CN115050819B - 用于降低多层场板输入电容的氮化镓晶体管 - Google Patents

用于降低多层场板输入电容的氮化镓晶体管 Download PDF

Info

Publication number
CN115050819B
CN115050819B CN202210978211.7A CN202210978211A CN115050819B CN 115050819 B CN115050819 B CN 115050819B CN 202210978211 A CN202210978211 A CN 202210978211A CN 115050819 B CN115050819 B CN 115050819B
Authority
CN
China
Prior art keywords
field plate
source
region
gate
source field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210978211.7A
Other languages
English (en)
Other versions
CN115050819A (zh
Inventor
潘俊
肖海林
张胜源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Aichuang Microelectronics Technology Co ltd
Original Assignee
Hefei Aichuang Microelectronics Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Aichuang Microelectronics Technology Co ltd filed Critical Hefei Aichuang Microelectronics Technology Co ltd
Priority to CN202210978211.7A priority Critical patent/CN115050819B/zh
Publication of CN115050819A publication Critical patent/CN115050819A/zh
Application granted granted Critical
Publication of CN115050819B publication Critical patent/CN115050819B/zh
Priority to EP22212514.8A priority patent/EP4325582A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供一种用于降低多层场板输入电容的氮化镓晶体管,包括氮化镓基片、源极区、漏极区以及栅极区,其形成于所述氮化镓基片中且包含与所述氮化镓基片的一部分接触的栅极堆叠,所述栅极区设置于所述源极区与所述漏极区之间,所述栅极堆叠中的栅极金属一侧具有朝向漏极区延伸的栅场板;所述第一源极欧姆金属一侧具有朝向漏极区延伸并跨越所述栅场板的第一源场板,该第一源场板具有镂空结构区域。对场板结构进行镂空设计,降低栅场板与源场板之间的正对面积,从而降低栅、源之间的寄生电容,从而提高器件的开关及频率特性。

Description

用于降低多层场板输入电容的氮化镓晶体管
技术领域
本发明涉及半导体器件技术领域,具体涉及氮化镓高电子迁移率晶体管(highelectron mobility transistor;HEMT)的半导体器件,用于降低多层场板输入电容的氮化镓晶体管。
背景技术
作为继第一代半导体硅(Si)和第二代半导体砷化镓(GaAs)之后的第三代半导体材料代表,氮化镓(GaN)具有许多优异的材料特性,如宽禁带、耐高温、高电子浓度、高电子迁移率、高导热性等等。因此,GaN基高电子迁移率晶体管(HEMT)在微波通讯和电力电子转换领域拥有卓越的性能,尤其适用于制造大功率电子器件。
氮化镓功率器件属于一种平面沟道场效应晶体管,当栅极和漏极之间施加的电压增大时,其栅极靠近漏极方向的边缘往往会形成一个高电场尖峰,极易引起器件漏电流增大,往往导致器件失效,影响器件可靠性。为了解决电场过于集中的问题,现有技术中通常采用多重栅、源场板并且多层场板逐渐增高的方式来分散电场,这主要是由于在每一场板边缘都会产生于一个峰值电场,通过分压作用削弱栅极边缘的电场峰值,使得一个高电场尖峰分散成几个小的电场尖峰,从而实现提高击穿电压,增加器件寿命和可靠性的目的。
但上述多层栅、源场板结构在提升器件性能的同时,也会带来输入电容的提高。如图9所示,由于引入了源场板与栅场板,且源场板跨过栅极金属上方,源场板与栅极金属之间存在介质层90,源场板、绝缘介质及栅极金属三者构成了平行板电容器模型,其产生的寄生电容大小可以由公式C=Q/U=εrε0S/d进行计算,其中Q代表极板带的电荷量,U表示两极板上的电压差,εr代表绝缘介质的相对介电常数,ε0代表真空介电常数,S代表两极板的等效正对面积,d代表两极板之间的等效距离。从C=Q/U可以看出,当栅极和源极电压U一定时,C越大,Q越大,那么充电时间就会越长,开关速度就会越慢,同时开关损耗的能量也会越大。
晶体管的电容是表征器件从导通状态到关断状态转换期间,器件中损失能量的一个重要参数,而现有技术中寄生电容降低了电荷量,充电时间就会变短,等于降低了电荷提供的时间,影响了器件的开关及频率特性。
发明内容
本发明提供一种用于降低多层场板输入电容的氮化镓晶体管,其具有栅、源多层场板的镂空结构,降低器件的输入电容,以改善器件的开关及频率特性。
为解决上述技术问题,本发明采用如下技术方案:
一种用于降低多层场板输入电容的氮化镓晶体管,包括:
氮化镓基片;
源极区,其形成于所述氮化镓基片中且包含与所述氮化镓基片的一部分接触的第一源极欧姆金属;
漏极区,其形成于所述氮化镓基片中且与所述源极区分离;以及
栅极区,其形成于所述氮化镓基片中且包含与所述氮化镓基片的一部分接触的栅极堆叠,所述栅极区设置于所述源极区与所述漏极区之间,所述栅极堆叠中的栅极金属一侧具有朝向漏极区延伸的栅场板;
所述第一源极欧姆金属一侧具有朝向漏极区延伸并跨越所述栅场板的第一源场板,该第一源场板具有镂空结构区域。
进一步地,所述第一源极欧姆金属上还形成有第二源极金属,该第二源极金属一侧具有朝向漏极区延伸并跨越所述第一源场板的第二源场板,所述第二源场板具有镂空结构区域,该第二源场板的镂空结构区域与第一源场板的镂空结构区域在纵向上具有至少部分重叠。
优选地,所述镂空结构区域包括填充在该镂空结构区域内并垂直于场板表面的多个纵向通孔。
优选地,所述第二源场板的纵向通孔与第一源场板的纵向通孔上下同心布置,且第二源场板的纵向通孔的孔径大于或等于第一源场板的纵向通孔的孔径。
优选地,所述多个纵向通孔为矩形孔、圆形孔、五边形孔或三角形孔中的任一种。
由以上技术方案可知,本发明对场板结构进行镂空设计,降低栅场板与源场板之间的正对面积,从而降低栅、源之间的寄生电容,也即降低了电荷量,充电时间就会变短,电荷提供的越快,器件的电压改变的也就越快,因此栅、源输入电容的降低能改善器件的转换效率及频率特性。
附图说明
图1为本发明氮化镓晶体管实施例1的纵向剖视图;
图2为本发明氮化镓晶体管实施例2的纵向剖视图;
图3为本发明氮化镓晶体管实施例3的纵向剖视图;
图4为本发明氮化镓晶体管实施例4的纵向剖视图;
图5为本发明氮化镓晶体管实施例5的纵向剖视图;
图6为本发明氮化镓晶体管实施例6的纵向剖视图;
图7为本发明氮化镓晶体管实施例7的纵向剖视图;
图8为本发明氮化镓晶体管实施例8的纵向剖视图;
图9为现有技术中第一源场板和栅场板区域的俯视图;
图10为实施例1中纵向通孔为矩形孔,第一源场板中纵向通孔的俯视图;
图11为实施例1中纵向通孔为圆形孔,第一源场板中纵向通孔的俯视图;
图12为实施例1中纵向通孔为五边形孔,第一源场板中纵向通孔的俯视图;
图13为实施例1中纵向通孔为三角形孔,第一源场板中纵向通孔的俯视图。
具体实施方式
下面结合附图对本发明的一种优选实施方式作详细的说明。
本发明的氮化镓晶体管能够用于降低多层场板输入电容,其包括氮化镓基片10,以及形成在氮化镓基片中或上的源极区20、漏极区30和栅极区40,其中栅极区设置于所述源极区与所述漏极区之间,漏极区与源极区分离,源极区、漏极区和栅极区之间填充介质层90。
所述氮化镓基片10包括衬底以及形成在衬底上的多层功能结构,该多层功能结构根据需要设置,可以但不限定于包括依次叠置的衬底、成核层、缓冲层、第一GaN层、第二GaN层和AlGaN势垒层。 还可以是包括依次叠置的成核层、缓冲层、第一插入层、第一GaN层、第二插入层、第二GaN层和AlGaN势垒层,其中成核层与衬底相连,其中衬底可以是蓝宝石、硅或氮化镓。
关于源极区20、漏极区30和栅极区40的结构本发明分成八个实施例加以说明。
实施例1
采用耗尽型GaN-HEMT,如图1所示,所述源极区20其形成于所述氮化镓基片10中且包含与所述氮化镓基片的一部分接触的第一源极欧姆金属21。所述漏极区30形成于所述氮化镓基片10中且与所述源极区分离,所述漏极区30包含与所述氮化镓基片的一部分接触的第一漏极欧姆金属31。所述栅极区40的栅极堆叠50包含与所述氮化镓基片10的一部分接触的栅极金属51,该栅极金属一侧具有朝向漏极区30延伸的栅场板511。
所述第一源极欧姆金属21一侧具有朝向漏极区延伸并跨越所述栅场板的第一源场板211,该第一源场板具有镂空结构区域60。
实施例2
采用P-GaN增强型GaN-HEMT,如图2所示,与实施例1的区别在于,所述栅极堆叠50包括与所述氮化镓基片的一部分接触的P-GaN层52,该P-GaN层上形成有肖特基金属53,该肖特基金属上形成栅极金属51。
实施例3
采用凹槽栅增强型GaN-HEMT,如图3所示,与实施例1的区别在于,所述栅极堆叠50包括内嵌在所述氮化镓基片中的凹槽栅54以及形成在凹槽栅上的栅极金属51。
实施例4
采用氟离子注入增强型GaN-HEMT,如图4所示,与实施例1的区别在于,所述栅极堆叠50包括内嵌在所述氮化镓基片10中的离子注入区55以及形成在离子注入区上的栅极金属51。
实施例5
采用耗尽型GaN-HEMT,如图5所示,与实施例1的区别是,所述第一源极欧姆金属21上还形成有第二源极金属22,该第二源极金属一侧具有朝向漏极区延伸并跨越所述第一源场板211的第二源场板221,所述第二源场板221具有镂空结构区域70,该第二源场板的镂空结构区域70与第一源场板的镂空结构区域60在纵向上具有至少部分重叠。所述漏极区30包含与所述氮化镓基片10的一部分接触的第一漏极欧姆金属31,在该第一漏极欧姆金属上形成有第二漏极金属32。
实施例6
采用P-GaN增强型GaN-HEMT,如图6所示,与实施例5的区别在于,所述栅极堆叠50包括与所述氮化镓基片10的一部分接触的P-GaN层52,该P-GaN层上形成有肖特基金属53,该肖特基金属上形成有栅极金属51。
实施例7
采用凹槽栅增强型GaN-HEMT,如图7所示,与实施例5的区别在于,所述栅极堆叠包括内嵌在所述氮化镓基片中的凹槽栅54以及形成在凹槽栅上的栅极金属51。
实施例8
采用氟离子注入增强型GaN-HEMT,如图8所示,与实施例5的区别在于,所述栅极堆叠包括内嵌在所述氮化镓基片中的离子注入区55以及形成在离子注入区上的栅极金属51。
实施例9
所述第一源极欧姆金属上还依次叠置形成有第二源极金属和第三源极金属,该第二源极金属一侧具有朝向漏极区延伸并跨越所述第一源场板的第二源场板,该第三源极金属一侧具有朝向漏极区延伸并跨越所述第二源场板的第三源场板,所述第二源场板和第三源场板均具有镂空结构区域,该第三源场板的镂空结构区域与第一源场板的镂空结构区域、第二源场板的镂空结构区域在纵向上具有至少部分重叠。第三源场板设置镂空结构对降低电容作用已经很小了,因为到第三场板之间的距离d很大,当然也有在第三源极金属之上再形成第四源极金属,作用就更加微弱,但这些结构都是在本发明的保护范围内。
实施例1-4所述的第一源场板211的镂空结构区域60至少覆盖所述栅极区40的部分区域,该第一源场板的镂空结构区域60不在第一源场板211朝向漏极区30超出所述栅场板的边缘A形成。其中实施例1中第一源场板的镂空结构区域60与所述栅极区40完全重叠,实施例2中第一源场板的镂空结构区域60只覆盖所述栅极区40的一部分。
所述第一源场板211的镂空结构区域60还形成在第一源场板朝向源极区20超出所述栅场板的边缘B。实施例3中第一源场板211的镂空结构区域60是完全覆盖所述栅极区40,并分布在朝向源极区超出栅场板的边缘B。实施例4中第一源场板211的镂空结构区域60只覆盖所述栅极区40的一部分,并分布在朝向源极区超出栅场板的边缘B。
实施例5-8所述的第二源场板221的镂空结构区域70至少覆盖所述第一源场板镂空结构60的部分区域,该第二源场板的镂空结构区域70不在第二源场板朝向漏极区超出所述第一源场板211的边缘C形成。
其中实施例5中第二源场板221的镂空结构区域70完全覆盖所述第一源场板的镂空结构区域60。实施例6中第二源场板的镂空结构区域70完全被第一源场板的镂空结构区域60所覆盖。实施例7中第二源场板的镂空结构区域70在实施例6的基础上朝所述源极区20进行延伸。实施例8中第二源场板的镂空结构区域70在实施例6的基础上朝所述漏极区30进行延伸。
优选地,所述第一源场板211和第二源场板221与所述栅场板的重叠位置全部为镂空结构。
本发明的所述镂空结构区域60、70包括填充在该镂空结构区域内并垂直于场板表面的多个纵向通孔,并且每一层金属场板纵向通孔之间存在起电连接作用的非镂空结构83。所述纵向通孔可以是一列、两列或多列构成镂空结构区域。
优选地,所述第二源场板的纵向通孔与第一源场板的纵向通孔上下同心布置,且第二源场板的纵向通孔的孔径大于或等于第一源场板的纵向通孔的孔径,这样设计就能够避免正对面积受两个源场板通孔错位的影响。
如图10-13所示,所述多个纵向通孔81可以选择为矩形孔、圆形孔、五边形孔或三角形孔中的任一种,本发明不限定纵向通孔的具体形状,只要能够实现减少正对面积效果的纵向通孔都在本发明的保护范围内。
具体的措施是在原有的场板结构中进行镂空设计,不改变原有产品生产工艺,仅仅是光刻板图形的变化,降低栅场板与源场板之间的正对面积,从而降低栅、源之间的寄生电容。
以上所述实施方式仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (17)

1.一种用于降低多层场板输入电容的氮化镓晶体管,其特征在于,包括:
氮化镓基片;
源极区,其形成于所述氮化镓基片中且包含与所述氮化镓基片的一部分接触的第一源极欧姆金属;
漏极区,其形成于所述氮化镓基片中且与所述源极区分离;以及
栅极区,其形成于所述氮化镓基片中且包含与所述氮化镓基片的一部分接触的栅极堆叠,所述栅极区设置于所述源极区与所述漏极区之间,所述栅极堆叠中的栅极金属一侧具有朝向漏极区延伸的栅场板;
所述第一源极欧姆金属一侧具有朝向漏极区延伸并跨越所述栅场板的第一源场板,该第一源场板具有镂空结构区域;所述第一源极欧姆金属上还形成有第二源极金属,该第二源极金属一侧具有朝向漏极区延伸并跨越所述第一源场板的第二源场板,所述第二源场板具有镂空结构区域,该第二源场板的镂空结构区域与第一源场板的镂空结构区域在纵向上具有至少部分重叠;所述镂空结构区域包括填充在该镂空结构区域内并垂直于场板表面的多个纵向通孔,并且每一层金属场板纵向通孔之间存在起电连接作用的非镂空结构。
2.根据权利要求1所述的氮化镓晶体管,其特征在于,所述第一源极欧姆金属上还依次叠置形成有第二源极金属和第三源极金属,该第二源极金属一侧具有朝向漏极区延伸并跨越所述第一源场板的第二源场板,该第三源极金属一侧具有朝向漏极区延伸并跨越所述第二源场板的第三源场板,所述第二源场板和第三源场板均具有镂空结构区域,该第三源场板的镂空结构区域与第一源场板的镂空结构区域、第二源场板的镂空结构区域在纵向上具有至少部分重叠。
3.根据权利要求1所述的氮化镓晶体管,其特征在于,所述第一源场板的镂空结构区域至少覆盖所述栅极区的部分区域,该第一源场板的镂空结构区域不在第一源场板朝向漏极区超出所述栅场板的边缘形成。
4.根据权利要求1所述的氮化镓晶体管,其特征在于,所述第二源场板的镂空结构区域至少覆盖所述第一源场板镂空结构的部分区域,该第二源场板的镂空结构区域不在第二源场板朝向漏极区超出所述第一源场板的边缘形成。
5.根据权利要求3所述的氮化镓晶体管,其特征在于,所述第一源场板的镂空结构区域还形成在第一源场板朝向源极区超出所述栅场板的边缘。
6.根据权利要求4所述的氮化镓晶体管,其特征在于,所述第二源场板的镂空结构区域还形成在第二源场板朝向源极区超出所述栅场板的边缘。
7.根据权利要求1所述的氮化镓晶体管,其特征在于,所述第一源场板与所述栅极区的重叠位置全部为镂空结构区域。
8.根据权利要求1所述的氮化镓晶体管,其特征在于,所述第二源场板与所述第一源场板的重叠位置全部为镂空结构区域。
9.根据权利要求1所述的氮化镓晶体管,其特征在于,所述第二源场板的纵向通孔与第一源场板的纵向通孔上下同心布置,且第二源场板的纵向通孔的孔径大于或等于第一源场板的纵向通孔的孔径。
10.根据权利要求1所述的氮化镓晶体管,其特征在于,所述多个纵向通孔为矩形孔、圆形孔、五边形孔或三角形孔中的任一种。
11.根据权利要求1所述的氮化镓晶体管,其特征在于,所述栅极堆叠的栅极金属与所述氮化镓基片的一部分接触。
12.根据权利要求1所述的氮化镓晶体管,其特征在于,所述栅极堆叠包括与所述氮化镓基片的一部分接触的P-GaN层,该P-GaN层上形成有肖特基金属,该肖特基金属上形成有栅极金属。
13.根据权利要求1所述的氮化镓晶体管,其特征在于,所述栅极堆叠包括内嵌在所述氮化镓基片中的凹槽栅以及形成在凹槽栅上的栅极金属。
14.根据权利要求1所述的氮化镓晶体管,其特征在于,所述栅极堆叠包括内嵌在所述氮化镓基片中的离子注入区以及形成在离子注入区上的栅极金属。
15.根据权利要求1所述的氮化镓晶体管,其特征在于,所述氮化镓基片包括依次叠置的衬底、成核层、缓冲层、第一GaN层、第二GaN层和AlGaN势垒层。
16.根据权利要求1所述的氮化镓晶体管,其特征在于,所述氮化镓基片包括依次叠置的衬底、成核层、缓冲层、第一插入层、第一GaN层、第二插入层、第二GaN层和AlGaN势垒层。
17.根据权利要求1所述的氮化镓晶体管,其特征在于,所述漏极区包含与所述氮化镓基片的一部分接触的第一漏极欧姆金属,在该第一漏极欧姆金属上形成有第二漏极金属。
CN202210978211.7A 2022-08-16 2022-08-16 用于降低多层场板输入电容的氮化镓晶体管 Active CN115050819B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210978211.7A CN115050819B (zh) 2022-08-16 2022-08-16 用于降低多层场板输入电容的氮化镓晶体管
EP22212514.8A EP4325582A1 (en) 2022-08-16 2022-12-09 Gallium nitride transistor for reducing input capacitance of multilayer field plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210978211.7A CN115050819B (zh) 2022-08-16 2022-08-16 用于降低多层场板输入电容的氮化镓晶体管

Publications (2)

Publication Number Publication Date
CN115050819A CN115050819A (zh) 2022-09-13
CN115050819B true CN115050819B (zh) 2022-12-02

Family

ID=83168189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210978211.7A Active CN115050819B (zh) 2022-08-16 2022-08-16 用于降低多层场板输入电容的氮化镓晶体管

Country Status (2)

Country Link
EP (1) EP4325582A1 (zh)
CN (1) CN115050819B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018972A (ja) * 2010-07-06 2012-01-26 Sanken Electric Co Ltd 半導体装置
CN104157691A (zh) * 2014-08-15 2014-11-19 苏州捷芯威半导体有限公司 一种半导体器件及其制造方法
US20160043181A1 (en) * 2014-08-05 2016-02-11 Semiconductor Components Industries, Llc Electronic device including a channel layer including a compound semiconductor material
CN105720096A (zh) * 2013-12-27 2016-06-29 电力集成公司 高电子迁移率晶体管
CN108604596A (zh) * 2015-07-17 2018-09-28 剑桥电子有限公司 用于半导体装置的场板结构
CN110036485A (zh) * 2016-12-06 2019-07-19 克罗米斯有限公司 具有集成型钳位二极管的横向高电子迁移率的晶体管
US20210043724A1 (en) * 2019-08-06 2021-02-11 Vanguard International Semiconductor Corporation Semiconductor devices and methods for fabricating the same
US20220130965A1 (en) * 2020-10-27 2022-04-28 Cree, Inc. Field effect transistor with source-connected field plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10930745B1 (en) * 2019-11-27 2021-02-23 Vanguard International Semiconductor Corporation Semiconductor structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012018972A (ja) * 2010-07-06 2012-01-26 Sanken Electric Co Ltd 半導体装置
CN105720096A (zh) * 2013-12-27 2016-06-29 电力集成公司 高电子迁移率晶体管
US20160043181A1 (en) * 2014-08-05 2016-02-11 Semiconductor Components Industries, Llc Electronic device including a channel layer including a compound semiconductor material
CN104157691A (zh) * 2014-08-15 2014-11-19 苏州捷芯威半导体有限公司 一种半导体器件及其制造方法
CN108604596A (zh) * 2015-07-17 2018-09-28 剑桥电子有限公司 用于半导体装置的场板结构
CN110036485A (zh) * 2016-12-06 2019-07-19 克罗米斯有限公司 具有集成型钳位二极管的横向高电子迁移率的晶体管
US20210043724A1 (en) * 2019-08-06 2021-02-11 Vanguard International Semiconductor Corporation Semiconductor devices and methods for fabricating the same
US20220130965A1 (en) * 2020-10-27 2022-04-28 Cree, Inc. Field effect transistor with source-connected field plate

Also Published As

Publication number Publication date
EP4325582A1 (en) 2024-02-21
CN115050819A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
US20230420526A1 (en) Wide bandgap transistors with gate-source field plates
EP1921669B1 (en) GaN based HEMTs with buried field plates
EP2538446B1 (en) Wide bandgap transistors with multiple field plates
EP1665358B1 (en) Fabrication of single or multiple gate field plates
EP2270871B1 (en) Wide bandgap hemts with source connected field plates
US7566918B2 (en) Nitride based transistors for millimeter wave operation
US20160035870A1 (en) High voltage gan transistor
CN110047910B (zh) 一种高耐压能力的异质结半导体器件
US20090224288A1 (en) Wide bandgap transistor devices with field plates
US20220376098A1 (en) Field effect transistor with selective modified access regions
CN110660851A (zh) 一种高压n沟道HEMT器件
CN110649096A (zh) 一种高压n沟道HEMT器件
US20210296452A1 (en) Extrinsic field termination structures for improving reliability of high-voltage, high-power active devices
CN104637991A (zh) 一种改进的场板结构氮化镓高电子迁移率晶体管
CN115050819B (zh) 用于降低多层场板输入电容的氮化镓晶体管
CN110660843A (zh) 一种高压p沟道HEMT器件
CN110649097A (zh) 一种高压p沟道HEMT器件
US11869964B2 (en) Field effect transistors with modified access regions
CN115548095A (zh) 增强型氮化镓器件以及器件的制作方法
US20110049569A1 (en) Semiconductor structure including a field modulation body and method for fabricating same
CN114613856B (zh) 一种双异质结GaN RC-HEMT器件
KR20230055221A (ko) GaN RF HEMT 소자 및 그 제조방법
CN115249742A (zh) 一种低寄生电容的晶体管及其制备方法
CN117913135A (zh) 一种耗尽型GaN器件及其制备方法、HEMT级联型器件
EP4352790A1 (en) Field effect transistor with modified access regions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: Floor 1-5, Building B7, Hefei Innovation and Technology Park, Intersection of Jianghuai Avenue and Sugang Road, Feixi County Economic Development Zone, Hefei City, Anhui Province, 231200

Patentee after: HEFEI AICHUANG MICROELECTRONICS TECHNOLOGY CO.,LTD.

Address before: 3rd Floor, East A2, Liheng Industrial Plaza, Hefei Gongtou, Economic Development Zone, Feixi County, Hefei City, Anhui Province, 231200

Patentee before: HEFEI AICHUANG MICROELECTRONICS TECHNOLOGY CO.,LTD.

CP02 Change in the address of a patent holder