CN115059722B - 一种抗冲击自修复的多层复合材料及其制备方法 - Google Patents

一种抗冲击自修复的多层复合材料及其制备方法 Download PDF

Info

Publication number
CN115059722B
CN115059722B CN202210606482.XA CN202210606482A CN115059722B CN 115059722 B CN115059722 B CN 115059722B CN 202210606482 A CN202210606482 A CN 202210606482A CN 115059722 B CN115059722 B CN 115059722B
Authority
CN
China
Prior art keywords
layer
shear thickening
core layer
thickening glue
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210606482.XA
Other languages
English (en)
Other versions
CN115059722A (zh
Inventor
何卫星
周仪
周建平
濮平
朱永熙
俞科静
文浩李洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Textile Research Institute Co ltd
Jiangnan University
Original Assignee
Jiangsu Textile Research Institute Co ltd
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Textile Research Institute Co ltd, Jiangnan University filed Critical Jiangsu Textile Research Institute Co ltd
Priority to CN202210606482.XA priority Critical patent/CN115059722B/zh
Publication of CN115059722A publication Critical patent/CN115059722A/zh
Application granted granted Critical
Publication of CN115059722B publication Critical patent/CN115059722B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/108Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of plastics springs, e.g. attachment arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/103Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by method of assembly, production or treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0241Fibre-reinforced plastics [FRP]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/025Elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • F16F2224/048High viscosity, semi-solid pastiness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/40Multi-layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种抗冲击自修复的多层复合材料,所述多层复合材料包括树脂层和中间层;树脂层位于中间层的上、下两侧;所述树脂层与中间层之间还设有增强芯层;所述树脂层为热塑性聚氨酯树脂材料;所述中间层为经过软硬段调节具有高弹缓冲特性的聚氨酯材料;所述增强芯层为芳纶和高强聚乙烯纤维混合编织的三维织物,所述三维织物包括方形外框,外框内设有锯齿结构,锯齿的上、下尖端与外框内壁连接,形成相互平行的多个空腔;空腔内填充有剪切增稠胶。本发明复合材料高绿色环保,且具有高弹性、高抗冲击性的优势。

Description

一种抗冲击自修复的多层复合材料及其制备方法
技术领域
本发明涉及复合材料技术领域,尤其是涉及一种抗冲击自修复的多层复合材料及其制备方法。
背景技术
在防爆、应急救援、航空航天、国防等领域,常常易遭受到复杂环境带来的冲击危害,因此需要研制出能高效吸能抗冲击材料来保护免受器材或人体免受损伤。传统的抗冲击材料大多采用高强度金属加工制成,存在体积大,移动困难,成本高昂等问题,且由于其金属的特性,往往需要具有较大的厚度才具备一定的抗冲击防护效果。尽管近些年出现了许多新型金属抗冲击材料如泡沫铝、泡沫钛等,但也存在着加工难度大,成本较为高昂的问题。
随着科技的发展,由高分子复合材料制备的新型抗冲击材料,解决了传统抗冲击材料的问题,防护效果优异,成本也较为低廉。如剪切增稠液是一种具有独特力学性能的材料,在不受力条件下,材料呈现柔软的状态;而在受到高速冲击或侵彻作用下,材料瞬间转变为坚硬的固态,分散冲击能量或阻止侵彻;冲击作用后,又可恢复到柔软状态。但是仍存在着一些问题,如遭受冲击损伤后,其防护效果大幅下降甚至失效,且大多数抗冲击防护材料是一次性使用,难以回收利用,污染环境。
热塑性聚氨酯是一种具备热塑线性结构的高分子化合物,具备良好的性能如耐磨、抗冲击、高弹性、耐老化、耐腐蚀等等。这些优异性能与聚氨酯材料的分子结构密切相关:聚氨酯分子主链是由柔性的长链多元醇和刚性的异氰酸酯嵌段而成的,可以有效分散应力作用,极性和非极性链段的共存也提高了聚氨酯的化学稳定性,同时聚合物内广泛存在的氢键作用,也进一步提高了材料的机械性能。聚氨酯弹性体虽然具备良好的抗冲击性能和高弹性,但是由于其独特的分子链,其机械性能往往较差,难以满足目前复杂多变的应用环境。
目前市场上常见的树脂基抗冲击材料大多采用复合结构设计,其增强层常采用纤维基板制成。其经纬交织结构结构紧密,可以提供良好的机械性能,但是也使其抗冲击性能较差。
发明内容
针对现有技术存在的上述问题,本发明提供了一种抗冲击自修复的多层复合材料及其制备方法。本发明多层复合材料解决了传统的抗冲击材料,其缓冲吸能效果不佳,且受损伤后,防护性能大幅下降甚至失效,且所用材料难以回收利用,易造成污染和资源浪费的问题,本发明复合材料高绿色环保,且具有高弹性、高抗冲击性的优势。
本发明的技术方案如下:
一种抗冲击自修复的多层复合材料,所述多层复合材料包括树脂层和中间层;树脂层位于中间层的上、下两侧;所述树脂层与中间层之间还设有增强芯层;
所述树脂层的规格为:厚度为0.25~0.30cm,长×宽的尺寸为50±2cm×50±2cm;所述增强芯层的规格为:厚度为1~1.25cm,长×宽的尺寸为50±5cm×50±5cm;所述中间层的规格为厚度为0.25~0.30cm,长×宽的尺寸为50±2cm×50±2cm。
所述树脂层为热塑性聚氨酯树脂(TPU)材料;
所述热塑性聚氨酯树脂(TPU)材料采用的原料及各原料的质量百分数为:
所述剪切增稠胶粉末的粒径为50-300nm。剪切增稠胶粉末的制备方法为:
(1)将硼酸和羟基硅油按照质量比为1:10混合,40-50r/min的转速下机械搅拌30min;硼酸规格为:粉状,分析纯;硼酸在使用前需放置于烘箱中,120℃烘干2h;羟基硅油规格为:50cst;
(2)在常压下,120℃反应4h,制成脆性剪切增稠胶;
(3)将脆性剪切增稠胶放入研磨机中研磨30min,得到粒径为50-300nm的剪切增稠胶粉末;
所述热塑性聚氨酯树脂材料的制备方法为:
(1)将聚丙二醇在120℃下真空干燥2h;
(2)将27%~41%干燥后的聚丙二醇和10%~15%异佛尔酮二异氰酸酯(IPDI)和1%~2%二月桂酸二丁基锡(DBTDL)混合,在氮气氛围下70℃反应3h,得到-NCO封端的交联聚氨酯预聚物;
(3)之后将7%~10%1,4-丁二醇(BDO)加入预聚物中,60-80℃下进行扩链反应3-6h;
(4)之后加入25%~39%的二甲基乙酰胺(DMAc),其中含有2%~3%的3,3-二硫代二丙酸(DTPA),85℃下反应3.5h;
(5)将5%~10%的剪切增稠胶粉末加入到步骤(4)的产物中进行机械搅拌5min,搅拌速率为40-50r/min;搅拌完毕后倒入聚四氟乙烯板上,固化温度为10-30℃,合成了掺杂了剪切增稠胶粉末的自修复聚氨酯,即所述热塑性聚氨酯树脂材料。
所述中间层为经过软硬段调节具有高弹缓冲特性的聚氨酯材料(HTPU);
所述中间层的制备方法为:
(1)将聚四氢呋喃醚二醇PTMEG和2,4-甲苯二异氰酸酯TDI按摩尔比为5:3分别称取;
(2)将PTMEG加热至90℃搅拌5min,加入TDI,在100℃下反应2.5h,制得PTMEG预聚体;
(3)将PTMEG预聚体抽真空20min,加入固化扩链剂3,3’-二氯-4,4’-二氨基二苯基甲烷MOCA,搅拌10min;得到的产物倒入聚四氟乙烯板中,在50℃下抽真空固化1h,制成得到具有高弹缓冲特性的聚氨酯材料HTPU。
所述增强芯层为芳纶和高强聚乙烯纤维混合编织的三维织物,所述三维织物包括方形外框,外框内设有锯齿结构,锯齿的上、下尖端与外框内壁连接,形成相互平行的多个空腔;空腔内填充有剪切增稠胶。
所述增强芯层中的芳纶的线密度为1670dtext;增强芯层的制备方法为:将所述三维织物浸渍在稀释好的STG混合液中,超声震荡10min,使STG充分均匀的附在织物上;之后将浸渍好的三维织物置于空气中晾干,再在60℃的烘箱中放置24h烘干,制得所述增强芯层。
所述稀释好的STG混合液由剪切增稠胶与无水乙醇按照质量比1:1混合制得;所述剪切增稠胶的制备方法为:将硼酸、羟基硅油按质量比15:100混合后,升至250℃反应5h后停止加热,反应结束冷却30min后所得物质,即所述剪切增稠胶。硼酸在使用前需放置于烘箱中,120℃烘干2h;
一种多层复合材料的制备方法,所述多层复合材料由树脂层、中间层和增强芯层通过热压成型;具体步骤为:
(1)将树脂层、增强芯层、中间层按照预先的结构设计:树脂层-增强芯层-中间层-增强芯层-树脂层五层结构放置于热压机上;
(2)将热压机的上下压片均设置150℃的温度,对样品施加2kN的初始压力,继续施压直至热塑性TPU溢出;
(3)然后,保持加热功能保持0.5h,然后关掉热压机的加热功能,样品在压力保持下自然冷却至室温后取出。
本发明有益的技术效果在于:
本发明树脂层材料通过调节软硬段含量,引入二硫键和多重氢键,并共混剪切增稠胶粉末,同时实现了高机械性能和高自修复性能,可回收利用,绿色环保;中间层由于其独特的分子结构,具备高弹性高缓冲性能;
本发明增强芯层由于其三角形截面设计,并填充剪切增稠胶,能够协同增强材料的力学性能和防护性能;本发明多层复合抗冲击自修复梯度材料具有仿生多层复合梯度,具备抵抗高冲击载荷的能力;且成本低廉,技术成熟,防护效果优异。
本发明树脂层材料进行独特的分子结构设计,针对传统聚氨酯材料高弹抗缓冲性能较差等缺点,通过调节软硬段含量,通过化学反应,使氨基甲酸酯和醚氧基团形成软段和硬段,分布均匀,使得热塑性聚氨酯弹性体的力学性能十分优异,且该弹性体中存在刚性基团苯基和脲基,这些基团进一步增强了该弹性体的力学性能。并为其具备自修复能力,通过结构优化,在分子链中引入二硫键和多重氢键,再受到冲击时,多重氢键和二硫键会依次断裂进而耗散能量,从而实现优异的防护效果;在一定温度和时间下,氢键和二硫键重新缔合,修复材料因冲击而产生的裂缝等损伤,使材料的防护性能恢复到初始状态,从而达到具有多次使用的功能。且可通过醇解法,进行回收利用,原理是将聚氨酯大分子中含有的大量氨基甲酸酯键、酯键、脲基和醚键等断键,使其形成相对分子质量较小的含聚酯或聚醚多元醇或聚氨酯多元醇及少量胺的液体混合物。
增强芯层采用“三角形”截面中空结构设计,三角形具有稳定性,有着稳固、坚定、耐压的特点,采用该结构,可以更好的提供机械性能,且由于其中空设计,相较于传统织物,能更好的耗散冲击能量。此外,空腔内填充剪切增稠胶,剪切增稠胶分子链中存在大量的“B-O动态交联键”,其断开后可恢复重建。该瞬时交联键在低外力载荷下,有足够时间顺利断开,剪切增稠胶产生明显的蠕变,处于黏流态;在高外力载荷下,短时间内不足以将B-O动态交联键打开,大量B-O动态交联键对分子间的相对运动产生阻力,同时高分子链间缠结也来不及打开,导致整体黏度急剧上升,从黏流态转变到橡胶态至玻璃态,高分子在两次相态转变过程中,都能够吸收大量的能量。将“三角形”截面中空织物和剪切增稠胶结合组成增强芯层,协同发挥两种材料的优势,形成了具有高机械性能和高缓冲性能的增强芯层。
中间层是具有高弹性,高缓冲性能的热塑性聚氨酯,经过化学改性处理,面对外界冲击时,分子链中的动态共价键会先进行断裂吸收能量,之后折叠的分子链会伸展延长,形成多级耗能体系,与树脂层、增强芯层一起协同发挥抗冲击作用。
通过结构设计,设计了一种多层复合梯度材料,其独特的结构:树脂层-增强芯层-中间层-增强芯层-树脂层五层结构,实现了高抗冲击性能和机械性能,且由于对树脂层内分子链软硬段的调节,引入多重氢键和二硫键,实现了高机械性能和自修复性能统一,从而使该绿色环保的多层复合抗冲击自修复梯度材料具备高机械性能、优异的抗冲击效果、可多次重复使用等特点。
附图说明
图1为本发明结构示意图;
图2三维立体织物的三维截面图;
图3为实施例2制得多层复合材料中的树脂层回收前后的应力应变曲线。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。
实施例1
一种多层复合材料的制备方法,所述多层复合材料由树脂层、中间层和增强芯层通过热压成型;具体步骤为:
(1)将树脂层、增强芯层、中间层按照预先的结构设计:树脂层-增强芯层-中间层-增强芯层-树脂层五层结构放置于热压机上;
(2)将热压机的上下压片均设置150℃的温度,对样品施加2kN的初始压力,继续施压直至热塑性TPU溢出;
(3)然后,保持加热功能保持0.5h,然后关掉热压机的加热功能,样品在压力保持下自然冷却至室温后取出。
所述树脂层为热塑性聚氨酯树脂(TPU)材料,厚度为0.25cm,长×宽的尺寸为50cm×50cm,其制备方法为:
(1)将聚丙二醇在120℃下真空干燥2h;
(2)将41%的干燥后的聚丙二醇和10%的异佛尔酮二异氰酸酯(IPDI)和1%二月桂酸二丁基锡(DBTDL)混合,在氮气氛围下70℃反应3h,得到-NCO封端的交联聚氨酯预聚物;
(3)之后将7%的1,4-丁二醇(BDO)加入预聚物中,60℃下进行扩链反应3h;
(4)之后加入34%的二甲基乙酰胺(DMAc),其中含有2%的3,3-二硫代二丙酸(DTPA),85℃下反应3.5h;
(5)将5%的剪切增稠胶粉末加入到步骤(4)的产物中进行机械搅拌5min,搅拌速率为40r/min;搅拌完毕后倒入聚四氟乙烯板上,固化温度为20℃,合成了掺杂了剪切增稠胶粉末的自修复聚氨酯,即所述热塑性聚氨酯树脂材料。
所述剪切增稠胶粉末的粒径为50-300nm。剪切增稠胶粉末的制备方法为:
(1)将硼酸和羟基硅油按照质量比为1:10混合,40r/min的转速下机械搅拌30min;硼酸规格为:粉状,分析纯;硼酸在使用前需放置于烘箱中,120℃烘干2h;羟基硅油规格为:50cst;
(2)在常压下,120℃反应4h,制成脆性剪切增稠胶;
(3)将脆性剪切增稠胶放入研磨机中研磨30min,得到粒径为50-300nm的剪切增稠胶粉末;
所述中间层为经过软硬段调节具有高弹缓冲特性的聚氨酯材料(HTPU),厚度为0.27cm,长×宽的尺寸为51cm×51cm,其制备方法为:
(1)将聚四氢呋喃醚二醇PTMEG和2,4-甲苯二异氰酸酯TDI按摩尔比为5:3分别称取;
(2)将PTMEG加热至90℃搅拌5min,加入TDI,在100℃下反应2.5h,制得PTMEG预聚体;
(3)将PTMEG预聚体抽真空20min,加入固化扩链剂3,3’-二氯-4,4’-二氨基二苯基甲烷MOCA,搅拌10min;得到的产物倒入哑铃形模具中,在50℃下抽真空固化1h,制成得到具有高弹缓冲特性的聚氨酯材料HTPU。
所述增强芯层为线密度为1670dtext的芳纶和高强聚乙烯纤维混合编织的三维织物,所述三维织物包括方形外框,外框内设有锯齿结构,锯齿的上、下尖端与外框内壁连接,形成相互平行的多个空腔;空腔内填充有剪切增稠胶;厚度为1cm,长×宽的尺寸为52cm×52cm。
将所述三维织物浸渍在稀释好的STG混合液中,超声震荡10min,使STG充分均匀的附在织物上;之后将浸渍好的三维织物置于空气中晾干,再在60℃的烘箱中放置24h烘干,制得所述增强芯层。
所述稀释好的STG混合液由剪切增稠胶与无水乙醇按照质量比1:1混合制得;所述剪切增稠胶的制备方法为:将硼酸、羟基硅油按质量比15:100混合后,升至250℃反应5h后停止加热,反应结束冷却30min后所得物质,即所述剪切增稠胶。硼酸在使用前需放置于烘箱中,120℃烘干2h。
实施例2
一种多层复合材料的制备方法,所述多层复合材料由树脂层、中间层和增强芯层通过热压成型;具体步骤为:
(1)将树脂层、增强芯层、中间层按照预先的结构设计:树脂层-增强芯层-中间层-增强芯层-树脂层五层结构放置于热压机上;
(2)将热压机的上下压片均设置150℃的温度,对样品施加2kN的初始压力,继续施压直至热塑性TPU溢出;
(3)然后,保持加热功能保持0.5h,然后关掉热压机的加热功能,样品在压力保持下自然冷却至室温后取出。
所述树脂层为热塑性聚氨酯树脂(TPU)材料,厚度为0.275cm,长×宽的尺寸为51cm×51cm,其制备方法为:
(1)将聚丙二醇在120℃下真空干燥2h;
(2)将38%的干燥后的聚丙二醇和15%的异佛尔酮二异氰酸酯(IPDI)和2%二月桂酸二丁基锡(DBTDL)混合,在氮气氛围下70℃反应3h,得到-NCO封端的交联聚氨酯预聚物;
(3)之后将10%的1,4-丁二醇(BDO)加入预聚物中,70℃下进行扩链反应5h;
(4)之后加入25%的二甲基乙酰胺(DMAc),其中含有3%的3,3-二硫代二丙酸(DTPA),85℃下反应3.5h;
(5)将7%的剪切增稠胶粉末加入到步骤(4)的产物中进行机械搅拌5min,搅拌速率为50r/min;搅拌完毕后倒入聚四氟乙烯板上,固化温度为25℃,合成了掺杂了剪切增稠胶粉末的自修复聚氨酯,即所述热塑性聚氨酯树脂材料。
所述剪切增稠胶粉末的粒径为50-300nm。剪切增稠胶粉末的制备方法为:
(1)将硼酸和羟基硅油按照质量比为1:10混合,50r/min的转速下机械搅拌30min;硼酸规格为:粉状,分析纯;硼酸在使用前需放置于烘箱中,120℃烘干2h;羟基硅油规格为:50cst;
(2)在常压下,120℃反应4h,制成脆性剪切增稠胶;
(3)将脆性剪切增稠胶放入研磨机中研磨30min,得到粒径为50-300nm的剪切增稠胶粉末。
所述中间层为经过软硬段调节具有高弹缓冲特性的聚氨酯材料(HTPU),厚度为0.25cm,长×宽的尺寸为50cm×50cm,其制备方法为:
(1)将聚四氢呋喃醚二醇PTMEG和2,4-甲苯二异氰酸酯TDI按摩尔比为5:3分别称取;
(2)将PTMEG加热至90℃搅拌5min,加入TDI,在100℃下反应2.5h,制得PTMEG预聚体;
(3)将PTMEG预聚体抽真空20min,加入固化扩链剂3,3’-二氯-4,4’-二氨基二苯基甲烷MOCA,搅拌10min;得到的产物倒入哑铃形模具中,在50℃下抽真空固化1h,制成得到具有高弹缓冲特性的聚氨酯材料HTPU。
所述增强芯层为线密度为1670dtext的芳纶和高强聚乙烯纤维混合编织的三维织物,所述三维织物包括方形外框,外框内设有锯齿结构,锯齿的上、下尖端与外框内壁连接,形成相互平行的多个空腔;空腔内填充有剪切增稠胶;厚度为1cm,长×宽的尺寸为52cm×52cm。
将所述三维织物浸渍在稀释好的STG混合液中,超声震荡10min,使STG充分均匀的附在织物上;之后将浸渍好的三维织物置于空气中晾干,再在60℃的烘箱中放置24h烘干,制得所述增强芯层。
所述稀释好的STG混合液由剪切增稠胶与无水乙醇按照质量比1:1混合制得;所述剪切增稠胶的制备方法为:将硼酸、羟基硅油按质量比15:100混合后,升至250℃反应5h后停止加热,反应结束冷却30min后所得物质,即所述剪切增稠胶。硼酸在使用前需放置于烘箱中,120℃烘干2h。
实施例3
一种多层复合材料的制备方法,所述多层复合材料由树脂层、中间层和增强芯层通过热压成型;具体步骤为:
(1)将树脂层、增强芯层、中间层按照预先的结构设计:树脂层-增强芯层-中间层-增强芯层-树脂层五层结构放置于热压机上;
(2)将热压机的上下压片均设置150℃的温度,对样品施加2kN的初始压力,继续施压直至热塑性TPU溢出;
(3)然后,保持加热功能保持0.5h,然后关掉热压机的加热功能,样品在压力保持下自然冷却至室温后取出。
所述树脂层为热塑性聚氨酯树脂(TPU)材料,厚度为0.30cm,长×宽的尺寸为52cm×52cm,其制备方法为:
(1)将聚丙二醇在120℃下真空干燥2h;
(2)将27%的干燥后的聚丙二醇和13%的异佛尔酮二异氰酸酯(IPDI)和1%二月桂酸二丁基锡(DBTDL)混合,在氮气氛围下70℃反应3h,得到-NCO封端的交联聚氨酯预聚物;
(3)之后将8%的1,4-丁二醇(BDO)加入预聚物中,60℃下进行扩链反应3h;
(4)之后加入39%的二甲基乙酰胺(DMAc),其中含有2%的3,3-二硫代二丙酸(DTPA),85℃下反应3.5h;
(5)将10%的剪切增稠胶粉末加入到步骤(4)的产物中进行机械搅拌5min,搅拌速率为40r/min;搅拌完毕后倒入聚四氟乙烯板上,固化温度为20℃,合成了掺杂了剪切增稠胶粉末的自修复聚氨酯,即所述热塑性聚氨酯树脂材料。
所述剪切增稠胶粉末的粒径为50-300nm。剪切增稠胶粉末的制备方法为:
(1)将硼酸和羟基硅油按照质量比为1:10混合,40r/min的转速下机械搅拌30min;硼酸规格为:粉状,分析纯;硼酸在使用前需放置于烘箱中,120℃烘干2h;羟基硅油规格为:50cst;
(2)在常压下,120℃反应4h,制成脆性剪切增稠胶;
(3)将脆性剪切增稠胶放入研磨机中研磨30min,得到粒径为50-300nm的剪切增稠胶粉末;
所述中间层为经过软硬段调节具有高弹缓冲特性的聚氨酯材料(HTPU),厚度为0.30cm,长×宽的尺寸为52cm×52cm,其制备方法为:
(1)将聚四氢呋喃醚二醇PTMEG和2,4-甲苯二异氰酸酯TDI按摩尔比为5:3分别称取;
(2)将PTMEG加热至90℃搅拌5min,加入TDI,在100℃下反应2.5h,制得PTMEG预聚体;
(3)将PTMEG预聚体抽真空20min,加入固化扩链剂3,3’-二氯-4,4’-二氨基二苯基甲烷MOCA,搅拌10min;得到的产物倒入哑铃形模具中,在50℃下抽真空固化1h,制成得到具有高弹缓冲特性的聚氨酯材料HTPU。
所述增强芯层为线密度为1670dtext的芳纶和高强聚乙烯纤维混合编织的三维织物,所述三维织物包括方形外框,外框内设有锯齿结构,锯齿的上、下尖端与外框内壁连接,形成相互平行的多个空腔;空腔内填充有剪切增稠胶;厚度为1.25cm,长×宽的尺寸为55cm×55cm。
将所述三维织物浸渍在稀释好的STG混合液中,超声震荡10min,使STG充分均匀的附在织物上;之后将浸渍好的三维织物置于空气中晾干,再在60℃的烘箱中放置24h烘干,制得所述增强芯层。
所述稀释好的STG混合液由剪切增稠胶与无水乙醇按照质量比1:1混合制得;所述剪切增稠胶的制备方法为:将硼酸、羟基硅油按质量比15:100混合后,升至250℃反应5h后停止加热,反应结束冷却30min后所得物质,即所述剪切增稠胶。硼酸在使用前需放置于烘箱中,120℃烘干2h;
测试例:
对实施例2中制备的树脂层,进行可回收实验。按照下述步骤实施:
(1)将树脂层剪碎浸泡在含有DMF溶剂的烧杯中,在115℃的烘箱中热处理30min;
(2)将溶解的材料倒入聚四氟乙烯模具中,60℃下反应24小时;
(3)除去溶剂后再次成膜,得到回收后的树脂层;
(4)进行拉伸试验测试。
对回收前后的样品进行了拉伸试验,其应力应变曲线如图3所示。实线代表在未回收前树脂层样品的拉伸测试结果,从图中可以看出,其最大断裂应力可达11.1MPa,断裂伸长率为265%;而经再次回收的树脂层,其机械性能如虚线所表示,可以看出其最大断裂应力达9MPa,而断裂伸长率恢复至254%,经计算回收后效率达87.18%,说明本发明制备出的材料具有较好的可回收性能,绿色环保。
以实施例3制得的多层复合材料进行抗冲击实验,按照下述步骤实施:
将待测样品放置于冲击试验机上;设置接触时间为20ms,冲击能设置为150J,温度为室温25℃;冲击后,都放入80℃下静置2h;重复三次。测试结果如表1所示。由表1可以看出,第一次冲击时,试样的吸能比达62%以上,显示该多层复合梯度结构具有良好的抗冲击吸能效果,这是因为树脂层通过调节软硬段的比例,并引入多重氢键和二硫键,受到冲击时,氢键和二硫键作为牺牲键断裂吸收能量,从而达到更好的吸能效果。第二、三次冲击时,试样的吸能比虽有下降,但其吸能比仍达到60%以上,原因是,受到冲击损伤后,其树脂层在高温下,氢键和二硫键重新缔合,从而修复微小的裂纹,所以即使经过三次冲击后,仍具有良好的缓冲吸能性能。
表1
次数 接触时间(ms) 冲击能(J) 吸能比(%)
1 20 150 69
2 20 150 66
3 20 150 64

Claims (7)

1.一种抗冲击自修复的多层复合材料,其特征在于,所述多层复合材料包括树脂层和中间层;树脂层位于中间层的上、下两侧;所述树脂层与中间层之间还设有增强芯层;
所述树脂层为热塑性聚氨酯树脂材料;
所述中间层为经过软硬段调节具有高弹缓冲特性的聚氨酯材料;
所述增强芯层为芳纶和高强聚乙烯纤维混合编织的三维织物,所述三维织物包括方形外框,外框内设有锯齿结构,锯齿的上、下尖端与外框内壁连接,形成相互平行的多个空腔;空腔内填充有剪切增稠胶;
所述热塑性聚氨酯树脂材料采用的原料及各原料的质量百分数为:
聚丙二醇27%~41%
异佛尔酮二异氰酸酯10%~15%
二月桂酸二丁基锡1%~2%
剪切增稠胶粉末5%~10%
1,4-丁二醇7%~10%
二甲基乙酰胺25%~39%
3,3-二硫代二丙酸2%~3% ;
所述剪切增稠胶粉末的粒径为50-300nm;
剪切增稠胶粉末的制备方法为:
(1)将硼酸和羟基硅油按照质量比为1:10混合,40-50 r/min的转速下机械搅拌30min;硼酸规格为:粉状,分析纯;羟基硅油规格为:50cst;
(2)在常压下,120℃反应4h,制成脆性剪切增稠胶;
(3)将脆性剪切增稠胶放入研磨机中研磨30min,得到粒径为50-300nm的剪切增稠胶粉末;
所述热塑性聚氨酯树脂材料的制备方法为:
(1)将聚丙二醇在120℃下真空干燥2h;
(2)将27%~41%干燥后的聚丙二醇和10%~15%异佛尔酮二异氰酸酯和 1%~2%二月桂酸二丁基锡混合,在氮气氛围下70℃反应3h,得到-NCO封端的交联聚氨酯预聚物;
(3)之后将7%~10% 1,4-丁二醇加入预聚物中,60-80℃下进行扩链反应3-6h;
(4)之后加入 25%~39% 的二甲基乙酰胺,其中含有2%~3%的3,3-二硫代二丙酸,85℃下反应3.5h;
(5)将5%~10%的剪切增稠胶粉末加入到步骤(4)的产物中进行机械搅拌5min,搅拌速率为40-50r/min;搅拌完毕后倒入聚四氟乙烯板上,固化温度为10-30℃,合成了掺杂了剪切增稠胶粉末的自修复聚氨酯,即所述热塑性聚氨酯树脂材料。
2.根据权利要求1所述的多层复合材料,其特征在于,所述增强芯层中的芳纶的线密度为1670 dtext。
3.根据权利要求1所述的多层复合材料,其特征在于,所述增强芯层的制备方法为:将所述三维织物浸渍在稀释好的STG混合液中,超声震荡10min,使STG充分均匀的附在织物上;之后将浸渍好的三维织物置于空气中晾干,再在60℃的烘箱中放置24h烘干,制得所述增强芯层。
4.根据权利要求3所述的多层复合材料,其特征在于,所述稀释好的STG混合液由剪切增稠胶与无水乙醇按照质量比1:1混合制得;所述剪切增稠胶的制备方法为:将硼酸、羟基硅油按质量比15:100混合后,升至250℃反应5h后停止加热,反应结束冷却30min后所得物质,即所述剪切增稠胶。
5.根据权利要求1所述的多层复合材料,其特征在于,所述中间层的制备方法为:
(1)将聚四氢呋喃醚二醇PTMEG和2,4-甲苯二异氰酸酯TDI按摩尔比为5:3 分别称取;
(2)将PTMEG加热至90℃搅拌5min,加入TDI,在100℃下反应2.5h,制得PTMEG预聚体;
(3)将PTMEG预聚体抽真空20min,加入固化扩链剂3,3’-二氯-4,4’-二氨基二苯基甲烷MOCA,搅拌10min;得到的产物倒入聚四氟乙烯板中,在50℃下抽真空固化1h,制成得到具有高弹缓冲特性的聚氨酯材料HTPU。
6.根据权利要求1所述的多层复合材料,其特征在于,所述树脂层的规格为:厚度为0.25~0.30cm,长×宽的尺寸为50±2cm×50±2cm;所述增强芯层的规格为:厚度为1~1.25cm,长×宽的尺寸为50±5cm×50±5cm;所述中间层的规格为厚度为0.25~0.30cm,长×宽的尺寸为50±2cm×50±2cm。
7.一种权利要求1所述多层复合材料的制备方法,其特征在于,所述多层复合材料由树脂层、中间层和增强芯层通过热压成型;具体步骤为:
(1)将树脂层、增强芯层、中间层按照预先的结构设计:树脂层-增强芯层-中间层-增强芯层-树脂层五层结构放置于热压机上;
(2)将热压机的上下压片均设置150℃的温度,对样品施加2kN的初始压力,继续施压直至热塑性TPU溢出;
(3)然后,保持加热功能保持0.5h,然后关掉热压机的加热功能,样品在压力保持下自然冷却至室温后取出。
CN202210606482.XA 2022-05-31 2022-05-31 一种抗冲击自修复的多层复合材料及其制备方法 Active CN115059722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210606482.XA CN115059722B (zh) 2022-05-31 2022-05-31 一种抗冲击自修复的多层复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210606482.XA CN115059722B (zh) 2022-05-31 2022-05-31 一种抗冲击自修复的多层复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115059722A CN115059722A (zh) 2022-09-16
CN115059722B true CN115059722B (zh) 2023-09-29

Family

ID=83198893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210606482.XA Active CN115059722B (zh) 2022-05-31 2022-05-31 一种抗冲击自修复的多层复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115059722B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103772794A (zh) * 2014-01-23 2014-05-07 德清苏尔新材料有限公司 高密度聚乙烯基抗冲击复合材料及其制备方法
CN103772960A (zh) * 2014-01-23 2014-05-07 德清苏尔新材料有限公司 聚氨酯基抗冲击复合材料及其制备方法
CN104457429A (zh) * 2014-10-11 2015-03-25 中物功能材料研究院有限公司 液体防护材料及其制备方法
KR20160053312A (ko) * 2014-11-03 2016-05-13 (주) 데크카본 Cnt 또는 그라핀을 포함하는 방탄섬유 복합체 프리프레그의 제조방법 및 이에 의하여 제조된 방탄부재
CN108274840A (zh) * 2018-01-24 2018-07-13 中国工程物理研究院化工材料研究所 一种剪切增稠凝胶/三维编织吸能材料及其制备方法
CN108532299A (zh) * 2018-04-17 2018-09-14 南昌航空大学 一种基于剪切增稠液体制备抗冲击性能芳纶织物的方法
CN109942784A (zh) * 2018-07-26 2019-06-28 四川大学 一种线性热塑性聚氨酯锚固剂及其制备方法
CN110091562A (zh) * 2019-05-07 2019-08-06 江南大学 一种基于剪切增稠胶的抗冲击柔性防护复合材料及其制备方法
CN110240686A (zh) * 2019-04-29 2019-09-17 山西科灜科技有限公司 一种高性能高硬度透明聚氨酯弹性体及其制备方法
CN111944118A (zh) * 2020-08-28 2020-11-17 袁涌 一种阻尼型高承载力聚氨酯弹性体材料及制备方法和用途
CN114395926A (zh) * 2022-01-12 2022-04-26 东华大学 一种具有防护低速冲击功能的剪切增稠胶增强织物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090092821A1 (en) * 2007-10-09 2009-04-09 Dharan C K Hari Fiber-reinforced foamed resin structural composite materials and methods for producing composite materials
US10688359B2 (en) * 2016-08-12 2020-06-23 Bauer Hockey Ltd. Recovery materials for core constructs and methods for repairing core constructs

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103772794A (zh) * 2014-01-23 2014-05-07 德清苏尔新材料有限公司 高密度聚乙烯基抗冲击复合材料及其制备方法
CN103772960A (zh) * 2014-01-23 2014-05-07 德清苏尔新材料有限公司 聚氨酯基抗冲击复合材料及其制备方法
CN104457429A (zh) * 2014-10-11 2015-03-25 中物功能材料研究院有限公司 液体防护材料及其制备方法
KR20160053312A (ko) * 2014-11-03 2016-05-13 (주) 데크카본 Cnt 또는 그라핀을 포함하는 방탄섬유 복합체 프리프레그의 제조방법 및 이에 의하여 제조된 방탄부재
CN108274840A (zh) * 2018-01-24 2018-07-13 中国工程物理研究院化工材料研究所 一种剪切增稠凝胶/三维编织吸能材料及其制备方法
CN108532299A (zh) * 2018-04-17 2018-09-14 南昌航空大学 一种基于剪切增稠液体制备抗冲击性能芳纶织物的方法
CN109942784A (zh) * 2018-07-26 2019-06-28 四川大学 一种线性热塑性聚氨酯锚固剂及其制备方法
CN110240686A (zh) * 2019-04-29 2019-09-17 山西科灜科技有限公司 一种高性能高硬度透明聚氨酯弹性体及其制备方法
CN110091562A (zh) * 2019-05-07 2019-08-06 江南大学 一种基于剪切增稠胶的抗冲击柔性防护复合材料及其制备方法
CN111944118A (zh) * 2020-08-28 2020-11-17 袁涌 一种阻尼型高承载力聚氨酯弹性体材料及制备方法和用途
CN114395926A (zh) * 2022-01-12 2022-04-26 东华大学 一种具有防护低速冲击功能的剪切增稠胶增强织物

Also Published As

Publication number Publication date
CN115059722A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
KR101761954B1 (ko) 풍력 발전소에서의 층 구조의 용도
CN112062930B (zh) 一种透明、耐黄变高强韧快速自修复聚肟氨酯弹性体
DE112012003531B4 (de) Solarmodul und Verfahren zu seiner Herstellung
CN112239530A (zh) 一种疏水自愈超弹性聚氨酯弹性体制备的新方法
US11965057B2 (en) Two-liquid curable composition for forming thermoplastic matrix resin, matrix resin for fiber-reinforced composite material, and fiber-reinforced composite material
EP2714759A1 (de) Faserverbundbauteil und ein verfahren zu dessen herstellung
MX2013009565A (es) Uso de estructuras de capas en plantas de energia eolica.
EP1449863B1 (en) MATRIX RESIN COMPOSITION FOR FIBER−REINFORCED PLASTICS AND PROCESS FOR PRODUCTION OF FIBER−REINFORCED PLASTICS
EP3694703A1 (en) Composite wind turbine blade and manufacturing method and application thereof
CN111499833A (zh) 一种聚氨酯型自修复树脂
CN115353609A (zh) 一种可修复增强的高性能聚氨酯弹性体及制备方法
US20040210027A1 (en) Shape memory polymer composition, fiber reinforced plastic and production process thereof
CN115059722B (zh) 一种抗冲击自修复的多层复合材料及其制备方法
CN1401680A (zh) 一种硬质聚氨酯浇注材料
CN111572130A (zh) 一种抗冲击复合材料、其制备方法及应用
CN113831830B (zh) 一种高阻隔聚氨酯自修复组合物及其制备方法
CN110591041A (zh) 一种具有自修复性的热塑性叠氮聚氨酯弹性体及其制备方法
CN111040114B (zh) 一种用于碳纤维rtm工艺的聚氨酯组合物
CN109667708A (zh) 复合材料风机叶片及其制备方法与应用
CN113651941A (zh) 一种聚氨酯阻尼材料及其制备方法
CN111763417A (zh) 一种纳米二氧化钛填充热塑性聚氨酯/氯丁橡胶共混物复合材料及其制备方法
EP3536492A1 (en) Composite wind turbine blade and manufacturing method and application thereof
CN112794983B (zh) 一种可见光固化自修复含氟聚氨酯树脂的制备方法
CN113789045A (zh) 一种聚氨酯复合材料及其制备方法
CN113667440A (zh) 一种双组分聚氨酯胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant