CN115073205A - 多孔SiC陶瓷和多孔SiC陶瓷的低温制备方法 - Google Patents
多孔SiC陶瓷和多孔SiC陶瓷的低温制备方法 Download PDFInfo
- Publication number
- CN115073205A CN115073205A CN202210636280.XA CN202210636280A CN115073205A CN 115073205 A CN115073205 A CN 115073205A CN 202210636280 A CN202210636280 A CN 202210636280A CN 115073205 A CN115073205 A CN 115073205A
- Authority
- CN
- China
- Prior art keywords
- polycarbosilane
- temperature
- porous sic
- speed
- sic ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 47
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 229920003257 polycarbosilane Polymers 0.000 claims abstract description 53
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000000843 powder Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 27
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 229910052786 argon Inorganic materials 0.000 claims abstract description 20
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 18
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 18
- 238000000227 grinding Methods 0.000 claims abstract description 17
- 239000011812 mixed powder Substances 0.000 claims abstract description 16
- 238000005245 sintering Methods 0.000 claims abstract description 15
- 238000002156 mixing Methods 0.000 claims abstract description 14
- 239000004005 microsphere Substances 0.000 claims abstract description 12
- 238000005303 weighing Methods 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 8
- 238000000465 moulding Methods 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 5
- 239000011148 porous material Substances 0.000 abstract description 15
- 230000008901 benefit Effects 0.000 abstract description 7
- 230000008859 change Effects 0.000 abstract description 6
- 238000004146 energy storage Methods 0.000 abstract description 6
- 239000011232 storage material Substances 0.000 abstract description 6
- 239000012074 organic phase Substances 0.000 abstract description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 42
- 229910010271 silicon carbide Inorganic materials 0.000 description 41
- 239000000463 material Substances 0.000 description 11
- 239000012700 ceramic precursor Substances 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000005187 foaming Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 229910003849 O-Si Inorganic materials 0.000 description 3
- 229910003872 O—Si Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/063—Preparing or treating the raw materials individually or as batches
- C04B38/0635—Compounding ingredients
- C04B38/0645—Burnable, meltable, sublimable materials
- C04B38/067—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种多孔SiC陶瓷和多孔SiC陶瓷的低温制备方法,包括:取黄色透明状聚碳硅烷,研磨至白色粉末状,然后称取研磨好的白色粉末于180℃保温8h,得到白色块体,将白色块体研磨成粉末,得到预氧化的聚碳硅烷;取预氧化的聚碳硅烷和PMMA微球,混合后研磨,得到混合粉末;将混合粉末加入模具放置在SPS烧结炉中进行加压加热成型得到热压成型的样品;将热压成型的样品放置在马弗炉炉腔中,连续抽真空、通氩气三次,然后将炉腔抽真空,在真空状态下梯度升温,使热压成型的样品高温热解、晶化,最后随炉冷却得到多孔SiC陶瓷。本发明的方法制得的多孔SiC陶瓷不但流程短孔径均匀,而且作为有机相变储能材料的载体优势明显。
Description
技术领域
本发明涉及材料技术领域,尤其涉及一种多孔SiC陶瓷和多孔SiC陶瓷的低温制备方法。
背景技术
碳化硅(SiC)作为一种陶瓷材料由于其独特的结构而拥有较高的导热率(83.6W·m-1·k-1),并且其具有非常强的防腐蚀能力。由于SiC各种优异的性能,多孔SiC具有作为相变储能材料载体的可能性。
关于多孔SiC的研究,目前有很多种制备方法,较为成熟的有:有机泡沫浸渍法、凝胶注膜成型法、发泡法、冷冻铸造法、造孔法和模板法。其中有机泡沫浸渍法能够实现开孔和三维孔道联通的结构,但是在孔道结构调节方面存在一定局限性。凝胶注膜成型法制备出的多孔SiC陶瓷往往具有高孔隙率(80%),但是该方法制备的材料往往具有较大孔径且不易调整。发泡法中气泡的稳定生成难以控制,会造成多孔SiC孔径分布不均的情况,这种方法多用于制备具有大量闭孔结构的多孔SiC陶瓷。冷冻铸造法在高孔隙和孔结构调控方面具有明显优势,缺点在于制品往往具有较差的力学性能。造孔法通过造孔剂可以实现SiC陶瓷的多孔结构,但是SiC陶瓷较难烧结,往往需要烧结助剂和较高的温度,且对于孔道设计也不友好。模板法一般采用多孔碳作为模板,具有模板来源广泛的优势。模板法需要不同的模板材料进行多孔SiC的孔径调整。总体来讲,现阶段的多孔SiC制备温度高,合成难度大。
发明内容
为了解决现有技术的问题,本发明实施例提供了一种多孔SiC陶瓷和多孔SiC陶瓷的低温制备方法。所述技术方案如下:
第一方面,提供一种多孔SiC陶瓷的低温制备方法,包括以下步骤:
(1)取黄色透明状聚碳硅烷,研磨至白色粉末状,然后称取研磨好的白色粉末于180℃保温8h,得到白色块体,将所述白色块体研磨成粉末,得到预氧化的聚碳硅烷;
(2)取所述预氧化的聚碳硅烷和PMMA微球,混合后研磨,使两者充分混合,得到混合粉末;
(3)将所述混合粉末加入模具放置在SPS烧结炉中进行加压加热成型,首先,连续抽真空、通氩气三次,然后向炉腔中通入氩气,在6.3MPa的初始压力下以10℃/min的速率加热到140℃,保温10min,继续以10MPa/min的升压速率升至20MPa,140℃继续保温10min,再以10MPa/min的升压速率升至40MPa,140℃继续保温10min,最后以100℃/min的降温速率降至30℃,同时以10MPa/min的速率降压至10MPa,得到热压成型的样品;
(4)将所述热压成型的样品放置在马弗炉炉腔中,连续抽真空、通氩气三次,然后将炉腔抽真空,在真空状态下以0.5℃/min的速率升至450℃,保温2h,继续以2.5℃/min的速率升至950℃,保温1h,最后以5℃/min的速率升至1300℃,保温30min,随炉冷却,得到多孔SiC陶瓷。
进一步的,所述步骤(2)中,所述预氧化的聚碳硅烷和所述PMMA微球的质量比为1:4。
进一步的,所述步骤(3)中,所述氩气流量为80ml/min。
进一步的,所述步骤(2)中,所述PMMA微球的粒径为30、50或70μm。
进一步的,所述步骤(2)中,混合后研磨10min。
第二方面,提供一种多孔SiC陶瓷,采用如上述第一方面所述的方法制备得到。
本发明实施例提供的技术方案带来的有益效果是:本发明实施例中,取黄色透明状聚碳硅烷,研磨至白色粉末状,然后称取研磨好的白色粉末于180℃保温8h,得到白色块体,将白色块体研磨成粉末,得到预氧化的聚碳硅烷;取预氧化的聚碳硅烷和PMMA微球,混合后研磨,使两者充分混合,得到混合粉末;将混合粉末加入模具放置在SPS烧结炉中进行加压加热成型;将热压成型的样品放置在马弗炉炉腔中,连续抽真空、通氩气三次,然后将炉腔抽真空,在真空状态下梯度升温,使热压成型的样品高温热解、晶化,最后随炉冷却得到多孔SiC陶瓷。本发明的方法制得的多孔SiC陶瓷不但流程短孔径均匀,而且作为有机相变储能材料的载体优势明显。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中1制备的多孔SiC陶瓷的XRD图谱;
图2是本发明实施例中1制备的多孔SiC陶瓷的SEM图片。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明实施方式作进一步地详细描述。
实施例1
(1)陶瓷前驱体的预氧化处理
陶瓷前驱体聚碳硅烷(PCS)熔点只有185℃,直接作为陶瓷前驱体进行烧结会在较低的温度下形成液相,导致多孔结构的坍塌,并且直接使用PCS进行烧结不会形成形状稳定的陶瓷体,而是会生成发泡体,所以首先将PCS在高温空气中进行预氧化处理,使聚碳硅烷单体之间进行交联,使之拥有更大的分子量,来提高其熔点,以便制备出形状稳定的陶瓷体,交联反应如式(1)和(2)所示。
2-Si(CH3)H-CH2-+O2→2-Si(CH3)OH-CH2- (1)
2-Si(CH2-)CH3-OH→-Si(CH2-)CH3-O-Si(CH2-)CH3-+H2O (2)
采用分析天平称取15g块体黄色透明状聚碳硅烷于研钵,研磨至白色粉末状。然后称取8g研磨好的白色粉末置于烧杯中,再放入鼓风干燥箱,设置温度180℃,在空气中保温8h,得到白色块体,取出称量质量并将其研磨成粉末,得到预氧化的聚碳硅烷。
(2)混粉、热压成型
用分析天平分别称取1.5g预氧化的聚碳硅烷,再分别称取粒径为70μm的聚甲基丙烯酸甲酯(PMMA)微球6g(两者质量比为1:4),混合后用研钵研磨10min,使两者充分混合,得到混合粉末。
将混合粉末加入模具放置在放电等离子体烧结炉(SPS)中进行加压加热成型,首先,连续抽真空、通氩气三次,然后以80ml/min的流量向炉腔中通氩气,在6.3MPa的初始压力下以10℃/min的速率加热到140℃,保温10min,继续以10MPa/min的升压速率升至20MPa,140℃继续保温10min,再以10MPa/min的升压速率升至40MPa,140℃继续保温10min,最后以100℃/min的降温速率降至30℃,同时以10MPa/min的速率降压至10MPa,得到热压成型的样品。
将热压成型运用到SPS,并且采用先升温后升压的方式使材料成型,一方面能够消除在热压过程中产生的热应力,另一方面可以防止预氧化的聚碳硅烷和PMMA在成型过程中的剧烈膨胀,使得材料不密实甚至受热裂开的情况。采用的成型模具为内径为的石墨模具。
(3)高温热解、晶化制备多孔SiC陶瓷
将热压成型的样品放置在马弗炉炉腔中,连续抽真空、通氩气三次,然后将炉腔抽真空,在真空状态下以0.5℃/min的速率升至450℃,保温2h,继续以2.5℃/min的速率升至950℃,保温1h,最后以5℃/min的速率升至1300℃,保温30min,随炉冷却,得到多孔SiC陶瓷。
实施例2
(1)陶瓷前驱体的预氧化处理
陶瓷前驱体聚碳硅烷(PCS)熔点只有185℃,直接作为陶瓷前驱体进行烧结会在较低的温度下形成液相,导致多孔结构的坍塌,并且直接使用PCS进行烧结不会形成形状稳定的陶瓷体,而是会生成发泡体,所以首先将PCS在高温空气中进行预氧化处理,使聚碳硅烷单体之间进行交联,使之拥有更大的分子量,来提高其熔点,以便制备出形状稳定的陶瓷体,交联反应如式(1)和(2)所示。
2-Si(CH3)H-CH2-+O2→2-Si(CH3)OH-CH2- (1)
2-Si(CH2-)CH3-OH→-Si(CH2-)CH3-O-Si(CH2-)CH3-+H2O(2)
采用分析天平称取15g块体黄色透明状聚碳硅烷于研钵,研磨至白色粉末状。然后称取8g研磨好的白色粉末置于烧杯中,再放入鼓风干燥箱,设置温度180℃,在空气中保温8h,得到白色块体,取出称量质量并将其研磨成粉末,得到预氧化的聚碳硅烷。
(2)混粉、热压成型
用分析天平分别称取1.5g预氧化的聚碳硅烷,再分别称取粒径为50μm的聚甲基丙烯酸甲酯(PMMA)微球6g(两者质量比为1:4),混合后用研钵研磨10min,使两者充分混合,得到混合粉末。
将混合粉末加入模具放置在SPS烧结炉中进行加压加热成型。首先,连续抽真空、通氩气三次,然后以80ml/min的流量向炉腔中通入氩气,在6.3MPa的初始压力下以10℃/min的速率加热到140℃,保温10min,继续以10MPa/min的升压速率升至20MPa,140℃继续保温10min,再以10MPa/min的升压速率升至40MPa,140℃继续保温10min,最后以100℃/min的降温速率降至30℃,同时以10MPa/min的速率降压至10MPa,得到热压成型的样品。
将热压成型运用到SPS,并且采用先升温后升压的方式使材料成型,一方面能够消除在热压过程中产生的热应力,另一方面可以防止预氧化的聚碳硅烷和PMMA在成型过程中的剧烈膨胀,使得材料不密实甚至受热裂开的情况。采用的成型模具为内径为的石墨模具。
(3)高温热解、晶化制备多孔SiC陶瓷
将热压成型的样品放置在马弗炉炉腔中,连续抽真空、通氩气三次,然后将炉腔抽真空,在真空状态下以0.5℃/min的速率升至450℃,保温2h,继续以2.5℃/min的速率升至950℃,保温1h,最后以5℃/min的速率升至1300℃,保温30min,随炉冷却,得到多孔SiC陶瓷。
实施例3
(1)陶瓷前驱体的预氧化处理
陶瓷前驱体聚碳硅烷(PCS)熔点只有185℃,直接作为陶瓷前驱体进行烧结会在较低的温度下形成液相,导致多孔结构的坍塌,并且直接使用PCS进行烧结不会形成形状稳定的陶瓷体,而是会生成发泡体,所以首先将PCS在高温空气中进行预氧化处理,使聚碳硅烷单体之间进行交联,使之拥有更大的分子量,来提高其熔点,以便制备出形状稳定的陶瓷体,交联反应如式(1)和(2)所示。
2-Si(CH3)H-CH2-+O2→2-Si(CH3)OH-CH2- (1)
2-Si(CH2-)CH3-OH→-Si(CH2-)CH3-O-Si(CH2-)CH3-+H2O (2)
采用分析天平称取15g块体黄色透明状聚碳硅烷于研钵,研磨至白色粉末状。然后称取8g研磨好的白色粉末置于烧杯中,再放入鼓风干燥箱,设置温度180℃,在空气中保温8h,得到白色块体,取出称量质量并将其研磨成粉末,得到预氧化的聚碳硅烷。
(2)混粉、热压成型
用分析天平分别称取1.5g预氧化的聚碳硅烷,再分别称取粒径为30μm的聚甲基丙烯酸甲酯(PMMA)微球6g(两者质量比为1:4),混合后用研钵研磨10min,使两者充分混合,得到混合粉末。
将混合粉末加入模具放置在SPS烧结炉中进行加压加热成型。首先,连续抽真空、通氩气三次,然后以80ml/min的流量向炉腔中通入氩气,在6.3MPa的初始压力下以10℃/min的速率加热到140℃,保温10min,继续以10MPa/min的升压速率升至20MPa,140℃继续保温10min,再以10MPa/min的升压速率升至40MPa,140℃继续保温10min,最后以100℃/min的降温速率降至30℃,同时以10MPa/min的速率降压至10MPa,得到热压成型的样品。
将热压成型运用到SPS,并且采用先升温后升压的方式使材料成型,一方面能够消除在热压过程中产生的热应力,另一方面可以防止预氧化的聚碳硅烷和PMMA在成型过程中的剧烈膨胀,使得材料不密实甚至受热裂开的情况。采用的成型模具为内径为的石墨模具。
(3)高温热解、晶化制备多孔SiC陶瓷
将热压成型的样品放置在马弗炉炉腔中,连续抽真空、通氩气三次,然后将炉腔抽真空,在真空状态下以0.5℃/min的速率升至450℃,保温2h,继续以2.5℃/min的速率升至950℃,保温1h,最后以5℃/min的速率升至1300℃,保温30min,随炉冷却,得到多孔SiC陶瓷。
实施例1制得的多孔SiC陶瓷的XRD图谱如图1所示。图1中可以明显看出SiC三个代表性晶面的衍射峰,同时衍射峰出现了宽化现象,这是由于SiC具有多孔结构造成的。从图1中可以确定所制备的材料为多孔SiC。图2是实施例1制得的多孔SiC陶瓷的代表性SEM图,从图2可以进一步确定所制备的材料具有均匀的多孔结构,孔径约在100-200μm,并且孔和孔之间相互联通,能够有效吸附相变材料。
使用本发明实施1制得的多孔SiC陶瓷负载石蜡,然后用平板导热仪测检测,纯石蜡的热导率仅为0.29W·m-1·k-1,经过与本发明的多孔SiC陶瓷浸渍后,整体复合相变储能材料的热导率得到了大幅度提升,达到1.24W·m-1·k-1,为纯石蜡的导热率的4.35倍。比较负载前后多孔SiC陶瓷的质量,结果表明本发明的多孔SiC陶瓷负载量也达到了80%。经压缩实验检测,负载石蜡后的多孔SiC陶瓷抗压强度达到了12.5MPa。表明本发明的方法制得的多孔SiC陶瓷不但流程短孔径均匀,而且作为有机相变储能材料的载体优势明显。
本发明实施例中,取黄色透明状聚碳硅烷,研磨至白色粉末状,然后称取研磨好的白色粉末于180℃保温8h,得到白色块体,将白色块体研磨成粉末,得到预氧化的聚碳硅烷;取预氧化的聚碳硅烷和PMMA微球,混合后研磨,使两者充分混合,得到混合粉末;将混合粉末加入模具放置在SPS烧结炉中进行加压加热成型;将热压成型的样品放置在马弗炉炉腔中,连续抽真空、通氩气三次,然后将炉腔抽真空,在真空状态下梯度升温,使热压成型的样品高温热解、晶化,最后随炉冷却得到多孔SiC陶瓷。本发明的方法制得的多孔SiC陶瓷不但流程短孔径均匀,而且作为有机相变储能材料的载体优势明显。
以上仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (6)
1.多孔SiC陶瓷的低温制备方法,其特征在于,包括以下步骤:
(1)取黄色透明状聚碳硅烷,研磨至白色粉末状,然后称取研磨好的白色粉末于180℃保温8h,得到白色块体,将所述白色块体研磨成粉末,得到预氧化的聚碳硅烷;
(2)取所述预氧化的聚碳硅烷和PMMA微球,混合后研磨,使两者充分混合,得到混合粉末;
(3)将所述混合粉末加入模具放置在SPS烧结炉中进行加压加热成型,首先,连续抽真空、通氩气三次,然后向炉腔中通入氩气,在6.3MPa的初始压力下以10℃/min的速率加热到140℃,保温10min,继续以10MPa/min的升压速率升至20MPa,140℃继续保温10min,再以10MPa/min的升压速率升至40MPa,140℃继续保温10min,最后以100℃/min的降温速率降至30℃,同时以10MPa/min的速率降压至10MPa,得到热压成型的样品;
(4)将所述热压成型的样品放置在马弗炉炉腔中,连续抽真空、通氩气三次,然后将炉腔抽真空,在真空状态下以0.5℃/min的速率升至450℃,保温2h,继续以2.5℃/min的速率升至950℃,保温1h,最后以5℃/min的速率升至1300℃,保温30min,随炉冷却,得到多孔SiC陶瓷。
2.根据权利要求1所述的方法,其特征在于,所述步骤(2)中,所述预氧化的聚碳硅烷和所述PMMA微球的质量比为1:4。
3.根据权利要求1所述的方法,其特征在于,所述步骤(3)中,所述氩气流量为80ml/min。
4.根据权利要求1所述的方法,其特征在于,所述步骤(2)中,所述PMMA微球的粒径为30、50或70μm。
5.根据权利要求1所述的方法,其特征在于,所述步骤(2)中,混合后研磨10min。
6.一种多孔SiC陶瓷,其特征在于,采用如权利要求1-5任一项所述的方法制备得到。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210636280.XA CN115073205A (zh) | 2022-06-07 | 2022-06-07 | 多孔SiC陶瓷和多孔SiC陶瓷的低温制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210636280.XA CN115073205A (zh) | 2022-06-07 | 2022-06-07 | 多孔SiC陶瓷和多孔SiC陶瓷的低温制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115073205A true CN115073205A (zh) | 2022-09-20 |
Family
ID=83251633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210636280.XA Pending CN115073205A (zh) | 2022-06-07 | 2022-06-07 | 多孔SiC陶瓷和多孔SiC陶瓷的低温制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115073205A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102503423A (zh) * | 2011-11-22 | 2012-06-20 | 东华大学 | 一种SiBNC块状陶瓷的制备方法 |
CN105272266A (zh) * | 2015-11-27 | 2016-01-27 | 厦门大学 | 一种先驱体转化碳化硅泡沫陶瓷的制备方法 |
CN109534817A (zh) * | 2017-09-21 | 2019-03-29 | 中南大学 | 一种先驱体转化类陶瓷的定向多孔结构制备方法 |
CN114436669A (zh) * | 2022-02-21 | 2022-05-06 | 武汉科技大学 | 一种一维高导热c/c复合材料的制备方法 |
-
2022
- 2022-06-07 CN CN202210636280.XA patent/CN115073205A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102503423A (zh) * | 2011-11-22 | 2012-06-20 | 东华大学 | 一种SiBNC块状陶瓷的制备方法 |
CN105272266A (zh) * | 2015-11-27 | 2016-01-27 | 厦门大学 | 一种先驱体转化碳化硅泡沫陶瓷的制备方法 |
CN109534817A (zh) * | 2017-09-21 | 2019-03-29 | 中南大学 | 一种先驱体转化类陶瓷的定向多孔结构制备方法 |
CN114436669A (zh) * | 2022-02-21 | 2022-05-06 | 武汉科技大学 | 一种一维高导热c/c复合材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
傅高升主编: "《汽车材料》", 31 August 2011, 山东大学出版社 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101323524B (zh) | 一种定向排列孔碳化硅多孔陶瓷的制备方法 | |
EP1425147B1 (en) | Process for making porous graphite and articles produced therefrom | |
US5589428A (en) | Silicon carbide with controlled porosity | |
CN104150940B (zh) | 氮化硅与碳化硅复相多孔陶瓷及其制备方法 | |
CN100395211C (zh) | 一种制备高孔隙率多孔碳化硅陶瓷的方法 | |
Song et al. | Processing of microcellular silicon carbide ceramics with a duplex pore structure | |
CN103588482B (zh) | 一种高孔隙率及高强度钇硅氧多孔陶瓷的制备方法 | |
Kim et al. | Processing of microcellular mullite | |
CN106830942B (zh) | 一种多孔b4c陶瓷骨架及其冷冻注模工艺 | |
CN115286408B (zh) | 一种基于颗粒级配复合技术的激光3d打印制备碳化硅复合材料部件的方法 | |
CN110304923B (zh) | 一种基于颗粒级配的碳化硼基陶瓷复合材料的制备方法 | |
CN101323536A (zh) | 氮化硼多孔陶瓷保温材料、制备方法及其应用 | |
CN105272229A (zh) | 含烧绿石相锆酸钆粉体的陶瓷及其制备方法 | |
US20200115285A1 (en) | Low cost thermally conductive carbon foam for tooling and other applications | |
CN105198437A (zh) | 一种多孔碳化硅陶瓷的制备方法 | |
CN111320476A (zh) | 金刚石-碳化硅复合材料及其制备方法、电子设备 | |
Jiang et al. | Extrusion of highly porous silicon nitride ceramics with bimodal pore structure and improved gas permeability | |
CN107337453A (zh) | 一种结合气固反应法制备重结晶碳化硅多孔陶瓷的方法 | |
KR101372464B1 (ko) | 다공성 질화규소 구조체 및 이의 제조방법 | |
CN113416076A (zh) | 一种自增强碳化硅陶瓷材料的制备方法 | |
CN101734920B (zh) | 一种氮化钛多孔陶瓷及其制备方法 | |
CN104131208A (zh) | 一种氧化铝-碳化钛微米复合陶瓷刀具材料及其微波烧结方法 | |
CN105016773B (zh) | 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法 | |
CN111548183B (zh) | 通过凝胶注模和碳热还原制备分级多孔碳化硅陶瓷的方法 | |
CN115073205A (zh) | 多孔SiC陶瓷和多孔SiC陶瓷的低温制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220920 |
|
RJ01 | Rejection of invention patent application after publication |