CN115081360A - 基于简易致动盘模型的风电场尾流评估方法及装置 - Google Patents

基于简易致动盘模型的风电场尾流评估方法及装置 Download PDF

Info

Publication number
CN115081360A
CN115081360A CN202211009337.XA CN202211009337A CN115081360A CN 115081360 A CN115081360 A CN 115081360A CN 202211009337 A CN202211009337 A CN 202211009337A CN 115081360 A CN115081360 A CN 115081360A
Authority
CN
China
Prior art keywords
wind
dimensional
wake
model
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211009337.XA
Other languages
English (en)
Other versions
CN115081360B (zh
Inventor
葛铭纬
杨昊泽
许世森
刘永前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Huaneng Group Technology Innovation Center Co Ltd
Original Assignee
North China Electric Power University
Huaneng Group Technology Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University, Huaneng Group Technology Innovation Center Co Ltd filed Critical North China Electric Power University
Priority to CN202211009337.XA priority Critical patent/CN115081360B/zh
Publication of CN115081360A publication Critical patent/CN115081360A/zh
Application granted granted Critical
Publication of CN115081360B publication Critical patent/CN115081360B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids

Abstract

本发明涉及风力发电技术领域,具体提供一种基于简易致动盘模型的风电场尾流评估方法及装置,旨在解决现有方法无法同时兼顾计算精度和计算效率的技术问题。为此目的,本发明的基于简易致动盘模型的风电场尾流评估方法包括:建立包含风电场的三维计算流域,对三维计算流域划分网格,得到三维流域网格;建立计算流体力学模型和简易致动盘模型;设置边界条件和计算参数;基于计算流体力学模型、简易致动盘模型以及设置的边界条件和计算参数,确定风电场的流场信息;基于风电场的流场信息评估风电场的尾流演化情况。如此,提高了计算精度和计算效率。

Description

基于简易致动盘模型的风电场尾流评估方法及装置
技术领域
本发明涉及风力发电技术领域,具体提供一种基于简易致动盘模型的风电场尾流评估方法及装置。
背景技术
风电机组吸收来流风的动能,在机组下游形成尾流。尾流区内风速减小、湍流度增加,会对下游的风电机组造成功率降低、疲劳载荷增加、机组寿命减少等影响。因此,对风电场尾流的评估具有十分重要的意义。
风电场尾流的评估通常通过数值模拟或尾流模型进行,其中数值模拟具有更高的计算精度,但也需要消耗更高的计算资源。随着风电的发展,风电场逐渐趋于大型化、基地化。更大的风电场尺寸对风电场尾流效应的评估提出了挑战,现有方法往往无法兼顾计算精度与计算效率。
相应地,本领域需要一种新的基于简易致动盘模型的风电场尾流方案来解决上述问题。
发明内容
为了克服上述缺陷,提出了本发明,以提供解决或至少部分地解决上述技术问题。本发明提供了一种基于简易致动盘模型的风电场尾流评估方法及装置。
在第一方面,本发明提供一种基于简易致动盘模型的风电场尾流评估方法,所述方法包括:建立包含风电场的三维计算流域,对所述三维计算流域划分网格,得到三维流域网格;建立计算流体力学模型和简易致动盘模型;设置边界条件和计算参数;基于所述计算流体力学模型、简易致动盘模型以及设置的所述边界条件和计算参数,确定风电场的流场信息;基于所述风电场的流场信息评估所述风电场的尾流演化情况。
在一个体实施方式中,所述风电场的流场信息包括流场的平均速度分布;基于所述计算流体力学模型、简易致动盘模型以及设置的所述边界条件和计算参数,确定风电场的流场信息包括:基于所述计算流体力学模型和简易致动盘模型以及设置的边界条件和计算参数,在所述三维流域网格上进行流场数值计算,得到流场的平均速度分布。
在一个体实施方式中,所述流场的平均速度分布包括风电场中各风电机组的来流平均速度、尾流平均速度和风轮区域平均风速;所述风电场的尾流演化情况包括尾流损失和功率输出;基于所述风电场的流场信息评估所述风电场的尾流演化情况包括:基于所述来流平均速度和尾流平均速度的差值确定所述风电机组的尾流损失;基于所述风轮区域平均风速确定所述风电机组的功率输出。
在一个体实施方式中,所述建立包含风电场的三维计算流域包括:确定所述三维计算流域的长度、宽度和高度;基于所述长度、宽度和高度建立三维计算流域;其中所述三维计算流域的长度大于长度阈值,所述三维计算流域的宽度大于宽度阈值,所述三维计算流域的高度为大气边界层的高度。
在一个体实施方式中,对所述三维计算流域划分网格包括:基于第一网格间距对所述三维计算流域的流向划分网格,基于第二网格间距对所述三维计算流域的展向划分网格,基于第三网格间距对所述三维计算流域的垂向划分网格。
在一个体实施方式中,所述简易致动盘模型包括在三维流域网格上施加的致动力;通过下述步骤建立简易致动盘模型:基于风电机组的轮毂位置和风轮直径,建立矩形区域;从所述三维流域网格中选取网格中心在所述矩形区域内的网格;确定选取的所述三维流域网格上施加的致动力;和/或
所述三维流域网格的致动力的计算公式为:
Figure 343723DEST_PATH_IMAGE001
Figure 834747DEST_PATH_IMAGE002
上式中,
Figure 17467DEST_PATH_IMAGE003
为三维流域网格上施加的致动力,
Figure 593942DEST_PATH_IMAGE004
为选取的三维流域网格的网格体积,
Figure 520310DEST_PATH_IMAGE005
为选取的三维流域网格的网格总体积,
Figure 600261DEST_PATH_IMAGE006
为风电机组的风轮的总致动力,
Figure 219461DEST_PATH_IMAGE007
为流体密度,
Figure 17653DEST_PATH_IMAGE008
为修正推力系数,
Figure 482132DEST_PATH_IMAGE009
为风轮直径,
Figure 682170DEST_PATH_IMAGE010
为风电机组的风轮中心的风速。
在一个体实施方式中,所述矩形区域为立柱区域;基于风电机组的轮毂位置和风轮直径,建立矩形区域包括:以所述风电机组的轮毂位置为中心,所述风轮直径为边长,建立预设高度的立柱区域。
在第二方面,本发明提供一种基于简易致动盘模型的风电场尾流评估装置,所述装置包括:
网格划分模块,被配置为建立包含风电场的三维计算流域,对所述三维计算流域划分网格,得到三维流域网格;
模型建立模块,被配置为建立计算流体力学模型和简易致动盘模型;
设置模块,被配置为设置边界条件和计算参数;
确定模块,被配置为基于所述计算流体力学模型、简易致动盘模型以及设置的所述边界条件和计算参数,确定风电场的流场信息;
评估模块,被配置为基于所述风电场的流场信息评估所述风电场的尾流演化情况。
在第三方面,提供一种电子设备,该电子设备包括处理器和存储装置,所述存储装置适于存储多条程序代码,所述程序代码适于由所述处理器加载并运行以执行前述任一项所述的基于简易致动盘模型的风电场尾流评估方法。
在第四方面,提供一种计算机可读存储介质,该计算机可读存储介质其中存储有多条程序代码,所述程序代码适于由处理器加载并运行以执行前述任一项所述的基于简易致动盘模型的风电场尾流评估方法。
本发明上述一个或多个技术方案,至少具有如下一种或多种有益效果:
本发明中的基于简易致动盘模型的风电场尾流评估方法,首先建立包含风电场的三维计算流域,并对三维计算流域划分网格得到三维流域网格,接着建立计算流体力学模型和简易致动盘模型以及设置边界条件和计算参数,其次基于计算流体力学模型、简易致动盘模型以及设置的边界条件和计算参数,确定风电场的流场信息,最后基于风电场的流场信息评估风电场的尾流演化情况。如此,对于风电场尾流效应的预测精度显著提高,相比采用标准致动盘模型的现有评估方法,大大降低了计算资源的消耗,提高了计算效率和预测精度。
附图说明
参照附图,本发明的公开内容将变得更易理解。本领域技术人员容易理解的是:这些附图仅仅用于说明的目的,而并非意在对本发明的保护范围组成限制。此外,图中类似的数字用以表示类似的部件,其中:
图1是根据本发明的一个实施例的基于简易致动盘模型的风电场尾流评估方法的主要步骤流程示意图;
图2是本发明的简易致动盘模型的示意图;
图3是标准致动盘模型的示意图;
图4是根据本发明的一个实施例的风电机组下游尾流区内的流向速度分布曲线示意图;
图5是根据本发明的一个实施例的基于简易致动盘模型的风电场尾流评估装置的主要结构框图示意图。
附图标记列表
11:网格划分模块;12:模型建立模块;13:设置模块;14:确定模块;15:评估模块。
具体实施方式
下面参照附图来描述本发明的一些实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
在本发明的描述中,“模块”、“处理器”可以包括硬件、软件或者两者的组合。一个模块可以包括硬件电路,各种合适的感应器,通信端口,存储器,也可以包括软件部分,比如程序代码,也可以是软件和硬件的组合。处理器可以是中央处理器、微处理器、图像处理器、数字信号处理器或者其他任何合适的处理器。处理器具有数据和/或信号处理功能。处理器可以以软件方式实现、硬件方式实现或者二者结合方式实现。非暂时性的计算机可读存储介质包括任何合适的可存储程序代码的介质,比如磁碟、硬盘、光碟、闪存、只读存储器、随机存取存储器等等。术语“A和/或B”表示所有可能的A与B的组合,比如只是A、只是B或者A和B。术语“至少一个A或B”或者“A和B中的至少一个”含义与“A和/或B”类似,可以包括只是A、只是B或者A和B。单数形式的术语“一个”、“这个”也可以包含复数形式。
目前传统的风电场尾流的评估通常通过数值模拟或尾流模型进行,其中数值模拟具有更高的计算精度,但也需要消耗更高的计算资源。随着风电的发展,风电场逐渐趋于大型化、基地化。更大的风电场尺寸对风电场尾流效应的评估提出了挑战,现有的评估方法往往无法兼顾计算精度与计算效率。
为此,本申请提出了一种基于简易致动盘模型的风电场尾流评估方法及其装置,首先建立包含风电场的三维计算流域,并对三维计算流域划分网格得到三维流域网格,接着建立计算流体力学模型和简易致动盘模型以及设置边界条件和计算参数,其次基于计算流体力学模型、简易致动盘模型以及设置的边界条件和计算参数,确定风电场的流场信息,最后基于风电场的流场信息评估风电场的尾流演化情况。如此,对于风电场尾流效应的预测精度显著提高,相比采用标准致动盘模型的现有评估方法,大大降低了计算资源的消耗,提高了计算效率和预测精度。
参阅附图1,图1是根据本发明的一个实施例的基于简易致动盘模型的风电场尾流评估方法的主要步骤流程示意图。
如图1所示,本发明实施例中的基于简易致动盘模型的风电场尾流评估方法主要包括下列步骤S101-步骤S105。
步骤S101:建立包含风电场的三维计算流域,对三维计算流域划分网格,得到三维流域网格。
在一个具体实施方式中,建立包含风电场的三维计算流域包括:确定三维计算流域的长度、宽度和高度;基于长度、宽度和高度建立三维计算流域;其中三维计算流域的长度大于长度阈值,三维计算流域的宽度大于宽度阈值,三维计算流域的高度为大气边界层的高度。
长度阈值可以是风电场的长度。具体来说,确定的三维计算流域的长度可以大于风电场的长度,但不限于此。在另一个实施方式中,确定的三维计算流域的长度还可以大于风电场的长度与尾流区的长度之和。
宽度阈值可以是风电场的宽度。具体来说,确定的三维计算流域的宽度可以大于风电场的宽度。
具体在确定三维计算流域的尺寸(长度、宽度和高度)之后,将该尺寸输入OpenFOAM平台即可生成三维计算流域。
在一个具体实施方式中,对三维计算流域划分网格包括:基于第一网格间距对三维计算流域的流向划分网格,基于第二网格间距对三维计算流域的展向划分网格,基于第三网格间距对三维计算流域的垂向划分网格。
第一网格间距和第二网格间距可以是四分之一倍的风轮直径至一倍的风轮直径之间。第三网格间距可以是5m~15m。
具体是根据第一网格间距、第二网格间距和第三网格间距对三维计算流域的流向、展向和垂向分别进行网格划分,即可得到三维流域网格。
步骤S102:建立计算流体力学模型和简易致动盘模型。
计算流体力学模型包括不可压缩纳维斯托克斯方程和连续方程。在一个实施方式中,具体采用大涡模拟方法建立不可压缩纳维斯托克斯方程和连续方程,不可压缩纳维斯托克斯方程和连续方程的公式如下所示:
Figure 472271DEST_PATH_IMAGE011
Figure 757759DEST_PATH_IMAGE012
其中
Figure 25929DEST_PATH_IMAGE013
为速度,
Figure 80473DEST_PATH_IMAGE014
为位置坐标,t为时间,
Figure 775896DEST_PATH_IMAGE015
为流体密度,
Figure 283101DEST_PATH_IMAGE016
为修正滤波压力,
Figure 357892DEST_PATH_IMAGE017
为驱动压力,
Figure 532521DEST_PATH_IMAGE018
为通过湍流模型计算的亚格子项偏应力,
Figure 398846DEST_PATH_IMAGE019
为为三维流域网格的致动力。
在一个具体实施方式中,简易致动盘模型包括在三维流域网格上施加的致动力;通过下述步骤建立简易致动盘模型:
首先,基于风电机组的轮毂位置和风轮直径,建立矩形区域。
在一个具体实施方式中,矩形区域为立柱区域;基于风电机组的轮毂位置和风轮直径,建立矩形区域包括:以风电机组的轮毂位置为中心,风轮直径为边长,建立预设高度的立柱区域。
预设高度可以是1层至2层的三维流域网格。示例性地,可以以风电机组的轮毂位置为中心,以风轮直径为边长,建立高度为2层三维流域网格高度的立柱区域。
接着,从三维流域网格中选取网格中心在矩形区域内的网格。具体是将三维流域网格的网格中心在立柱区域内的所有网格筛选出来。
最后确定选取的三维流域网格上施加的致动力。其中三维流域网格上施加的致动力的计算公式为:
Figure 658926DEST_PATH_IMAGE001
Figure 268899DEST_PATH_IMAGE020
上式中,
Figure 563614DEST_PATH_IMAGE003
为三维流域网格上施加的致动力,
Figure 335261DEST_PATH_IMAGE004
为选取的三维流域网格的网格体积,
Figure 82637DEST_PATH_IMAGE005
为选取的三维流域网格的网格总体积,
Figure 496301DEST_PATH_IMAGE006
为风电机组的风轮的总致动力,
Figure 379944DEST_PATH_IMAGE007
为流体密度,
Figure 853650DEST_PATH_IMAGE008
为修正推力系数,
Figure 822743DEST_PATH_IMAGE009
为风轮直径,
Figure 774519DEST_PATH_IMAGE010
为风电机组的风轮中心的风速。修正推力系数
Figure 512668DEST_PATH_IMAGE021
Figure 891696DEST_PATH_IMAGE022
为风电机组推力系数,
Figure 348085DEST_PATH_IMAGE023
为诱导因子。
本申请建立的简易致动盘模型相比于标准致动盘模型来说,能够有效降低计算资源的消耗,同时提高计算效率为后续对风电场的尾流进行评估提供了技术支撑。
步骤S103:设置边界条件和计算参数。
在一个具体实施方式中,具体是以流域入口为速度入口边界条件,采用预先计算好的大气边界层湍流风或施加湍流扰动的风廓线作为流域入口的边界条件,三维计算流域的出口为压力出口边界,两侧为周期边界,顶部为滑移边界,底部为施加壁应力的壁面边界。
另外,在该步骤中,还需要设置计算参数,具体包括设置求解器为PISO-SIMPLE速度-压力耦合求解器,时间离散方法为欧拉方法,空间离散方法为二阶精度方法。
步骤S104:基于计算流体力学模型、简易致动盘模型以及设置的边界条件和计算参数,确定风电场的流场信息。
在一个具体实施方式中,风电场的流场信息包括流场的平均速度分布;基于计算流体力学模型、简易致动盘模型以及设置的边界条件和计算参数,确定风电场的流场信息包括:基于计算流体力学模型和简易致动盘模型以及设置的边界条件和计算参数,在三维流域网格上进行流场数值计算,得到流场的平均速度分布。
具体是利用OpenFOAM平台、使用上述步骤建立的计算流体力学模型和简易致动盘模型以及设置的边界条件和计算参数,在三维流域网格上进行流场数值模拟计算,得到流场在各时间步的速度分布,进而通过时间平均可得到流场的平均速度分布。
步骤S105:基于风电机组信息评估风电场的尾流演化情况。
在一个具体实施方式中,流场的平均速度分布包括风电场中各风电机组的来流平均速度、尾流平均速度和风轮区域平均风速,所述风电场的尾流演化情况包括尾流损失和功率输出;在该步骤中,可以基于来流平均速度和尾流平均速度的差值确定风电机组的尾流损失;以及基于风轮区域平均风速确定风电机组的功率输出。
示例性地,可以将来流平均速度和尾流平均速度的差值作为风电机组的尾流损失。
在确定风电机组的功率信息的过程中,具体是通过风轮区域平均风速计算风电机组的功率输出,风电机组的功率输出
Figure 118200DEST_PATH_IMAGE024
的计算公式如下式所示:
Figure 976435DEST_PATH_IMAGE025
其中,
Figure 791944DEST_PATH_IMAGE015
为流体密度,
Figure 735629DEST_PATH_IMAGE026
为修正功率系数,
Figure 29207DEST_PATH_IMAGE027
Figure 476369DEST_PATH_IMAGE028
为风电机组功率系数,
Figure 728359DEST_PATH_IMAGE023
为诱导因子,
Figure 893761DEST_PATH_IMAGE029
为风轮区域平均风速。
在基于前述步骤确定风电机组的尾流损失和功率输出后,可以利用风电机组的尾流损失对风电场尾流效应进行评估,以及利用风电机组的功率输出对风电机组的发电量进行预测。进一步,还可以根据预测结果和评估结果,进行风电场的微观选址、排布优化、发电效率评估等工作。
基于上述步骤S101-步骤S105,基于简易致动盘模型的风电场尾流评估方法及其装置,首先建立包含风电场的三维计算流域,并对三维计算流域划分网格得到三维流域网格,接着建立计算流体力学模型和简易致动盘模型以及设置边界条件和计算参数,其次基于计算流体力学模型、简易致动盘模型以及设置的边界条件和计算参数,确定风电场的流场信息,最后基于风电场的流场信息评估风电场的尾流演化情况。如此,对于风电场尾流评估精度显著提高,相比采用标准致动盘模型的现有评估方法,大大降低了计算资源的消耗,提高了计算效率和评估精度。
需要指出的是,尽管上述实施例中将各个步骤按照特定的先后顺序进行了描述,但是本领域技术人员可以理解,为了实现本发明的效果,不同的步骤之间并非必须按照这样的顺序执行,其可以同时(并行)执行或以其他顺序执行,这些变化都在本发明的保护范围之内。
示例性地,通过下述具体步骤对本申请的基于简易致动盘模型的风电场尾流评估方法进行详细说明。
步骤1:建立包含风电场的三维计算流域并划分网格。在本实施例中,可以选取一个由3×3的风电机组构成的风电场作为目标,风轮直径D = 100 m,轮毂高度z h = 100 m,修正推力系数
Figure 991030DEST_PATH_IMAGE030
= 1.33,风电机组流向间距s x = 8D,展向间距s y = 4D。为保证对风电场及其尾流的充分观察,设置三维计算流域的长为10000 m,宽为4000 m,高为大气边界层高度1000 m,风电场放置于展向中心,流向上首排机组距计算流域入口1000 m处。可以将长、宽、高三个方向分别均匀划分为200、80、108个网格,其中流向和展向的网格间距为0.5倍风轮直径。
步骤2:建立由不可压缩纳维斯托克斯方程、连续方程组成的计算流体力学模型,计算式如下:
Figure 558278DEST_PATH_IMAGE031
Figure 715590DEST_PATH_IMAGE032
其中
Figure 633867DEST_PATH_IMAGE034
为速度,
Figure 269248DEST_PATH_IMAGE036
为位置坐标,t为时间,ρ为流体密度,
Figure 956581DEST_PATH_IMAGE037
为修正滤波压力,
Figure 284794DEST_PATH_IMAGE038
为驱动压力,
Figure 424789DEST_PATH_IMAGE039
为通过湍流模型计算的亚格子项偏应力,
Figure 129439DEST_PATH_IMAGE040
为三维流域网格的致动力。在本实施例中,上述湍流模型采用拉格朗日尺度动态Smagorinsky模型。
步骤3:选取风电机组风轮所在区域的网格,建立简易致动盘模型。根据风电机组的轮毂位置和风轮直径,建立一个以轮毂位置为中心,风轮直径为边长,厚度为2层三维流域网格的正方形立柱区域。选取所有网格中心在该正方向立柱区域内的三维流域网格,在所选网格中施加风电机组致动力,各三维流域网格上施加的致动力
Figure 674209DEST_PATH_IMAGE041
计算公式为:
Figure 173323DEST_PATH_IMAGE042
Figure 800614DEST_PATH_IMAGE001
其中,修正推力系数
Figure 777797DEST_PATH_IMAGE043
Figure 439722DEST_PATH_IMAGE044
为风电机组推力系数,
Figure 109738DEST_PATH_IMAGE046
为诱导因子,
Figure 489904DEST_PATH_IMAGE047
为风轮直径,
Figure 5199DEST_PATH_IMAGE048
为风轮中心的风速,
Figure 521631DEST_PATH_IMAGE049
为各个网格的网格体积,
Figure 362548DEST_PATH_IMAGE050
为所选网格的总网格体积。
步骤4:设置边界条件与计算参数。流域入口为速度入口边界,出口为压力出口边界,两侧为周期边界,顶部为滑移边界,底部为施加壁应力的壁面边界。在本实施例中,壁面边界的壁应力采用Moeng的壁应力模型;速度入口边界采用预先计算好的大气边界层湍流风作为入流,该入流通过四周为周期边界的空大气边界层计算域计算并得到。
步骤5:基于上述模型与参数设置,在所述的三维计算流域中进行流场数值计算,得到流场在各时间步的速度分布,通过时间平均可得到流场的平均速度分布。
进一步通过机组的来流平均速度与尾流区平均速度相减得到风电机组的尾流损失。
进一步通过下述公式计算风电机组的功率输出:
Figure 230010DEST_PATH_IMAGE051
其中,修正功率系数
Figure DEST_PATH_IMAGE052
Figure DEST_PATH_IMAGE053
为风电机组功率系数,
Figure 876892DEST_PATH_IMAGE046
为诱导因子,
Figure DEST_PATH_IMAGE054
为风轮区域平均风速。
基于风电机组的尾流损失能够进一步实现对风电场尾流效应的评估,以及通过风电机组的功率输出能够进一步实现对风电机组发电量的预测,根据评估以及预测结果,可以进行风电场微观选址、排布优化、发电效率评估等工作。
本发明提出的简易致动盘模型示意图如图2所示。现有技术中采用标准致动盘模型示意图如附图3所示,标准致动盘模型受计算资源和计算精度限制,三维计算流域的选取范围较小。
本申请基于简易致动盘的风电场尾流评估方法与基于标准致动盘的现有技术方法得到的风电场中风电机组下游尾流区的速度分布如附图4所示。与现有技术方法相比,本发明提供的方法的相对误差较小,并且大大降低了计算资源的消耗,提高了计算速度与可观察的流场范围。因此,本申请提供的方法可快速、简单、准确地实现对风电场尾流演化情况的评估,为大型风电场尾流效应评估与机组发电量预测提供了基础支撑。
进一步,本发明还提供了一种基于简易致动盘模型的风电场尾流评估装置。
参阅附图5,图5是根据本发明的一个实施例的基于简易致动盘模型的风电场尾流评估装置的主要结构框图。
如图5所示,本发明实施例中的基于简易致动盘模型的风电场尾流评估装置主要包括网格划分模块11、模型建立模块12、设置模块13、确定模块14和评估模块15。在一些实施例中,网格划分模块11、模型建立模块12、设置模块13、确定模块14和评估模块15中的一个或多个可以合并在一起成为一个模块。
在一些实施例中,网格划分模块11可以被配置为建立包含风电场的三维计算流域,对三维计算流域划分网格,得到三维流域网格。
模型建立模块12可以被配置为建立计算流体力学模型和简易致动盘模型。
设置模块13可以被配置为设置边界条件和计算参数。
确定模块14可以被配置为基于计算流体力学模型、简易致动盘模型以及设置的边界条件和计算参数,确定风电场的流场信息。
评估模块15可以被配置为基于风电的流场信息评估风电场的尾流演化情况。
一个实施方式中,具体实现功能的描述可以参见步骤S101-步骤S105所述。
上述基于简易致动盘模型的风电场尾流评估装置以用于执行图1所示的基于简易致动盘模型的风电场尾流评估方法实施例,两者的技术原理、所解决的技术问题及产生的技术效果相似,本技术领域技术人员可以清楚地了解到,为了描述的方便和简洁,基于简易致动盘模型的风电场尾流评估装置的具体工作过程及有关说明,可以参考基于简易致动盘模型的风电场尾流评估方法的实施例所描述的内容,此处不再赘述。
本领域技术人员能够理解的是,本发明实现上述一实施例的方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读存储介质可以包括:能够携带所述计算机程序代码的任何实体或装置、介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器、随机存取存储器、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读存储介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读存储介质不包括电载波信号和电信信号。
进一步,本发明还提供了一种电子设备。在根据本发明的一个电子设备实施例中,电子设备包括处理器和存储装置,存储装置可以被配置成存储执行上述方法实施例的基于简易致动盘模型的风电场尾流评估方法的程序,处理器可以被配置成用于执行存储装置中的程序,该程序包括但不限于执行上述方法实施例的基于简易致动盘模型的风电场尾流评估方法的程序。为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。
进一步,本发明还提供了一种计算机可读存储介质。在根据本发明的一个计算机可读存储介质实施例中,计算机可读存储介质可以被配置成存储执行上述方法实施例的基于简易致动盘模型的风电场尾流评估方法的程序,该程序可以由处理器加载并运行以实现上述基于简易致动盘模型的风电场尾流评估方法。为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该计算机可读存储介质可以是包括各种电子设备形成的存储装置设备,可选的,本发明实施例中计算机可读存储介质是非暂时性的计算机可读存储介质。
进一步,应该理解的是,由于各个模块的设定仅仅是为了说明本发明的装置的功能单元,这些模块对应的物理器件可以是处理器本身,或者处理器中软件的一部分,硬件的一部分,或者软件和硬件结合的一部分。因此,图中的各个模块的数量仅仅是示意性的。
本领域技术人员能够理解的是,可以对装置中的各个模块进行适应性地拆分或合并。对具体模块的这种拆分或合并并不会导致技术方案偏离本发明的原理,因此,拆分或合并之后的技术方案都将落入本发明的保护范围内。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

1.一种基于简易致动盘模型的风电场尾流评估方法,其特征在于,所述方法包括:
建立包含风电场的三维计算流域,对所述三维计算流域划分网格,得到三维流域网格;
建立计算流体力学模型和简易致动盘模型;
设置边界条件和计算参数;
基于所述计算流体力学模型、简易致动盘模型以及设置的所述边界条件和计算参数,确定风电场的流场信息;
基于所述风电场的流场信息评估所述风电场的尾流演化情况。
2.根据权利要求1所述的基于简易致动盘模型的风电场尾流评估方法,其特征在于,所述风电场的流场信息包括流场的平均速度分布;
基于所述计算流体力学模型、简易致动盘模型以及设置的所述边界条件和计算参数,确定风电场的流场信息包括:基于所述计算流体力学模型和简易致动盘模型以及设置的边界条件和计算参数,在所述三维流域网格上进行流场数值计算,得到流场的平均速度分布。
3.根据权利要求2所述的基于简易致动盘模型的风电场尾流评估方法,其特征在于,所述流场的平均速度分布包括风电场中各风电机组的来流平均速度、尾流平均速度和风轮区域平均风速;所述风电场的尾流演化情况包括尾流损失和功率输出;
基于所述风电场的流场信息评估所述风电场的尾流演化情况包括:
基于所述来流平均速度和尾流平均速度的差值确定所述风电机组的尾流损失;
基于所述风轮区域平均风速确定所述风电机组的功率输出。
4.根据权利要求1所述的基于简易致动盘模型的风电场尾流评估方法,其特征在于,所述建立包含风电场的三维计算流域包括:
确定所述三维计算流域的长度、宽度和高度;
基于所述长度、宽度和高度建立三维计算流域;
其中所述三维计算流域的长度大于长度阈值,所述三维计算流域的宽度大于宽度阈值,所述三维计算流域的高度为大气边界层的高度。
5.根据权利要求1所述的基于简易致动盘模型的风电场尾流评估方法,其特征在于,对所述三维计算流域划分网格包括:基于第一网格间距对所述三维计算流域的流向划分网格,基于第二网格间距对所述三维计算流域的展向划分网格,基于第三网格间距对所述三维计算流域的垂向划分网格。
6.根据权利要求1所述的基于简易致动盘模型的风电场尾流评估方法,其特征在于,所述简易致动盘模型包括在三维流域网格上施加的致动力;
通过下述步骤建立所述简易致动盘模型:
基于风电机组的轮毂位置和风轮直径,建立矩形区域;
从所述三维流域网格中选取网格中心在所述矩形区域内的网格;
确定选取的所述三维流域网格上施加的致动力;和/或
所述三维流域网格的致动力的计算公式为:
Figure 420861DEST_PATH_IMAGE001
Figure 801027DEST_PATH_IMAGE002
上式中,
Figure 581901DEST_PATH_IMAGE003
为三维流域网格上施加的致动力,
Figure 98333DEST_PATH_IMAGE004
为选取的三维流域网格的网格体积,
Figure 939250DEST_PATH_IMAGE005
为选取的三维流域网格的网格总体积,
Figure 541133DEST_PATH_IMAGE006
为风电机组的风轮的总致动力,
Figure 116909DEST_PATH_IMAGE007
为流体密度,
Figure 487847DEST_PATH_IMAGE008
为修正推力系数,
Figure 499666DEST_PATH_IMAGE009
为风轮直径,
Figure 323265DEST_PATH_IMAGE010
为风电机组的风轮中心的风速。
7.根据权利要求6所述的基于简易致动盘模型的风电场尾流评估方法,其特征在于,所述矩形区域为立柱区域;
基于风电机组的轮毂位置和风轮直径,建立矩形区域,包括:以所述风电机组的轮毂位置为中心,所述风轮直径为边长,建立预设高度的立柱区域。
8.一种基于简易致动盘模型的风电场尾流评估装置,其特征在于,所述装置包括:
网格划分模块,被配置为建立包含风电场的三维计算流域,对所述三维计算流域划分网格,得到三维流域网格;
模型建立模块,被配置为建立计算流体力学模型和简易致动盘模型;
设置模块,被配置为设置边界条件和计算参数;
确定模块,被配置为基于所述计算流体力学模型、简易致动盘模型以及设置的所述边界条件和计算参数,确定风电场的流场信息;
评估模块,被配置为基于所述风电场的流场信息评估所述风电场的尾流演化情况。
9.一种电子设备,包括处理器和存储装置,所述存储装置适于存储多条程序代码,其特征在于,所述程序代码适于由所述处理器加载并运行以执行权利要求1至7中任一项所述的基于简易致动盘模型的风电场尾流评估方法。
10.一种计算机可读存储介质,其中存储有多条程序代码,其特征在于,所述程序代码适于由处理器加载并运行以执行权利要求1至7中任一项所述的基于简易致动盘模型的风电场尾流评估方法。
CN202211009337.XA 2022-08-23 2022-08-23 基于简易致动盘模型的风电场尾流评估方法及装置 Active CN115081360B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211009337.XA CN115081360B (zh) 2022-08-23 2022-08-23 基于简易致动盘模型的风电场尾流评估方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211009337.XA CN115081360B (zh) 2022-08-23 2022-08-23 基于简易致动盘模型的风电场尾流评估方法及装置

Publications (2)

Publication Number Publication Date
CN115081360A true CN115081360A (zh) 2022-09-20
CN115081360B CN115081360B (zh) 2022-11-22

Family

ID=83245397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211009337.XA Active CN115081360B (zh) 2022-08-23 2022-08-23 基于简易致动盘模型的风电场尾流评估方法及装置

Country Status (1)

Country Link
CN (1) CN115081360B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116502564A (zh) * 2023-06-27 2023-07-28 江铃汽车股份有限公司 一种用于脸部风感评估的参数获取方法、系统及设备
CN117454721A (zh) * 2023-12-21 2024-01-26 浙江远算科技有限公司 基于数字仿真实验的风电场尾流叠加效应评估方法和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111046533A (zh) * 2019-11-22 2020-04-21 中国华能集团清洁能源技术研究院有限公司 一种基于cfd预计算的风电机组单尾流分布模拟方法
JP2021088974A (ja) * 2019-12-05 2021-06-10 国立大学法人九州大学 風車後流演算装置、及び風車後流演算方法
CN113627101A (zh) * 2021-08-06 2021-11-09 南京航空航天大学 一种基于改进型ad/rsm模型的风力机尾流模拟方法
CN113864112A (zh) * 2020-06-30 2021-12-31 北京金风科创风电设备有限公司 风力发电机组的尾流流场的确定方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111046533A (zh) * 2019-11-22 2020-04-21 中国华能集团清洁能源技术研究院有限公司 一种基于cfd预计算的风电机组单尾流分布模拟方法
JP2021088974A (ja) * 2019-12-05 2021-06-10 国立大学法人九州大学 風車後流演算装置、及び風車後流演算方法
CN113864112A (zh) * 2020-06-30 2021-12-31 北京金风科创风电设备有限公司 风力发电机组的尾流流场的确定方法、装置及系统
CN113627101A (zh) * 2021-08-06 2021-11-09 南京航空航天大学 一种基于改进型ad/rsm模型的风力机尾流模拟方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NING LI 等: "Numerical simulation of wind turbine wake based on extended k‐epsilon turbulence model coupling with actuator disc considering nacelle and tower", 《THE INSTITUTION OF ENGINEERING AND TECHNOLOGY》 *
代丹丹 等: "致动盘模型与CFD结合的风力机尾流研究", 《精密制造与自动化》 *
韩星星 等: "基于风轮平均风速的风电场致动盘模型", 《工程热物理学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116502564A (zh) * 2023-06-27 2023-07-28 江铃汽车股份有限公司 一种用于脸部风感评估的参数获取方法、系统及设备
CN116502564B (zh) * 2023-06-27 2023-10-31 江铃汽车股份有限公司 一种用于脸部风感评估的参数获取方法、系统及设备
CN117454721A (zh) * 2023-12-21 2024-01-26 浙江远算科技有限公司 基于数字仿真实验的风电场尾流叠加效应评估方法和介质
CN117454721B (zh) * 2023-12-21 2024-03-22 浙江远算科技有限公司 基于数字仿真实验的风电场尾流叠加效应评估方法和介质

Also Published As

Publication number Publication date
CN115081360B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN115081360B (zh) 基于简易致动盘模型的风电场尾流评估方法及装置
Chawdhary et al. Wake characteristics of a TriFrame of axial-flow hydrokinetic turbines
Sørensen et al. Simulation of wind turbine wakes using the actuator line technique
Neary et al. Near and far field flow disturbances induced by model hydrokinetic turbine: ADV and ADP comparison
CN103970989A (zh) 一种基于流固界面一致条件的浸入边界流场计算方法
CN109992889B (zh) 风电场模型的建立方法及系统、尾流值计算方法及系统
Mallick et al. Modelling of wind pressure coefficients on C-shaped building models
Li et al. Frequency domain dynamic analyses of freestanding bridge pylon under wind and waves using a copula model
Dong et al. Predictive capability of actuator disk models for wakes of different wind turbine designs
CN112464584A (zh) 自由表面流的水位和流量推求方法
CN105260571A (zh) 一种滩浅海水动力模拟方法
CN111241757A (zh) 基于计算流体力学的铀尾矿库溃坝三维数值模拟方法
Shives et al. Tuned actuator disk approach for predicting tidal turbine performance with wake interaction
CN113656973B (zh) 风电场的尾流混合模拟方法、系统、装置及介质
TW201822024A (zh) 模擬裝置、模擬方法及記錄媒體
Pérez-Ortiz et al. A systematic approach to undertake tidal energy resource assessment with Telemac-2D
CN110990926B (zh) 一种基于面积修正率的城市地表建筑水动力学仿真方法
CN114492220B (zh) 基于OpenFOAM平台的海洋大气边界层流动特性的预测方法及系统
CN103870699A (zh) 基于双层异步迭代策略的水动力学洪水演进模拟方法
CN113864112A (zh) 风力发电机组的尾流流场的确定方法、装置及系统
CN109766611B (zh) 一种考虑地形坡度的风电场功率简化预测方法
CN108256266B (zh) 一种一维水动力模型和二维水动力模型耦合方法及系统
CN116245039A (zh) 海上风力发电场群的尾流评估方法及系统
CN115329690A (zh) 风电场的尾流模拟方法、系统、控制装置及可读存储介质
CN114282403A (zh) 一种耦合生境适宜模型的高效高精度栖息地模拟方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant