CN115084649A - 高度离子离域化聚合物固态电解质和全固态电池 - Google Patents

高度离子离域化聚合物固态电解质和全固态电池 Download PDF

Info

Publication number
CN115084649A
CN115084649A CN202210917075.0A CN202210917075A CN115084649A CN 115084649 A CN115084649 A CN 115084649A CN 202210917075 A CN202210917075 A CN 202210917075A CN 115084649 A CN115084649 A CN 115084649A
Authority
CN
China
Prior art keywords
lithium
solid
electrolyte
polymer
delocalized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210917075.0A
Other languages
English (en)
Inventor
杨帆
杨真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Pure Lithium New Energy Technology Co ltd
Original Assignee
Beijing Pure Lithium New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Pure Lithium New Energy Technology Co ltd filed Critical Beijing Pure Lithium New Energy Technology Co ltd
Priority to CN202210917075.0A priority Critical patent/CN115084649A/zh
Publication of CN115084649A publication Critical patent/CN115084649A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • C08F214/225Vinylidene fluoride with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • C08F220/46Acrylonitrile with carboxylic acids, sulfonic acids or salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种高度离子离域化聚合物固态电解质和全固态电池,通过自由基/阳离子型引发剂,将刚性单体、柔性单体、抗氧化剂及掺杂剂通过共价键进行有序组装,最终原位聚合固化获得高度离子离域化的超分子聚合物固态电解质。本发明中的自由基引发法具有环境污染小、固化速度快、能耗低、易大规模制备等特点。所制备的电解质膜室温下锂/钠离子电导率高、界面接触相容稳定性好、自修复特性、耐高压、并能有效抑制锂/钠枝晶生长,使用该膜制备的全固态电池,循环500周,容量保持率为80%以上。

Description

高度离子离域化聚合物固态电解质和全固态电池
技术领域
本发明提供了一种高度离子离域化聚合物固态电解质和全固态电池,可以大规模制备,属于全固态电池技术领域。
背景技术
传统锂/钠离子电池体系采用易挥发、易燃烧、低沸点液态有机电解质,具有易泄露、易腐蚀、安全性差等缺点,严重制约液态电池发展。电池固态化是解决安全性-高能量密度矛盾的有效解决途径。固态电池以固态电解质替代液态电解质、隔膜,根本上解决安全性问题,还能突破传统锂/钠离子电池能量密度极限,有望获得符合安全性标准、更高能量密度和更长寿命的锂/钠离子电池,将会在新能源汽车、大规模储能等领域具有广阔的应用价值及前景。固态电池结构包括正极、负极、电解质,均由固体材料组成,其中固态电解质担任传导锂离子和隔膜作用,优势在于:①高安全性;②能量密度高,工作温度范围宽;③封装简化,电芯内部为串联结构。然而目前固态电解质均有性能短板,聚合物室温电导率低;氧化物与电极之间界面阻抗大;硫化物空气中不稳定。此外,电极/电解质固固界面处存在空间电荷层、接触不良、副反应、机械匹配性差等问题,均对电池容量和倍率性能有重大影响。
在上述各类固态电解质材料中,聚合物电解质材料具有成本低、易加工、质量轻、高弹性模量和易大规模制备等优势,是极具工程化潜质的固态电解质。聚环氧乙烷(PEO)、聚甲基丙烯酸甲酯(PMMA)、环氧乙烷-环氧丙烷P(EO-PO)、聚丙烯氧化物(PPO)、聚丙烯腈(PAN)、聚氯乙烯(PVC)和聚偏二氟乙烯(PVDF)等,均可用作固态电解质基体,均有优异的灵活性和加工性,具有较高工程化潜质。然而,由于聚合物的高玻璃化转变温度(Tg),及较高的最高占有分子轨道(HOMO)能量,导致聚合物在工程化应用中存在两大瓶颈,首先,聚合物在室温下的锂/钠离子电导率较低(10-8~10-6S·cm-1);其次,聚合物电解质在高电位下容易被氧化,无法与高电压正极进行适配。
专利CN 101735589 B提供了一种聚合物电解质,该聚合物电解质含有聚氧化乙烯、锂盐和掺杂剂,其中,所述掺杂剂为非水溶性的金属硫化物。本发明还提供了制备该聚合物电解质以及包括该聚合物电解质的聚合物电池。其中,所述制备聚合物电解质的方法包括在聚氧化乙烯存在下将含有金属离子的溶液与含有硫离子的溶液接触,将接触后的产物与锂盐混合均匀,并将混合均匀后的产物进行成膜,所述金属离子为非水溶性的金属硫化物的金属离子。在本发明中通过使用非水溶性的金属硫化物作为掺杂剂,从而显著提高了聚合物电解质員的室温电导率和锂离子迁移数。
但是该技术存在以下缺点:由于掺杂剂是非水溶性的,因此需要耗费大量有毒有害的有机溶剂,包括溶解聚氧化乙烯、配置含有金属离子的溶液与含有硫离子的溶液,最后让它们接触发生原位反应,并需要再充满保护气体的条件下进行,最后再和锂盐混合,成膜。此工艺配置溶液较多,步骤较多较为复杂繁琐,反应时间较长(54小时),且原位生成金属硫化物颗粒尺寸无法控制(30-100纳米),因此最终成的膜很难均匀。最终导致制备工艺成本高昂,很难获得放大。最重要的是该发明,并未解决聚合物不耐高压的瓶颈缺陷。
专利201910674515.2提供了一种固态电解质的聚合物基材及其制备方法以及聚合物固态电解质和电池,聚合物基材为星型结构,具有中心核和与所述中心核键合的臂部,中心核含有无机纳米粒子,臂部由式(1)所示的化合物聚合得到,
Figure BDA0003775495340000021
其中A含有基团-C=C-或-C≡C-,R1选自取代或未取代的C1-C10的烷基、H中的一种,n大于零且为整数。本发明提供的聚合物电解质的离子电导率大大提高。含有聚合物电解质的锂离子电池,电池的安全性能和实用寿命大大提高。但是该技术存在以下缺点:该专利应用无机粒子作为中心核,在无机粒子外壳生长聚合物分子链段,合成过程中需要使用惰性气体,还需要金属催化剂,实验中所使用为N,N-二甲基甲酰胺(DMF)、N-甲基吡咯烷酮(NMP)、二甲基亚砜(DMSO)、水和二氧六环有毒有害,提高废液处理成本,不利已大规模生产。此外,该专利所述的无机粒子有SiO2、MgO、CaO、CeO2、ZnO等,均是锂离子绝缘体,因此将这些粒子作为中心核反而还会降低电解质的电导率,不能满足商业锂离子电池的要求。
申请号202210040187.2提供了一种聚合物固态电解质膜及其制备方法和全固态电池,属于全固态电池技术领域,本发明中腈类单体为电解质膜提供刚性,乙烯酯类单体为电解质膜提供柔性,使得电解质膜在保证机械性能的同时加强界面接触,同时改善固/固接触阻抗提升界面相容性,加入增塑剂产生交联网络为锂离子传输提供通道,便于锂离子迁移,加入交联剂提高了电解质膜的机械强度,能够抑制锂枝晶生长。实施例的结果显示,本发明制备的电解质膜室温离子电导率为6.16×10-4S cm-1,制备的全固态电池在0.2C的倍率下最高放电比容量可达154.82mAh g-1,第60圈循环的容量保持率为92%。但是该技术存在以下缺点:该专利中,制备聚合物所使用的增塑剂也是一种有机液体,具有易燃易爆的特点,加入聚合物电解质中虽然能提高离子电导率,但是安全性无法保证。此外,该发明技术使用溶液法来合成聚合物,不能彻底清除有机溶剂的残留物,不利于大规模量产。该技术所制备的聚合物膜较厚:200μm,会极大增加固态电池内阻,影响电池倍率特性。
专利申请202110503667.3公开了聚合物固态电解质膜及制备方法和全固态电池,该聚合物固态电解质膜包括:刷状PEO交联网络、PEO线性分子链和锂盐;刷状PEO交联网络由PEO大分子单体和交联剂通过自由基聚合反应制得。本发明的聚合物电解质膜具有较好的室温电导率和机械强度,能解决液态电解质或准固态电解质锂离子电池安全性问题和全固态电池室温离子电导率不够问题,能够用于高能量密度的锂金属电池,解决高能量密度锂金属电池安全性不够的问题,具有可观的应用前景。但是该技术存在以下缺点:该方法为PEO的共聚改性,但共聚物制备时间花费时间太长,且反应条件中需要大量使用四氢呋喃、N-甲基吡咯烷酮、N,N-二甲基甲酰胺、二甲基亚砜和乙腈中有毒有机溶剂,干燥过程中,无法完全清除有机溶剂残留,这会大大影响产物的纯度,且此种方法所需要条件要求很高(真空干燥,惰性气氛),无法大规模制备。
发明内容
本发明提供一种高度离子离域化聚合物固态电解质和全固态电池,提高离子导电基材—聚合物电解质材料的室温电导率和高电压稳定性(抑制聚合物基团被氧化)。本发明的聚合物电解质材料具有较高的室温电导率和高电压稳定性。本发明无需高压高温的容器设备和特殊的环境,反应程度可控,且可一步法制备,适用于大规模生产。
要解决的技术问题具体为:
技术问题一:解决聚合物电解质材料(PEO、PMMA、P(EO-PO)、PPO、PAN、PVC和PVDF等)作为基体在≤室温下的低离子电导率的本征缺点。因为在此类聚合物中,均认为离子传导主要发生在玻璃化转变温度(Tg)以上的无定形区域,在该区域内锂/钠离子通过分子链段的蠕动来实现迁移,然而聚合物的Tg通常高于60摄氏度,严重阻碍聚合物作为锂/钠离子导体的商品化使用。
技术问题二:聚合物固态电解质在高电压下会发生氧化反应,进而无法与高电压电极材料进行匹配,导致锂/钠离子电池的能量密度受到影响。这是由于聚合物的HOMO能量通常较高(—OH等官能团存在的影响),导致了聚合物在高压下发生氧化分解反应。
聚合物固态电解质的离子传导机制,均认为主要发生在玻璃化转变温度(Tg)以上的无定形区域,在该区域内锂离子通过分子链段的蠕动来实现迁移。在本发明中,提出的高度离子离域化聚合物固态电解质材料技术方案,通过自由基/阳离子型引发剂,将刚性单体(联苯结构单体、卤化苯基、共轭骨架等)、柔性单体(乙烯酯、乙二醇等)、抗氧化剂及掺杂剂通过共价键进行有序组装,最终原位聚合固化获得高度离子离域化的超分子聚合物固态电解质。本发明中的自由基引发法具有环境污染小、固化速度快、能耗低、易大规模制备等特点。所制备的电解质膜室温下锂/钠离子电导率高、界面接触相容稳定性好、自修复特性、耐高压、并能有效抑制锂/钠枝晶生长,使用该膜制备的全固态电池,循环1000周,容量保持率为80%以上。
本发明提供了如下技术方案:
高度离子离域化聚合物固态电解质,制备方法包括:
步骤1:将自由基/阳离子引发剂、刚性小分子单体、柔性小分子单体及抗氧化剂材料放入自由基引发设备中,控制反应温度30~90℃,搅拌速度为50~250rpm,反应时间控制在6~14h,得到超分子聚合物基材;
步骤2:将步骤1得到的超分子聚合物基材与复合锂盐、掺杂剂均匀混合,并喷涂流延成膜,得到所述高度离子离域化的固态电解质薄膜材料。
其中,步骤1中,所述自由基/阳离子引发剂为过氧化苯甲酰、叔丁基过氧化氢、过氧化甲乙酮、偶氮二异丁腈、过硫酸盐中任一种或多种。
其中,步骤1中,所述刚性小分子为丙烯酸、烯丙基胺、联二苯甲酸、联呋喃-二甲酸、十二烷基硫酸根/层状双羟基氧化物、环戊二烯二聚体、1,5-环辛二烯中任一种或多种。
其中,步骤1中,所述柔性小分子为PEGDMA、碳酸亚乙烯酯、乙酸乙烯酯、烯二甲酰亚胺、丙烯腈和丙烯酸酯中任一种或多种。
其中,步骤1中,所述抗氧化剂为具有高介电常数、强吸电子基团、稳定极性官能团(-C-F/C≡N)的单体或链段功能基元,包括:单酚、双酚、多酚、氮杂环多酚、亚磷酸酯抗氧剂和含硫抗氧剂中任一种或多种;
其中,步骤1中,各物质的量为:
所述刚性分子含量为总单体量的15%~50%;
所述柔性分子含量为总单体量的15%~50%;
所述抗氧化剂含量为总单体量的0.1~0.5%;
所述的总单体量为刚性小分子、柔性小分子、抗氧化剂三者的质量和,三者的质量含量合计为100%;
所述自由基/阳离子引发剂含量为总单体量的0.5%~3%。
其中,步骤2中,所述锂/钠盐为LiBF4、LiPF6、LiAsF6、LiClO4、LiFSI、LiTFSI、NaPF6、NaClO4、NaFSI、NaTFSI中任一种或多种。
其中,步骤2中,所述掺杂剂为Al2O3、SiO2、LiS2、NaS2、PS5、Na3PS4、Na3PSe4、Li7La3Zr2O12、Li1.3Al0.3Ti1.7(PO4)3中任一种或多种。
其中,步骤2中,各物质的量为:
所述锂/钠盐含量为总量的质量分数15%~55%;
所述掺杂剂含量为质量分数2%~10%;
其余为超分子聚合物基材;
总量为超分子聚合物基材、复合锂盐、掺杂剂的质量和。
本发明还提供一种全固态电池,所述全固态电池包括电解质,所述的电解质为所述的高度离子离域化聚合物固态电解质;厚度15~200微米。
其中,全固态电池的正极材料为磷酸铁锂、磷酸锰锂、磷酸钴锂、氟化磷酸铁锂、碳包覆磷酸铁锂、磷酸钒钠、氟化磷酸钒钠,或者三元层状电极材料LiTMO2、NaTMO2,其中TM是AxByCz,A、B、C是由Ni、Co、Mn、Fe、Ti、Mg、Cu、Zn、Zr、Nb、Mo、Sn、Sb中任意三种阳离子元素组成,其中x+y+z=1。
正极材料占整个正极片的质量比例为50%-95%。
全固态电池的负极材料为石墨、硬碳、硅/碳负极材料,或者氧化硅/碳负极材料、锡基负极材料。
负极材料占整个负极片的质量比例为50%-95%。
其中,按照一定比例质量比将上述负极材料、导电剂、电解质、粘结剂混合,分散剂搅拌均匀,制成电极浆料;
另外,负极可以是纯金属锂带或者锂合金,厚度1-200μm。
本发明中的提供的技术方案,具有环境污染小、固化速度快、能耗低、易大规模制备等特点。所制备的电解质膜室温下锂/钠离子电导率高、界面接触相容稳定性好、自修复特性、耐高压、并能有效抑制锂/钠枝晶生长,使用该膜制备的全固态电池,循环1000周,容量保持率为80%以上。
附图说明
图1是本发明的流程示意图。
图2是实施例1中电解质膜的电化学阻抗图;
图3是实施例3中电解质膜的电化学窗口;
图4是实施例3中电解质膜的电镜图;
图5是实施例3中固态电池的充放电曲线。
具体实施方式
结合实施例说明本发明的具体技术方案。
实施例1:
本实施例用于说明本发明提供的聚合物电解质和固态电池及其制备方法。
①取丙烯酸、环氧丙烷、丙烯腈、乙酸乙烯酯、亚磷酸酯、过氧化苯甲酰,按照质量比(2.3:2.3:2.3:2.3:0.6:0.2)称量相应的材料,加入密封的反应釜中,充入二氧化碳,之后将该混合物升温至70℃,并在该温度下保温搅拌6小时。
②将①中获得的超分子基材作有机骨架基底,LiTFSI及LiClO4作为锂盐(锂盐浓度为0.6mol/L),碳酸乙烯酯作为掺杂剂,加入适量的溶剂中,置于磁力搅拌器上充分搅拌6h,搅拌均匀得到聚合物电解质前驱体。
③通过将前驱体喷涂在烘干的干净玻璃板表面,置于真空干燥箱内30℃下干燥12h,然后再升温至60℃干燥24h,得到厚度在30~50μm左右的聚合物电解质膜。
④在氩气手套箱中,将LiFePO4极片作为正极,锂片作为负极,裁成合适的尺寸后依次按照不锈钢片、正极、③电解质、锂片的顺序置入2032扣式模具中制备纽扣电池,用封口机封实后存放于手套箱中以备测试。
图2是实施例1中电解质膜的电化学阻抗图。
实施例2:
本实施例用于说明本发明提供的聚合物电解质和固态电池及其制备方法。
根据实施例1的方法制备聚合物电解质,不同的是:使用的盐是NaTFSI及NaPF6,磷酸钒钠作为正极,钠片作为负极。从而制得厚度为30~50μm左右的导钠聚合物电解质膜样品。
实施例3:
①取联二苯甲酸、偏氟乙烯、丙烯酸酯、乙酸乙烯酯、亚磷酸酯、过氧化苯甲酰,按照质量比(2.3:2.3:2.3:2.3:0.6:0.2)称量相应的材料,加入密封的反应釜中,之后将该混合物升温至50℃,并在该温度下保温搅拌6小时。
②将①中获得的超分子基材作有机骨架基底,LiTFSI及LiClO4作为锂盐(锂盐浓度为0.6mol/L),碳酸亚乙烯酯作为掺杂剂,加入适量的溶剂中,置于磁力搅拌器上充分搅拌6h,搅拌均匀得到聚合物电解质前驱体。
③通过将前驱体喷涂在烘干的干净玻璃板表面,置于真空干燥箱内30℃下干燥12h,然后再升温至60℃干燥24h,得到厚度在30~50μm左右的聚合物电解质膜。
④在氩气手套箱中,将LiFePO4极片作为正极,锂片作为负极,裁成合适的尺寸后依次按照不锈钢片、正极、③电解质、锂片的顺序置入2032扣式模具中制备纽扣电池,用封口机封实后存放于手套箱中以备测试。
图3是实施例3中电解质膜的电化学窗口;图4是实施例3中电解质膜的电镜图;图5是实施例3中固态电池的充放电曲线。
实施例4:
本实施例用于说明本发明提供的聚合物电解质和固态电池及其制备方法。
根据实施例3的方法制备聚合物电解质,不同的是:使用的盐是NaTFSI及NaPF6,磷酸钒钠作为正极,钠片作为负极。从而制得厚度为30~50μm左右的导钠聚合物电解质膜样品。
实施例5:
本实施例用于说明本发明提供的聚合物电解质和固态电池及其制备方法。
根据实施例3的方法制备聚合物电解质,不同的是:使用的质量比是2.4:2.4:2.2:2.2:0.6:0.2。从而制得厚度为30~50μm左右的导锂聚合物电解质膜样品。
实施例6:
本实施例用于说明本发明提供的聚合物电解质和固态电池及其制备方法。
根据实施例5的方法制备聚合物电解质,不同的是:使用的盐是NaTFSI及NaPF6,磷酸钒钠作为正极,钠片作为负极。从而制得厚度为30~50μm左右的导钠聚合物电解质膜样品。
实施例7:
本实施例用于说明本发明提供的聚合物电解质和固态电池及其制备方法。
根据实施例3的方法制备聚合物电解质,不同的是:使用的质量比是2.4:2.4:2.2:2.2:0.6:0.2。从而制得厚度为30~50μm左右的导锂聚合物电解质膜样品。
实施例8:
本实施例用于说明本发明提供的聚合物电解质和固态电池及其制备方法。
根据实施例7的方法制备聚合物电解质,不同的是:使用的盐是NaTFSI及NaPF6,磷酸钒钠作为正极,钠片作为负极。从而制得厚度为30~50μm左右的导钠聚合物电解质膜样品。
以上实施例的聚合物固态电解质的性能参数如表1所示。
表1不同实施例的聚合物固态电解质的性能参数
Figure BDA0003775495340000071
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.高度离子离域化聚合物固态电解质的制备方法,其特征在于,包括以下步骤:
步骤1:将自由基/阳离子引发剂、刚性小分子单体、柔性小分子单体及抗氧化剂材料放入自由基引发设备中,控制反应温度30~90℃,搅拌速度为50~250rpm,反应时间控制在6~14h,得到超分子聚合物基材;
步骤2:将步骤1得到的超分子聚合物基材与复合锂盐、掺杂剂均匀混合,并喷涂成膜,得到所述高度离子离域化的固态电解质薄膜材料。
2.根据权利要求1所述的高度离子离域化聚合物固态电解质的制备方法,其特征在于,步骤1中,所述自由基/阳离子引发剂为过氧化苯甲酰、叔丁基过氧化氢、过氧化甲乙酮、偶氮二异丁腈、过硫酸盐中任一种或多种;
所述刚性小分子为丙烯酸、烯丙基胺、联二苯甲酸、联呋喃-二甲酸、十二烷基硫酸根/层状双羟基氧化物、环戊二烯二聚体、1,5-环辛二烯中任一种或多种;
所述柔性小分子为PEGDMA、碳酸亚乙烯酯、乙酸乙烯酯、烯二甲酰亚胺、丙烯腈和丙烯酸酯中任一种或多种;
所述抗氧化剂为具有高介电常数、强吸电子基团、稳定极性官能团-C-F/C≡N的单体或链段功能基元,包括:单酚、双酚、多酚、氮杂环多酚、亚磷酸酯抗氧剂和含硫抗氧剂中任一种或多种。
3.根据权利要求2所述的高度离子离域化聚合物固态电解质的制备方法,其特征在于,各物质的量为:
所述刚性分子含量为总单体量的15%~50%;
所述柔性分子含量为总单体量的15%~50%;
所述抗氧化剂含量为总单体量的0.1~0.5%;
所述的总单体量为刚性小分子、柔性小分子、抗氧化剂三者的质量和,三者的质量含量合计为100%;
所述自由基/阳离子引发剂含量为总单体量的0.5%~3%。
4.根据权利要求1所述的高度离子离域化聚合物固态电解质的制备方法,其特征在于,步骤2中,所述锂/钠盐为LiBF4、LiPF6、LiAsF6、LiClO4、LiFSI、LiTFSI、NaPF6、NaClO4、NaFSI、NaTFSI中任一种或多种;
所述掺杂剂为Al2O3、SiO2、LiS2、NaS2、PS5、Na3PS4、Na3PSe4、Li7La3Zr2O12、Li1.3Al0.3Ti1.7(PO4)3中任一种或多种。
5.根据权利要求4所述的高度离子离域化聚合物固态电解质的制备方法,其特征在于,各物质的量为:
所述锂/钠盐含量为总量的质量分数15%~55%;
所述掺杂剂含量为质量分数2%~10%;
其余为超分子聚合物基材;
总量为超分子聚合物基材、复合锂盐、掺杂剂的质量和。
6.高度离子离域化聚合物固态电解质,其特征在于,根据权利要求1到5任一项所述的制备方法所得。
7.一种全固态电池,其特征在于,包括正极材料、负极材料、电解质,所述的电解质为权利要求6所述的高度离子离域化聚合物固态电解质;厚度15~200微米。
8.根据权利要求7所述的一种全固态电池,其特征在于,所述的正极材料为磷酸铁锂、磷酸锰锂、磷酸钴锂、氟化磷酸铁锂、碳包覆磷酸铁锂、磷酸钒钠、氟化磷酸钒钠,或者三元层状电极材料LiTMO2、NaTMO2,其中TM是AxByCz,A、B、C是由Ni、Co、Mn、Fe、Ti、Mg、Cu、Zn、Zr、Nb、Mo、Sn、Sb中任意三种阳离子元素组成,其中x+y+z=1。
9.根据权利要求7所述的一种全固态电池,其特征在于,所述的负极材料为石墨、硬碳、硅/碳负极材料,或者氧化硅/碳负极材料、锡基负极材料;所述的负极材料、导电剂、电解质、粘结剂混合,分散剂搅拌均匀,制成电极浆料。
10.根据权利要求7所述的一种全固态电池,其特征在于,所述的负极材料是纯金属锂带或者锂合金,厚度1-200μm。
CN202210917075.0A 2022-08-01 2022-08-01 高度离子离域化聚合物固态电解质和全固态电池 Pending CN115084649A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210917075.0A CN115084649A (zh) 2022-08-01 2022-08-01 高度离子离域化聚合物固态电解质和全固态电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210917075.0A CN115084649A (zh) 2022-08-01 2022-08-01 高度离子离域化聚合物固态电解质和全固态电池

Publications (1)

Publication Number Publication Date
CN115084649A true CN115084649A (zh) 2022-09-20

Family

ID=83242614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210917075.0A Pending CN115084649A (zh) 2022-08-01 2022-08-01 高度离子离域化聚合物固态电解质和全固态电池

Country Status (1)

Country Link
CN (1) CN115084649A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241628A1 (en) * 2007-03-30 2008-10-02 Honda Motor Co. Ltd. Membrane-electrode assembly for solid polymer electrolyte fuel cell
CN110021784A (zh) * 2018-01-08 2019-07-16 三星电子株式会社 聚合物电解质、共聚物、电化学装置和制备共聚物的方法
CN113287217A (zh) * 2019-01-18 2021-08-20 里兰斯坦福初级大学理事会 用于可拉伸电池的动态键合超分子聚合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241628A1 (en) * 2007-03-30 2008-10-02 Honda Motor Co. Ltd. Membrane-electrode assembly for solid polymer electrolyte fuel cell
CN110021784A (zh) * 2018-01-08 2019-07-16 三星电子株式会社 聚合物电解质、共聚物、电化学装置和制备共聚物的方法
CN113287217A (zh) * 2019-01-18 2021-08-20 里兰斯坦福初级大学理事会 用于可拉伸电池的动态键合超分子聚合物

Similar Documents

Publication Publication Date Title
CN110838573A (zh) 一种锂离子储能器件补锂浆料及其制备方法和应用
CN109904514A (zh) 双层复合固体电解质及其制备方法和应用
KR20130058403A (ko) 전해액 조성물, 겔 고분자 전해질 및 이를 포함하는 리튬 전지
CN111934020B (zh) 一种耐高压全固态锂电池界面层及其原位制备方法和应用
CN107958997B (zh) 正极浆料、正极极片及锂离子电池
CN109103399A (zh) 一种锂硫电池用功能性隔膜及其制备方法和在锂硫电池中的应用
CN111740156A (zh) 一种复合固态电解质膜及其制备方法
WO2021189161A1 (en) All solid-state electrolyte composite based on functionalized metal-organic framework materials for li thoum secondary battery and method for manufacturing the same
CN114039097B (zh) 一种锂离子电池
JP2023513248A (ja) 表面改質電極、調製方法および電気化学セルにおける使用
CN104177738A (zh) 聚合物膜及其制备方法,具有聚合物膜的电解质以及电池
CN111640983A (zh) 一种硅碳体系锂离子电池用电解液及硅碳体系锂离子电池
CN113690489B (zh) 一种电解液及包含该电解液的锂金属电池
CN116995235A (zh) 一种负极粘接剂、负极极片、锂离子电池及其制备方法
Pateriya et al. Polymer composites for lithium-ion batteries
CN116914245A (zh) 一种电解液及包括该电解液的电池
KR20240037591A (ko) 고체 고분자 전해질 및 그 제조방법
CN115084649A (zh) 高度离子离域化聚合物固态电解质和全固态电池
CN113130983B (zh) 一种固态电解质及固态锂离子电池
CN113346134A (zh) 一种用于制备聚合物电解质的前驱体溶液及其应用
CN110289392B (zh) 一种用于锂离子电池的聚合物电解质及聚合物电池
KR20160025912A (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
CN118156422B (zh) 一种复合电极及其制备方法和应用
CN117487483B (zh) 一种离子型聚合物粘结剂及其制备方法和应用
CN113964378B (zh) 一种复合固态电解质及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220920

RJ01 Rejection of invention patent application after publication