CN115073733A - 一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料及制备方法 - Google Patents
一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料及制备方法 Download PDFInfo
- Publication number
- CN115073733A CN115073733A CN202210778321.9A CN202210778321A CN115073733A CN 115073733 A CN115073733 A CN 115073733A CN 202210778321 A CN202210778321 A CN 202210778321A CN 115073733 A CN115073733 A CN 115073733A
- Authority
- CN
- China
- Prior art keywords
- polyimide
- thermal expansion
- nano zirconium
- composite material
- zirconium phosphotungstate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1085—Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1007—Preparatory processes from tetracarboxylic acids or derivatives and diamines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
本发明公开了一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料及制备方法,本发明以4,4'‑((5,11‑二氢吲哚[3,2‑b]咔唑‑3.9‑二基)二(硫))二苯胺和芳香二酐为聚酰亚胺基体原料,在通过掺杂负热膨胀材料磷钨酸锆纳米颗粒,降低聚酰亚胺的热膨胀系数,从而获得具有超低热膨胀系数的聚酰亚胺薄膜。本发明的聚酰亚胺分子结构中含有高平面性和较强的刚性的吲哚并咔唑结构,且吲哚并咔唑结构含有仲胺,易形成较强的分子内氢键,有利于降低聚酰亚胺的热膨胀系数和提高其热稳定性。同时聚酰亚胺结构中含有硫醚基团,利用硫原子上的孤对电子与金属有良好的亲和性,改善其与金属铜的粘结性能,避免聚酰亚胺因粘接能力差或热膨胀系数差距大引起的分层、脱落和开裂等问题。
Description
技术领域
本发明涉及高性能聚酰亚胺复合材料技术领域,更具体地,涉及一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料及制备方法。
背景技术
聚酰亚胺具有优异的耐热性能、介电性能和良好的化学稳定性能,因此被广泛的应用在微电子和航天航空等领域。但是,现有的电子产品逐渐向高密度、小型化、高可靠发展,聚酰亚胺因具有较大的热膨胀系数(40-80*10-6/K),极大地限制了其应用范围。
特别是在目前微电子的电路基材中,常常使用聚酰亚胺薄膜与基板复合封装电路,但是由于聚酰亚胺与基板的热膨胀系数存在很大的差异,如铜的热膨胀系数为16-18*10-6/K,二氧化硅的热膨胀系数为14*10-6/K,硅的热膨胀系数为3-6*10-6/K,聚酰亚胺的热膨胀系数与基板热膨胀系数的不匹配会导致聚酰亚胺与基板的分离、开裂,导致器件的失效。
为了降低聚酰亚胺的热膨胀系数,现有多采用石墨、蒙脱土等无机粒子进行改善,采用该方法降低聚酰亚胺的热膨胀系数有限。而在CN201510264639.5一种低热膨胀系数Zr2WP2O12/聚酰亚胺复合材料及其制备方法中公开该复合材料由基体材料聚酰亚胺与具有负热膨胀性能的Zr2WP2O12采用原位聚合法复合而成,产品复合材料具有低热膨胀系数、良好的热稳定性和介电性能,能够较好的满足于集成电路和芯片封装技术方面对硅基材料热匹配的要求。但是,在该专利中,其所述的聚酰亚胺基体是由4,4二氨基二苯醚单体ODA和均苯四甲酸酐PMDA聚合,该聚酰亚胺材料在与负热膨胀性能的Zr2WP2O12复合后,其热膨胀系数从45.67*10-6/K降低至30.81*10-6/K,该复合材料的热膨胀系数仍与金属铜、二氧化硅存在一定的差距,特别是与硅材料的热膨胀系数仍然相差较大,难以满足日益发展的电子产品需求。
发明内容
本发明要解决的技术问题是针对聚酰亚胺的热膨胀系数与基板热膨胀系数相差较大,容易引起聚酰亚胺与基板的分离、开裂,难以满足现在电子产品需求的不足,提供一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料。
本发明要解决的另一技术问题是提供一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料的制备方法。
本发明的目的通过以下技术方案予以实现:
一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料,所述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料由聚酰亚胺和纳米磷钨酸锆制备而成。所述纳米磷钨酸锆的质量为聚酰亚胺材料质量的0.05~30%。
所述聚酰亚胺分子结构式如下所示:
其中,n为1~10000,Y的结构为:
X选自以下结构通式中的一种或一种以上:
即,所述二胺单体为4,4'-((5,11-二氢吲哚[3,2-b]咔唑-3.9-二基)二(硫))二苯胺,所述芳香二酐为均苯四酸二酐、4,4'-氧双邻苯二甲酸酐、3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-联苯四甲酸二酐、3,4,9,10-苝四羧酸二酐和1,4,5,8-萘四甲酸酐中的一种或多种。
进一步地,所述纳米磷钨酸锆的粒径为20~200nm。
进一步地,所述纳米磷钨酸锆的质量为聚酰亚胺材料质量的5~10%。
根据上述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料的制备方法,制备步骤包括:
S1.在氩气气氛中,将纳米磷钨酸锆在强极性非质子有机溶剂中分散,将二胺与二酐按摩尔比为1:0.9~1.1加入到分散液中,在-10~40℃搅拌反应0.5~72h,得到均相、粘稠的聚酰胺酸复合胶液;
S2.对含纳米磷钨酸锆的聚酰胺酸复合胶液中的聚酰胺酸进行脱水,得到聚酰亚胺/纳米磷钨酸锆复合材料。
进一步地,S1中所述纳米磷钨酸锆采用超声分散0.5~10h。
进一步地,S1中所述强极性非质子有机溶剂为N-甲基吡咯烷酮、二甲基亚砜、二甲基砜、环丁砜、1,4-二氧六环、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、间甲酚、四氢呋喃中的一种或多种。
进一步地,S1中所述二胺与二酐总质量为胶液质量的1~40%。
进一步地,S2中所述聚酰胺酸采用热酰亚胺化或化学酰亚胺化进行脱水。
进一步地,所述热酰亚胺化的步骤包括:将涂覆有聚酰胺酸胶液刮涂在基板上,再将玻璃板置于真空烘箱中,抽真空,升温进行热酰亚胺化,冷却后即得超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料。
进一步地,所述热酰亚胺化的升温程序为:室温升温至100℃后恒温0.8~3小时,从100℃升温至200℃后恒温0.8~2小时,从200℃升温至300℃恒温0.8~2小时,从300℃升温至350℃~500℃后恒温0.5~2小时。
进一步地,所述化学酰亚胺化法的步骤包括:在聚酰胺酸胶液中加入脱水剂,在室温下搅拌0.5~1h后将胶液刮涂到基板上,再放入烘箱中加热除去溶剂并完成亚胺化。冷却后可从玻璃板上剥离即得到聚酰亚胺。
进一步地,所述脱水剂为吡啶/乙酸酐、或三乙胺/乙酸酐、或乙酸钠/乙酸酐。
进一步地,所述4,4'-((5,11-二氢吲哚[3,2-b]咔唑-3.9-二基)二(硫))二苯胺的制备步骤包括:
Y1.利用3,9-二溴-5,11-二氢吲哚[3,2-b]咔唑与4-硝基苯硫酚通过Ullmann偶联反应得到二硝基单体。
Y2.将步骤Y1中的二硝基单体还原成二胺,获得4,4'-((5,11-二氢吲哚[3,2-b]咔唑-3.9-二基)二(硫))二苯胺。
上述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料可应用于航天航空和微电子行业。
与现有技术相比,有益效果是:
本发明以4,4'-((5,11-二氢吲哚[3,2-b]咔唑-3.9-二基)二(硫))二苯胺和芳香二酐为聚酰亚胺基体原料,在通过掺杂负热膨胀材料磷钨酸锆纳米颗粒,降低聚酰亚胺的热膨胀系数,从而获得具有超低热膨胀系数的聚酰亚胺薄膜。本发明的聚酰亚胺分子结构中含有高平面性和较强的刚性的吲哚并咔唑结构,且吲哚并咔唑结构含有仲胺,易形成较强的分子内氢键,有利于降低聚酰亚胺的热膨胀系数和提高其热稳定性。同时聚酰亚胺结构中含有硫醚基团,利用硫原子上的孤对电子与金属有良好的亲和性,改善其与金属铜的粘结性能,避免聚酰亚胺因粘接能力差或热膨胀系数差距大引起的分层、脱落等问题。
附图说明
图1是实施例2~4所得聚酰亚胺的红外光谱图,其中:
a对应实施例2(PI-1);
b对应实施例3(PI-2);
c对应实施例4(PI-3);
图2是热机械分析图;
图3是热重曲线图。
具体实施方式
下面结合实施例进一步解释和阐明,但具体实施例并不对本发明有任何形式的限定。若未特别指明,实施例中所用的方法和设备为本领常规方法和设备,所用原料均为常规市售原料,
实施例1
本实施例提供实施例2-实施例4中合成聚酰亚胺的二胺单体4,4'-((5,11-二氢吲哚[3,2-b]咔唑-3.9-二基)二(硫))二苯胺(4,4'-DCBSDA)的制备方法,制备步骤包括:
Y1.3,9-bis((4-nitrophenyl)thio)-5,11-dihydroindolo[3,2-b]carbazole的中间体合成:
将0.01mol的3,9-二溴-5,11-二氢吲哚[3,2-b]咔唑、0.022mol的4-硝基苯硫酚、20mol%CuI、40mol%L-脯氨酸和48mmol K3PO4,添加到约100ml溶剂(60ml水和40ml EtOH)中,80℃回流8小时。将反应液冷却至室温,过滤,用乙酸乙酯萃取滤液,减压至-101.325kPa蒸去溶剂,产物以乙酸乙酯:石油醚=1:5(体积比)为流动相、硅胶为固定相作柱色谱提纯,收集产物并旋干,在80℃真空中干燥24h,得到产物。该中间体结构如下:
Y2.4,4'-((5,11-二氢吲哚[3,2-b]咔唑-3.9-二基)二(硫))二苯胺的合成:
将0.01mol3,9-bis((4-nitrophenyl)thio)-5,11-dihydroindolo[3,2-b]carbazole加入到三口瓶中,加入450mL无水乙醇,磁力搅拌并通氩气,油浴加热至80℃后,加入10%wt的钯碳0.1g,并加入10mL水合肼,回流反应24h后,将反应液抽滤,将滤液冷却结晶,再次抽滤所得滤饼80℃真空干燥24h,得到目标产物。本步骤得到的含吲哚并咔唑结构和硫醚键的二胺结构如下所示:
实施例2
本实施例以实施例1中合成的二胺单体为原料,采用100nm左右的磷钨酸锆为原料,制备超低热胀系数聚酰亚胺/磷钨酸锆复合材料,步骤包括:
室温下,在氩气氛围下,将0.3794g磷钨酸锆纳米颗粒在58.2ml N,N-二甲基甲酰胺中超声2h,再将0.01mol的4,4'-((5,11-二氢吲哚[3,2-b]咔唑-3.9-二基)二(硫))二苯胺(4,4'-DCBSDA)和60.7mlN,N-二甲基甲酰胺加入至100ml的三口烧瓶中,通入氩气,搅拌,完全溶解后,加入0.01mol的1,2,4,5-Benzenetetracarboxylic anhydride(1,2,4,5-均苯四甲酸二酐,PMDA),继续搅拌,反应6h,获得均相透明粘稠的聚酰胺酸/磷钨酸锆复合溶液。再将聚酰胺酸/磷钨酸锆复合溶液除气泡后刮涂在玻璃板上,再将玻璃板置于真空烘箱中,抽真空,升温程序为:室温升温至100℃后恒温1h,100℃升温至200℃后恒温1h,200℃升温至300℃恒温1h,300℃升温至400℃后恒温1h,冷却后可取出聚酰亚胺/磷钨酸锆复合膜。
其中,本实施例中聚酰亚胺基材(PI-1)的的分子结构式如下:
实施例3
本实施例以实施例1中合成的二胺单体为原料,采用100nm左右的磷钨酸锆为原料,制备超低热胀系数聚酰亚胺/磷钨酸锆复合材料,步骤包括:
室温下,在氩气氛围下,将0.4341g磷钨酸锆纳米颗粒在62.4ml N,N-二甲基甲酰胺中超声2h,再将0.01mol的4,4'-DCBSDA和58.4mlN,N-二甲基甲酰胺加入至三口烧瓶中,通入氩气,搅拌,完全溶解后,加入0.01mol的3,3',4,4'-Benzophenonetetracarboxylicdianhydride(3,3',4,4'-二苯甲酮四甲酸二酐,BTDA),继续搅拌,反应6h,获得均相透明粘稠的聚酰胺酸/磷钨酸锆复合溶液。再将聚酰胺酸/磷钨酸锆复合溶液除气泡后刮涂在玻璃板上,再将玻璃板置于真空烘箱中,抽真空,升温程序为:室温升温至100℃后恒温1h,100℃升温至200℃后恒温1h,200℃升温至300℃恒温1h,300℃升温至400℃后恒温1h,冷却后可取出聚酰亚胺/磷钨酸锆复合膜。
其中,本实施例中聚酰亚胺基材(PI-2)的分子结构式如下:
实施例4
本实施例以实施例1中合成的二胺单体为原料,采用100nm左右的磷钨酸锆为原料,制备超低热胀系数聚酰亚胺/磷钨酸锆复合材料,步骤包括:
室温下,在氩气氛围下,将0.4194g磷钨酸锆纳米颗粒在60.3ml N,N-二甲基甲酰胺中超声2h,再将0.01mol的4,4'-DCBSDA和67.7ml的N,N-二甲基甲酰胺加入至三口烧瓶中,通入氩气,搅拌,完全溶解后,加入0.01mol的3,3’,4,4’-Biphenyl tetracarboxylicdiandhydride(3,3',4,4'-联苯四甲酸二酐,BPDA),继续搅拌,反应6h,获得均相透明粘稠的聚酰胺酸/磷钨酸锆复合溶液。在所得聚酰胺酸/磷钨酸锆复合溶液中加入5mL乙酸酐,继续搅拌,再缓慢加入2.5mL三乙胺,并升温至70℃,继续搅拌6h后溶液刮涂在洁净玻璃板上,再将玻璃板置于真空烘箱中,抽真空,100℃干燥12h,冷却后可取出聚酰亚胺/磷钨酸锆复合膜。
其中,本实施例中聚酰亚胺基材(PI-3)的分子结构式如下:
对比例1
本对比例的基本工艺步骤与实施例2相同,其区别在于本对比例中未添加磷钨酸锆纳米颗粒。
对比例2
室温下,在氩气氛围下,将0.01mol的4,4'-二胺基二苯醚(ODA)和0.01mol的1,2,4,5-Benzenetetracarboxylic anhydride(1,2,4,5-均苯四甲酸二酐,PMDA)加入至N,N-二甲基甲酰胺中,继续搅拌反应6h,获得均相透明粘稠的聚酰胺酸溶液。再将聚酰胺酸溶液除气泡后刮涂在玻璃板上,再将玻璃板置于真空烘箱中,抽真空,升温程序为:室温升温至100℃后恒温1h,100℃升温至200℃后恒温1h,200℃升温至300℃恒温1h,300℃升温至400℃后恒温1h,冷却后可取出聚酰亚胺膜(PMDA-ODA)。
对比例3
本对比例以201510264639.5一种低热膨胀系数Zr2WP2O12/聚酰亚胺复合材料及其制备方法所记载的方案制备的Zr2WP2O12/聚酰亚胺复合材料性能作为比较。
1.红外光谱检测
从图1中的红外光谱图中可以看到,1723cm-1和1778cm-1特征峰分别为酰亚胺环中C=O键的对称和不对称伸缩振动,1600cm-1处出现明显的N-H的弯曲振动吸收峰,1370cm-1处出现明显的C-N键伸缩振动特征吸收峰,而在3500~3300cm-1之间没有出现-NH2的特征吸收峰,,这些都说明实施例1~3都已成功合成。
2.性能检测
分别检测实施例2~4、对比例1和对比例2中的聚酰亚胺膜的热膨胀系数以及热失重数据。
其中,聚酰亚胺与挠性覆铜板复合的步骤包括:将实施例和对比例中聚酰胺酸溶液除气泡后刮涂在铜板上,再将铜板置于真空烘箱中,抽真空,升温程序为:室温升温至100℃后恒温1h→100℃升温至200℃后恒温1h→200℃升温至300℃恒温1h~300℃升温至400℃后恒温1h,冷却后得到聚酰亚胺复合挠性覆铜板。
以PMDA-ODA型聚酰亚胺为对照组,分别检测实施例2~4中的聚酰亚胺/纳米磷钨酸锆膜的热膨胀系数以及热失重数据,结果如图2和图3所示,结果如表1所示。
表1实施例和对比例中聚酰亚胺薄膜的性能对比
综上所述,本发明制备的聚酰亚胺/磷钨酸锆材料的热膨胀系数大大降低,极大的减小了与基板热膨胀系数的差距,能够满足耐锡焊浴温度(350℃)的要求。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
Claims (10)
1.一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料,其特征在于,所述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料由聚酰亚胺和纳米磷钨酸锆制备而成;
所述聚酰亚胺为4,4'-((5,11-二氢吲哚[3,2-b]咔唑-3.9-二基)二(硫))二苯胺和芳香二酐聚合而成;
所述纳米磷钨酸锆的质量为聚酰亚胺材料质量的0.05~30%。
2.根据权利要求1所述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料,其特征在于,所述芳香二酐为均苯四酸二酐、4,4'-氧双邻苯二甲酸酐、3,3',4,4'-二苯甲酮四甲酸二酐、3,3',4,4'-联苯四甲酸二酐、3,4,9,10-苝四羧酸二酐和1,4,5,8-萘四甲酸酐中的一种或多种。
3.根据权利要求1所述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料,其特征在于,所述纳米磷钨酸锆的粒径为20~200nm。
4.根据权利要求1所述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料,其特征在于,所述纳米磷钨酸锆的质量为聚酰亚胺材料质量的5-10%。
5.根据权利要求1所述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料,其特征在于,制备步骤包括:
S1.在氩气气氛中,将纳米磷钨酸锆在强极性非质子有机溶剂中分散,将二胺与二酐按摩尔比为1:0.9~1.1加入到分散液中,在-10~40℃搅拌反应0.5~72h,得到均相、粘稠的聚酰胺酸复合胶液;
S2.对含纳米磷钨酸锆的聚酰胺酸复合胶液中的聚酰胺酸进行脱水,得到聚酰亚胺/纳米磷钨酸锆复合材料。
6.根据权利要求5所述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料的制备方法,其特征在于,S1中所述纳米磷钨酸锆采用超声分散0.5~10h。
7.根据权利要求5所述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料的制备方法,其特征在于,S1中所述强极性非质子有机溶剂为N-甲基吡咯烷酮、二甲基亚砜、二甲基砜、环丁砜、1,4-二氧六环、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、间甲酚、四氢呋喃中的一种或多种。
8.根据权利要求5所述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料的制备方法,其特征在于,S1中所述二胺与二酐总质量为胶液质量的1~40%。
9.根据权利要求5所述所述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料的制备方法,其特征在于,S2中所述聚酰胺酸采用热酰亚胺化或化学酰亚胺化进行脱水。
10.根据权利要求1所述超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料应用与航天航空和微电子行业。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210778321.9A CN115073733B (zh) | 2022-06-29 | 2022-06-29 | 一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料及制备方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202210778321.9A CN115073733B (zh) | 2022-06-29 | 2022-06-29 | 一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料及制备方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115073733A true CN115073733A (zh) | 2022-09-20 |
| CN115073733B CN115073733B (zh) | 2023-10-20 |
Family
ID=83257304
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202210778321.9A Active CN115073733B (zh) | 2022-06-29 | 2022-06-29 | 一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料及制备方法 |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115073733B (zh) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118956017A (zh) * | 2024-07-02 | 2024-11-15 | 长虹美菱股份有限公司 | 一种冰柜用高性能水管堵头及其制备方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3609123A (en) * | 1968-03-21 | 1971-09-28 | Inst Francais Du Petrole | New aromatic polyimides, their manufacture and uses |
| CN104974523A (zh) * | 2015-05-21 | 2015-10-14 | 郑州大学 | 一种低热膨胀系数Zr2WP2O12/聚酰亚胺复合材料及其制备方法 |
| CN105482116A (zh) * | 2016-01-12 | 2016-04-13 | 湖南工业大学 | 一种含咔唑结构的聚酰亚胺纳米复合材料及其制备方法和应用 |
-
2022
- 2022-06-29 CN CN202210778321.9A patent/CN115073733B/zh active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3609123A (en) * | 1968-03-21 | 1971-09-28 | Inst Francais Du Petrole | New aromatic polyimides, their manufacture and uses |
| CN104974523A (zh) * | 2015-05-21 | 2015-10-14 | 郑州大学 | 一种低热膨胀系数Zr2WP2O12/聚酰亚胺复合材料及其制备方法 |
| CN105482116A (zh) * | 2016-01-12 | 2016-04-13 | 湖南工业大学 | 一种含咔唑结构的聚酰亚胺纳米复合材料及其制备方法和应用 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118956017A (zh) * | 2024-07-02 | 2024-11-15 | 长虹美菱股份有限公司 | 一种冰柜用高性能水管堵头及其制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115073733B (zh) | 2023-10-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102757560B (zh) | 一种含咔唑结构的可溶性功能聚酰亚胺及其制备方法和应用 | |
| CN108864454B (zh) | 一种电子器件用高透明、高柔性聚酰亚胺薄膜及制备方法 | |
| CN114230791B (zh) | 本征型低介电含氟聚酰亚胺薄膜及其制备方法 | |
| CN105461925B (zh) | 一种含咔唑结构的聚酰亚胺及其制备方法和应用 | |
| CN101591521A (zh) | 一种含芴聚酰亚胺胶粘剂及其制备方法 | |
| CN100999589A (zh) | 合成高介电常数的聚酰亚胺/纳米钛酸钡复合薄膜的方法 | |
| CN110818951A (zh) | 一种改性氧化石墨烯、浆料、复合薄膜及其制备方法和应用 | |
| CN111072960B (zh) | 一种具有高阻隔性能的聚酰亚胺及其制备方法和应用 | |
| CN108586740A (zh) | 一种含芴或芴酮结构的聚酰亚胺及其制备方法和应用 | |
| WO2022242547A1 (zh) | 一种聚酰亚胺多孔膜及其制备方法 | |
| CN115073733B (zh) | 一种超低热胀系数聚酰亚胺/纳米磷钨酸锆复合材料及制备方法 | |
| CN115926457B (zh) | 一种低热膨胀系数聚酰亚胺薄膜及其制备方法 | |
| CN115490853B (zh) | 一种高性能聚酰亚胺挠性覆铜板及其制备方法 | |
| CN113501984A (zh) | 一种石墨烯原位改性聚酰亚胺薄膜及其制备方法 | |
| CN115612097B (zh) | 一种低介电和高强度的纳米复合材料及制备方法 | |
| CN1580095A (zh) | 一种聚酰亚胺材料及制备方法和应用 | |
| CN113754571A (zh) | 一种二胺单体、本征型高介电低损耗聚酰亚胺及其制备方法与应用 | |
| CN115960375B (zh) | 一种高导热的聚酰亚胺基无胶挠性覆铜板及制备方法 | |
| CN117623951B (zh) | 二胺单体、二胺单体的制备方法、聚酰亚胺及聚酰亚胺的制备方法 | |
| CN118599113A (zh) | 一种超高阻隔聚酰亚胺/蒙脱土纳米片复合材料及其制备方法 | |
| CN112979582A (zh) | 含吩噻嗪结构的二胺以及合成聚酰亚胺的制备方法 | |
| CN115521456B (zh) | 一种用于无胶型挠性覆铜板的聚酰亚胺及制备方法 | |
| CN115612098B (zh) | 一种本征型低介电低吸水的聚合物及其制备方法和应用 | |
| CN115850699B (zh) | 一种低介电共混聚酰亚胺及制备方法和应用 | |
| CN115490854B (zh) | 一种低介电、高耐热、低吸水的高性能聚酰亚胺及其制备方法和应用 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |








