。
对岩藻寡糖处理下番茄差异表达基因进行GO分析的结果显示,抗病响应(defenseresponse),模式结合(pattern binding),和激素响应(response to hormone)等一些植物天然免疫相关的分子功能和生物学过程被明显富集(图4)。这一结果暗示了岩藻寡糖处理诱导了植物免疫相关基因的表达,从而激活了番茄的天然免疫。
对岩藻寡糖处理引起的番茄差异表达基因的KEGG富集分析结果显示,植物与病原菌的互作(plant pathogen interaction),MAPK信号途径(MAPKsignaling pathway),次生代谢物的合成(Biosynthesis of secondary metabolites),和植物激素信号转导(Planthormone signaltransduction)等生物学途径被明显富集(图5)。这一结果进一步暗示了岩藻寡糖处理导致了植物与病原菌互作等生物途径基因的差异表达,从而提高了番茄的免疫力。
为了进一步从全基因组层面验证岩藻寡糖处理植物激活了植物的天然免疫,我们对上述差异表达基因进行基因集富集分析(GSEA)。结果显示,植病互作基因集(plantpathogen interaction gene set)在差异表达基因中被明显富集(图6)。该途径中被富集到的基因有:SlCNGC2(Solyc05g050380),SlCNGC3(Solyc05g050350)(Mumtaz et a.,2015),Calmodulin binding protein的编码基因(Solyc02g088090)(Padmanabhan etal.,2019),WRKY类转录因子的编码基因(Solyc09g014990)(Padmanabhan et al.,2019),SlNHL10(NDR1/HIN1-LIKE 10)等(图7)。
NHL10是一个重要的免疫标志基因(Boudsocq et al.,2010)。反转录-荧光定量PCR结果表明,番茄SlNHL10,在番茄被岩藻寡糖处理30分钟后,诱导倍数达到约15倍(图8)。这表明,岩藻寡糖和细菌鞭毛蛋白一样,能诱导番茄产生免疫反应,以提高番茄的抗病性。
类似的,我们检测了拟南芥免疫标志基因的表达。我们采用7天苗龄的拟南芥Col-0作为植物材料,400μg/mL岩藻寡糖分别处理0、0.5h、1h和2h。结果表明,免疫标志基因NHL10,OXI1,WRKY39均能够被岩藻寡糖诱导上调表达,WRKY30的诱导倍数更是高达约89倍,且在岩藻寡糖处理30分钟时诱导倍数最高(图9)。
MPAK级联反应的激活是植物天然免疫被激活的重要标志。MPAK级联反应的激活会导致MPK3和MPK6发生快速的磷酸化反应(Suarez-Rodriguez等,2007)。我们发现,在番茄和拟南芥被400μg/mL岩藻寡糖处理后,植物的MAPK3和MAPK6就被明显激活(图10)。这表明,岩藻寡糖和细菌鞭毛蛋白一样,能诱导番茄产生免疫反应,以以提高番茄的抗病性。
丁香假单胞杆菌(Pseudomonas syringae pv.tomato DC3000)能够侵染拟南芥和番茄等植物。我们检测了岩藻寡糖处理拟南芥(野生型Col-0)对其抵御细菌侵染的影响。我们分别用400μg/mL FOS和1.5μM flg22预处理5周龄的拟南芥叶片24h(flg22为阳性对照)。之后用丁香假单胞杆菌菌液侵染拟南芥叶片。48h后观察细菌的生长情况。结果如图11所示,和flg22类似,FOS预处理后细菌在拟南芥中的增殖数量明显少于对照组,说明FOS处理能诱导拟南芥对病原细菌产生免疫反应。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.生物农药在激活植物对细菌性病原的免疫力中的应用;
所述生物农药包括:岩藻寡糖65wt%,硫酸酯30wt%和水5wt%,所述岩藻寡糖的聚合度为2~20,分子量为3000~10000道尔顿。
2.根据权利要求1所述的应用,其特征在于,所述生物农药的制备方法包括:以岩藻多糖裂解酶酶解岩藻多糖,至85%以上的酶解物聚合度为2~20;灭酶后,取上清液依次经微滤、超滤、纳滤,使99%以上的酶解物聚合度为2~20;经冷冻干燥,制得所述生物农药;
所述酶解的条件包括:在岩藻多糖的水溶液中进行,其中岩藻多糖的质量分数为5%~7%,所述岩藻多糖与岩藻多糖裂解酶的质量比为6:(1~10);所述岩藻多糖裂解酶的酶活为100~1000IU/ml,酶解温度为20~50℃,pH值为5.0~8.0,时间为1~5h。
3.根据权利要求1所述的应用,其特征在于,所述激活植物对细菌性病原的免疫力包括调节植物免疫相关基因的表达和/或激活植物免疫力相关基因。
4.根据权利要求3所述的应用,其特征在于,所述调节植物免疫相关基因包括富集如下生物学途径中的至少一项:
I)、植物中与病原的互作途径;
II)、促分裂原活化蛋白激酶信号途径;
III)、植物激素的信号转导途径。
5.根据权利要求1所述的应用,其特征在于,所述细菌性病原包括丁香假单胞杆菌。
6.根据权利要求3或4所述的应用,其特征在于,所述植物免疫相关基因包括如下基因中的至少一种:OXI1、CNGC2,CNGC3,Calmodulin binding protein的编码基因,WRKY类转录因子的编码基因和NHL10;
所述激活植物免疫力相关基因包括MPK3和/或MPK6。
7.根据权利要求3或4所述的应用,其特征在于,所述植物包括茄科植物和/或十字花科植物。
CN202210856887.9A 2022-07-20 2022-07-20 岩藻寡糖的用途 Active CN115088719B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210856887.9A CN115088719B (zh) 2022-07-20 2022-07-20 岩藻寡糖的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210856887.9A CN115088719B (zh) 2022-07-20 2022-07-20 岩藻寡糖的用途

Publications (2)

Publication Number Publication Date
CN115088719A CN115088719A (zh) 2022-09-23
CN115088719B true CN115088719B (zh) 2024-05-24

Family

ID=83298011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210856887.9A Active CN115088719B (zh) 2022-07-20 2022-07-20 岩藻寡糖的用途

Country Status (1)

Country Link
CN (1) CN115088719B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115517260B (zh) * 2022-10-11 2024-05-24 北京雷力海洋生物新产业股份有限公司 生物农药的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106635920A (zh) * 2017-01-17 2017-05-10 中国海洋大学 一种高产岩藻多糖酶的海洋交替假单胞菌及其应用
CN111990403A (zh) * 2020-09-08 2020-11-27 北京雷力海洋生物新产业股份有限公司 褐藻双寡糖蛋白组合物及其制备方法和应用
CN112458067A (zh) * 2020-12-09 2021-03-09 南京益纤生物科技有限公司 一种降解岩藻多糖噬菌体源多糖解聚酶的制备方法及应用
CN113004431A (zh) * 2021-03-03 2021-06-22 大连工业大学 一种光催化降解岩藻多糖的方法及其产物在抗菌中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106635920A (zh) * 2017-01-17 2017-05-10 中国海洋大学 一种高产岩藻多糖酶的海洋交替假单胞菌及其应用
CN111990403A (zh) * 2020-09-08 2020-11-27 北京雷力海洋生物新产业股份有限公司 褐藻双寡糖蛋白组合物及其制备方法和应用
CN112458067A (zh) * 2020-12-09 2021-03-09 南京益纤生物科技有限公司 一种降解岩藻多糖噬菌体源多糖解聚酶的制备方法及应用
CN113004431A (zh) * 2021-03-03 2021-06-22 大连工业大学 一种光催化降解岩藻多糖的方法及其产物在抗菌中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王松.褐藻寡糖的制备及诱导烟草抗性研究.中国海洋大学硕士学位论文集.2003,摘要,第39页,第22页. *
褐藻寡糖的制备及诱导烟草抗性研究;王松;中国海洋大学硕士学位论文集;摘要,第39页,第22页 *

Also Published As

Publication number Publication date
CN115088719A (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
Zhou et al. Endophytism or saprophytism: decoding the lifestyle transition of the generalist fungus Phomopsis liquidambari
CN115088719B (zh) 岩藻寡糖的用途
Yang et al. Transcriptional profiling of underground interaction of two contrasting sunflower cultivars with the root parasitic weed Orobanche cumana
CN116270973A (zh) 克氏原螯虾甘露糖结合蛋白在抑制细菌中的应用
Oblessuc et al. Novel molecular components involved in callose-mediated Arabidopsis defense against Salmonella enterica and Escherichia coli O157: H7
CN109293757B (zh) 具有控制叶片卷曲功能的毛竹PeTCP10蛋白及其应用
CN108004267B (zh) 一种利用基因工程技术延长番茄果实货架期的方法
Gao et al. Molecular and physiological characterization of Arabidopsis–Colletotrichum gloeosporioides pathosystem
Liu et al. Digital gene expression profiling of the transcriptional response to Sclerotinia sclerotiorum and its antagonistic bacterium Bacillus amyloliquefaciens in soybean
Xiao et al. Differential expression and co-localization of transcriptional factors during callus transition to differentiation for shoot organogenesis in the water fern Ceratopteris richardii
US20210355500A1 (en) Bacterially secreted immunostimulants and methods to protect against pathogens
CN112852862B (zh) 拟南芥小肽信号分子rgf7基因的应用
Wang et al. Transcriptome analysis of Crimson seedless grapevine (Vitis vinifera L.) infected by grapevine berry inner necrosis virus
Pourhosseini et al. Agrobacterium-mediated transformation of chitinase gene in Rosa damascene cv. Ghamsar
CN113005122B (zh) 一种抗玉米病毒的小rna
CN116769667B (zh) 一种特基拉芽孢杆菌k3-11及其应用
Chen et al. RNA-Sequencing Analysis Revealed Genes Associated Stem Rot Responses at Different Infection Stages in sweetpotato (Ipomoea Batatas (L.) Lam.)
Zhang et al. Functional analysis of NtMPK2 uncovers its positive role in response to Pseudomonas syringae pv. tomato DC3000 in tobacco
Damaj et al. Reproducible RNA preparation from sugarcane and citrus for functional genomic applications
CN112048517B (zh) 干扰柑橘木虱卵黄蛋白原基因表达的转基因生防真菌及其制备方法和应用
CN117050919B (zh) 红球菌菌株nd011的应用和烟草种植方法
Zhang et al. Comparative transcriptome analysis of genes involved in Penicillium chrysogenum induced resistance to root-knot nematode in tomato
De Visscher Effect of biochar and chitin on plant defense and rhizosphere microbiome of strawberry
Chao et al. Identification of differentially-expressed genes of rice in overlapping responses to bacterial infection by Xanthomonas oryzae pv. oryzae and nitrogen deficiency
CN117683865A (zh) 多组学分析抗感魔芋对Pcc侵染的群落综合响应的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant