CN115041168A - 一种用于水处理的赤泥基光芬顿催化剂及其制备方法与应用 - Google Patents

一种用于水处理的赤泥基光芬顿催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN115041168A
CN115041168A CN202210881901.0A CN202210881901A CN115041168A CN 115041168 A CN115041168 A CN 115041168A CN 202210881901 A CN202210881901 A CN 202210881901A CN 115041168 A CN115041168 A CN 115041168A
Authority
CN
China
Prior art keywords
red mud
photo
fenton catalyst
preparation
biomass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210881901.0A
Other languages
English (en)
Other versions
CN115041168B (zh
Inventor
程治良
徐倩
魏娟
魏泽军
代黎
邱发成
全学军
张兴然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Technology
Original Assignee
Chongqing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Technology filed Critical Chongqing University of Technology
Priority to CN202210881901.0A priority Critical patent/CN115041168B/zh
Publication of CN115041168A publication Critical patent/CN115041168A/zh
Application granted granted Critical
Publication of CN115041168B publication Critical patent/CN115041168B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Treatment Of Sludge (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明属于环境化学工程技术领域,具体涉及一种用于水处理的赤泥基光芬顿催化剂及其制备方法与应用。本发明要解决的技术问题是为赤泥资源化利用提供一种新选择。本发明的技术方案是一种用于水处理的赤泥基光芬顿催化剂的制备方法,包括如下步骤,将赤泥加入到水中,搅拌条件下加入生物质,高压釜中50~350℃加热2~18小时;冷却至室温,干燥,得到暗红色的固体,即可得赤泥基复合光芬顿催化剂。本发明将生物质与赤泥共水热进行改性,脱碱、还原金属氧化物,可以制备一种高效的光芬顿催化剂。这种方法具有制备工艺简单,原材料来源广泛、廉价,制备出的生物质改性赤泥基光芬顿催化剂活性高,并将其用于降解难降解有机废水处理。

Description

一种用于水处理的赤泥基光芬顿催化剂及其制备方法与应用
技术领域
本发明属于环境化学工程技术领域,具体涉及一种用于水处理的赤泥基光芬顿催化剂及其制备方法与应用。
背景技术
由于工农业生产等人类活动,废水排放量日益增加,其中印染废水、垃圾渗滤液、化工废水等有机难降解废水受到普遍关注,因其中含有大量有毒、致癌、致突变物质,对其进行有效处理迫在眉睫1。目前,有机废水的处理方法主要有物理法、化学法、生物法等,其中隶属于化学法的高级氧化技术,通过产生强氧化性的·OH等自由基,可将难降解有机物降解甚至彻底矿化为无毒的CO2和H2O,是难降解废水预处理和深度处理的有效技术,也是废水处理领域的研究热点。高级氧化技术中的光芬顿技术,由于可以利用光照加快H2O2催化氧化分解产生·OH,反应速率比传统的芬顿/类芬顿技术大大提高,更可以克服传统芬顿技术的Fe2+流失,不易重复利用、易于造成二次污染等缺点,还可以利用太阳能而降低处理成本,成为近年来水处理领域重点研究的技术2。此外,光芬顿技术还具有方法简单、适用废水pH范围宽、反应速率快,操作简便、污染物降解无选择性等优点3。光芬顿氧化技术发展的趋势还在于研制高性能、廉价的光芬顿催化剂。
赤泥是制铝工业提炼氧化铝时排放出的一种固体废渣4,且碱性很高、由于其大量堆存给生态环境带来了巨大的压力,同时,赤泥也是一种极具价值的资源。赤泥在环保中的应用可将赤泥变废为宝,解决部分环境问题,但一般存在流程长、工艺复杂、利用率低、低值化利用等问题5。因此探究高效、简单、高值化赤泥利用技术成为当前研究的重点。
目前,将赤泥改性应用于水处理方面主要作为催化剂和吸附剂。赤泥光芬顿催化剂改性又分为赤泥负载改性和联合改性两种,前者是将某些金属离子或者氧化物负载于赤泥上,但往往都需要将赤泥进行酸化或者煅烧处理,然后采用常规的浸渍或者共沉淀法制备负载金属离子或者氧化物的催化剂。联合改性是指将酸改性、焙烧、微波煅烧、及负载改性中的两种或者多种结合起来,以达到改善赤泥理化性质的目的5-8。这类方法往往制备工艺繁杂,而且通过强酸、强碱对赤泥进行处理存在较大的安全隐患6
发明内容
本发明要解决的技术问题是为赤泥资源化利用提供一种新选择。
本发明的技术方案是一种用于水处理的赤泥基光芬顿催化剂的制备方法,包括如下步骤,将赤泥加入到水中,搅拌条件下加入生物质,高压釜中50~350℃加热2~18小时;冷却至室温,干燥,得到暗红色的固体,即可得赤泥基复合光芬顿催化剂。
其中,所述水为去离子水。
进一步的,所述生物质为甘蔗渣、花生壳或枫叶。
具体的,所述赤泥与生物质的质量比为0.5~10︰1。
优选的,所述赤泥与生物质的质量比为1︰1。
其中,所述赤泥与水的质量比为1︰40。
优选的,于高压釜中140℃加热16小时。
具体的,所述干燥温度为50~100℃。
优选的,所述干燥温度为80℃。
本发明还提供了所述制备方法得到的赤泥基光芬顿催化剂。
本发明还提供了所述赤泥基光芬顿催化剂在处理有机污水中的用途。
进一步的,所述有机污水为畜禽废水、抗生素废水或染料废水。
其中,所述抗生素为四环素。
其中,所述染料为罗丹明B。
本发明的有益效果:针对难降解有机污染物的处理及绿色环保改性制备赤泥基催化剂,本着“以废治废”理念,本发明将生物质与赤泥共水热进行改性,脱碱、还原金属氧化物,可以制备一种高效的光芬顿催化剂。这种方法具有制备工艺简单,原材料来源广泛、廉价,制备出的生物质改性赤泥基光芬顿催化剂活性高。本发明为赤泥与生物质资源化利用及难降解废水处理提供新技术,具有较好的应用前景。本发明提出将生物质与赤泥共水热进行改性,可以制备一种高效的赤泥基光芬顿催化剂,并将其用于降解难降解有机废水处理,具有如下优点:
(1)本方法制备的生物质改性赤泥基光芬顿催化剂相较于未改性的赤泥,催化H2O2氧化性能能有明显提升,制备方法具有工艺简单安全,成本低、易于大规模工业化生产的优点;
(2)通过加入生物质改性赤泥,在水热过程中能够产生生物酸,降低赤泥的碱度,减少赤泥对环境的危害;
(3)生物质和赤泥分别属于农业、工业固废,本发明可“变废为宝”,降低废水处理成本,从而达到以废治废的目的。
附图说明
图1赤泥与改性-赤泥的x射线粉末衍射(XRD)光谱,(2θ为角度,Intensity:强度)。
图2赤泥与改性赤泥的FT-IR谱图,(Transmittance%:透光率,Wavelength:波长)。
图3赤泥与改性赤泥基X射线光电子能谱图,(Binding energy:键能;Intensity:强度)。
图4不同催化剂对罗丹明b的去除率(左)以及不同反应的速率常数(右)。
图5不同赤泥基催化剂对罗丹明b的去除效果图(左)以及一级动力学拟合图(右)。
图6催化剂浸出铬含量(左)以及固体催化剂中六价铬含量(右)。
图7改性-赤泥与赤泥对TC的处理效果图以及速率常数图。
图8赤泥与改性赤泥处理畜禽废水降解率图,(Removal rate:去除率)。
具体实施方式
实施例1改性赤泥光芬顿催化剂处理模拟染料废水
制备过程主要包括如下步骤:将1g赤泥缓慢加入到40mL去离子水中,在强磁搅拌下加入等质量的甘蔗渣。混合搅拌均匀,然后,将得到的溶液转移至100毫升特氟纶内衬的不锈钢高压釜中,在140℃加热16小时。自然冷却至室温后,离心,最后在80℃进行干燥,得到暗红色的固体,即可得该生物质-赤泥基复合光芬顿催化剂。
前述方法制备的改性-赤泥光芬顿催化剂,首先通过X射线衍射技术(XRD,纵坐标为强度)分析了赤泥以及赤泥改性催化剂的晶相结构(如图1所示)。该催化剂的XRD图谱可以非常清晰的检测出在33°、62.4°和63.8°检测出的衍射峰分别对应赤铁矿(HematitePDF:33-0664,Fe2O3)。在18.5°,21.5°,27.3°,36.3°,67.5°对应水合铝硅酸钠(sodium PDF:50-1496,1.08Na2O·Al2O3-1.68SiO2·1.8H2O)的衍射峰,其中还存在少量的人造金红石(Titania TiO2 PDF:21-1272).经生物质水热改性后的赤泥基催化剂的相结构中赤铁矿的衍射峰得到一定加强,说明生物质改性赤泥基对后续光芬顿反应起促进作用。
对赤泥与改性赤泥进一步进行FT-IR分析(如图2所示,Transmittance%:透光率)。其中,在(Wavelength:波长)3463cm-1和164l cm-1出现的吸收谱带分别对应于吸附水中羟基的伸缩振动和弯曲振动,在1461cm-1和875cm-1处出现的谱带对应于O-C-O的非对称伸缩振动,而改性赤泥在1500cm-1左右出现了一个微弱的振动,可能是属于C-C键的伸缩振动。说明生物质在水热反应过程中产生了微量的碳,这对于后续催化反应有促进作用。在997cm-1处出现的谱带对应于Si-O-Al键的伸缩振动,471cm-1处的谱带对应于Fe-O键的非对称伸缩振动。
为进一步证实生物质改性有利于光芬顿反应,通过X射线光电子能谱证实赤泥与改性赤泥基的表面组成及化学形态。由图3光电子全谱(Binding energy:键能;Intensity:强度)可知,改性赤泥与赤泥在元素组成上并无明显区别,由于光芬顿过程中其主要作用的为铁元素,因此主要分析了铁元素的化学形态。由图3可以看出赤泥中铁元素存在形式主要有零价铁、二价铁和三价铁,而改性赤泥中不存在零价铁而全部表现为二价铁和三价铁,典型的光芬顿过程中二价铁和三价铁更有利于反应的进行,进而证实了生物质改性赤泥用于光芬顿反应是有利的。
处理废水时,将100mg上述合成的光芬顿催化剂,投加至100mL的初始浓度为10mg.L-1的罗丹明B(RhB)溶液模拟的染料废水中。将悬浮液在黑暗中搅拌以达到吸附-解吸平衡。然后使用300W的Xe灯片在可见光照射下将0.068mol.L-1H2O2(30%)添加到反应器中的悬浮液中。一定时间间隔取样3~4mL反应溶液,离心,过滤除去固体,采用分光光度法测不同处理时间下RhB浓度。实验效果如图4所示(Kineticconstant代表反应速率常数)改性-赤泥处理110分钟RhB的去除率可以达到85%,反应速率常数k为0.01967min-1,而未改性的纯赤泥催化剂的一小时去除率仅6%。纯赤泥的反应速率常数k为0.0003min-1。改性赤泥速率常数得到明显提高。同时由于赤泥的强碱性,在加入生物质水热过程中我们检测其水热反应前后的pH值变化,结果如表1所示。从表1可以清晰的看出加入不同生物质水热后溶液pH明显降低,说明生物质水热改性能够有效降低赤泥的碱度,为赤泥的安全性利用进一步提供保障。为探究是否单纯减低赤泥碱度能够有效提高赤泥基光芬顿性能,加入无机酸调节至最佳生物质中和赤泥的最佳pH,对比不同生物质的降解效率。由图5可以看出,对比不同的生物质改性赤泥来制备赤泥基光芬顿催化剂,可以看出经过改性后的赤泥基催化剂降解罗丹明b的效率有明显提升。而经盐酸改性赤泥以及硫酸改性赤泥的催化效率并没有的到明显提升,因此可以得出酸中和并不是影响赤泥基光芬顿性能的主要因素。此外赤泥作为氧化铝生产行业产生的工业固废,其中一定浓度的致癌性强的六价铬,直接作为催化剂使用,可能存在安全性风险。因此,对改性赤泥中六价铬含量和使用过程中催化剂溶出的液相中六价铬含量进行了分析。图6分别是使用过程溶液中赤泥六价铬含量和固体赤泥催化剂中六价铬含量结果。从图6左图可以清楚的看到生物质改性赤泥使用过程中,溶出在液相中六价铬的含量显著降低,同时图6右图中催化剂Cr(Ⅵ)含量也是明显降低,充分表明生物质水热处理将赤泥中部分Cr(Ⅵ)转化/固化为Cr(Ⅲ)等毒性低的价态,使用安全性大大提高。降解过程可能主要涉及以下反应:
Figure BDA0003764501030000041
Figure BDA0003764501030000042
Figure BDA0003764501030000043
改性RM.M+hν+H2O2→活性中间体+·OH+HO2. (4)
HO2.+HO2.1O2+H2O2 (5)
1O2+hν+污染物→中间产物→CO2+H2O (6)
·OH+污染物→中间产物→CO2+H2O (7)
表1不同物质水热前后pH对比值
物质 水热反应前pH 水热反应前pH
赤泥 10.85 11.23
蔗渣改性-赤泥 9.97 4.16
花生壳改性-赤泥 10.23 5.86
橘皮改性-赤泥 9.78 4.62
实施例2改性赤泥光芬顿催化剂处理模拟抗生素废水
制备过程主要包括如下步骤:将6g赤泥缓慢加入到240mL去离子水中,在强磁搅拌下加入0.6g枫叶。混合搅拌均匀,然后,将得到的溶液转移至300毫升特氟纶内衬的不锈钢高压釜中,在350℃加热2h。小时自然冷却至室温后,离心,最后在50℃进行干燥,得到暗红色的固体,即可得该生物质-赤泥基复合光芬顿催化剂。
处理废水时,将130mg上述合成的光芬顿催化剂,投加至100mL的初始浓度为20mg.L-1的四环素(TC)溶液模拟的抗生素废水中。将悬浮液在黑暗中搅拌以达到吸附-解吸平衡。然后使用300W的Xe灯片在可见光照射下将0.088mol.L-1H2O2(30%)添加到反应器中的悬浮液中。一定时间间隔取样3-4mL反应溶液,离心,过滤除去固体,采用分光光度法测不同处理时间下TC浓度。处理效果如图7所示(其中kinetic constant代表速率反应常数)改性-赤泥催化剂处理90分钟TC的去除率可以达到95%,反应速率常数k为0.02min-1,而为改性的赤泥催化剂的一小时去除率仅76%。赤泥的反应速率常数k为0.007min-1。改性赤泥反应速率与纯赤泥催化剂相比增加3倍左右,改性催化剂明显提高光芬顿催化效果。
实施例3改性赤泥光芬顿催化剂处理实际废水
制备过程主要包括如下步骤:将0.5g赤泥缓慢加入到20mL去离子水中,在强磁搅拌下加入1g的花生壳。混合搅拌均匀,然后,将得到的溶液转移至50毫升特氟纶内衬的不锈钢高压釜中,在50℃加热18h。小时自然冷却至室温后,离心,最后在100℃进行干燥,得到暗红色的固体,即可得该生物质-赤泥基复合光芬顿催化剂。
处理废水时,将250mg上述合成的光芬顿催化剂,投加至100mL的初始COD浓度为1091.12mg.L-1的畜禽废水中。将悬浮液在黑暗中搅拌以达到吸附-解吸平衡。然后使用300W的Xe灯片在可见光照射下将0.17mol.L-1H2O2(30%)添加到反应器中的悬浮液中。一定时间间隔取样3-4mL反应溶液,离心,过滤除去固体,随后进行消解,消解完成后采用分光光度法测不同处理时间下畜禽废水COD浓度。处理效果如图8所示(Removal rate:去除率)改性-赤泥催化剂处理90分钟COD的去除率可以达到80%以上,而未改性的赤泥催化剂的一小时去除率仅50%。改性-赤泥基催化剂明显提高光芬顿催化效果。
参考文献
1.Bian X,Huang J,Qiu L,et al.Preparation,characterization and dyeingwastewater treatment of a new PVDF/PMMA five-bore UF membrane with beta-cyclodextrin and additive combinations.Water Sci Technol 2021;83:1847-1862.
2.Dong C,Yi Q,Shen B,et al.Novel Fenton process of Co-catalyst Co9S8quantum dots for highly efficient removal of organic pollutants.Chemosphere2021;270:128648.
3.Cai C,Zhang Z,Jin L,et al.Visible light-assisted heterogeneousFenton with ZnFe2O4 for the degradation of Orange II in water.AppliedCatalysis B Environmental 2016;182:456-468.
4.Xiao L,Peng G,Shuai Y,et al.Clean utilization of high-iron red mudby suspension magnetization roasting.Minerals Engineering;157.
5.Wang C,Zhang X,Sun R,et al.Neutralization of red mud using bio-acidgenerated by hydrothermal carbonization of waste biomass for potential soilapplication.Journal of Cleaner Production 2020;271:122525.
6.BB,Zhang,JZ,et al.Cobalt modified red mud catalytic ozonation forthe degradation of bezafibrate in water:Catalyst surface propertiescharacterization and reaction mechanism.CHEM ENG J 2016;2016,284:942-952.
7.Wu W,Chen Z,Huang Y,et al.Red mud for the efficient adsorption of U(VI)from aqueous solution:Influence of calcination on performance andmechanism.Journal of Hazardous Materials 2021;409:124925.
8.Xw A,Hui ZA,Ts A,et al.Synthesis of a Matériaux Institut Lavoisiermetal-organic framework 96(MIL-96(RM))using red mud and its application todefluorination of water-ScienceDirect.Materials Today Communications.

Claims (10)

1.一种用于水处理的赤泥基光芬顿催化剂的制备方法,其特征在于,包括如下步骤,将赤泥加入到水中,搅拌条件下加入生物质,高压釜中50~350℃加热2~18小时;冷却至室温,50~100℃干燥,得到暗红色的固体,即可得赤泥基复合光芬顿催化剂。
2.如权利要求1所述制备方法,其特征在于,所述水为去离子水。
3.如权利要求1所述制备方法,其特征在于,所述生物质为甘蔗渣、花生壳或枫叶。
4.如权利要求1所述制备方法,其特征在于,所述赤泥与生物质的质量比为0.5~10︰1。
5.如权利要求4所述制备方法,其特征在于,所述赤泥与生物质的质量比为1︰1。
6.如权利要求1所述制备方法,其特征在于,所述赤泥与水的质量比为1︰40。
7.如权利要求1所述制备方法,其特征在于,于高压釜中140℃加热16小时。
8.如权利要求1所述制备方法,其特征在于,所述干燥温度为80℃。
9.权利要求1~8任一项所述制备方法得到的赤泥基光芬顿催化剂。
10.权利要求9所述赤泥基光芬顿催化剂在处理畜禽废水、抗生素废水或染料废水中的用途。
CN202210881901.0A 2022-07-26 2022-07-26 一种用于水处理的赤泥基光芬顿催化剂及其制备方法与应用 Active CN115041168B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210881901.0A CN115041168B (zh) 2022-07-26 2022-07-26 一种用于水处理的赤泥基光芬顿催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210881901.0A CN115041168B (zh) 2022-07-26 2022-07-26 一种用于水处理的赤泥基光芬顿催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN115041168A true CN115041168A (zh) 2022-09-13
CN115041168B CN115041168B (zh) 2024-04-02

Family

ID=83168009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210881901.0A Active CN115041168B (zh) 2022-07-26 2022-07-26 一种用于水处理的赤泥基光芬顿催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115041168B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739085A (zh) * 2022-10-28 2023-03-07 常州大学 一种改性固体废弃物铝渣-碳基共载铁复合材料的制备方法和产品及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180050943A1 (en) * 2016-08-17 2018-02-22 Rodinia Resources Pty Ltd Bioremediation of red muds
CN109719115A (zh) * 2018-12-15 2019-05-07 佛山市铁人环保科技有限公司 一种场地重金属污染土壤资源化低成本处置方法
US20190308183A1 (en) * 2018-04-06 2019-10-10 Utah State University Red mud compositions and methods related thereto
CN110982547A (zh) * 2019-12-26 2020-04-10 郑州大学 一种降低赤泥强碱性的方法
CN111014254A (zh) * 2019-12-26 2020-04-17 郑州大学 一种利用生物质的赤泥生态修复方法和修复系统
CN111744476A (zh) * 2020-07-08 2020-10-09 昆明理工大学 一种赤泥碳基催化剂的制备方法及应用
CN114054027A (zh) * 2021-12-08 2022-02-18 中国地质大学(北京) 一种具有磁分离性能的石墨类材料改性赤泥基类芬顿催化剂及其制备方法和应用
CN114702360A (zh) * 2022-04-26 2022-07-05 东华大学 一种土壤重金属修复剂及其制备方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180050943A1 (en) * 2016-08-17 2018-02-22 Rodinia Resources Pty Ltd Bioremediation of red muds
US20190308183A1 (en) * 2018-04-06 2019-10-10 Utah State University Red mud compositions and methods related thereto
CN109719115A (zh) * 2018-12-15 2019-05-07 佛山市铁人环保科技有限公司 一种场地重金属污染土壤资源化低成本处置方法
CN110982547A (zh) * 2019-12-26 2020-04-10 郑州大学 一种降低赤泥强碱性的方法
CN111014254A (zh) * 2019-12-26 2020-04-17 郑州大学 一种利用生物质的赤泥生态修复方法和修复系统
CN111744476A (zh) * 2020-07-08 2020-10-09 昆明理工大学 一种赤泥碳基催化剂的制备方法及应用
CN114054027A (zh) * 2021-12-08 2022-02-18 中国地质大学(北京) 一种具有磁分离性能的石墨类材料改性赤泥基类芬顿催化剂及其制备方法和应用
CN114702360A (zh) * 2022-04-26 2022-07-05 东华大学 一种土壤重金属修复剂及其制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINSHUAI BA ET AL.: "Preparation and application of a new Fenton-like catalyst from red mud for degradation of sulfamethoxazole", ENVIRONMENTAL TECHNOLOGY, pages 1 - 12 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739085A (zh) * 2022-10-28 2023-03-07 常州大学 一种改性固体废弃物铝渣-碳基共载铁复合材料的制备方法和产品及应用

Also Published As

Publication number Publication date
CN115041168B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
Park et al. Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst
Li et al. Microwave-enhanced Mn-Fenton process for the removal of BPA in water
Wang et al. Copper-based catalyst from waste printed circuit boards for effective Fenton-like discoloration of Rhodamine B at neutral pH
Kumar et al. Reduced graphene oxide supported ZnO quantum dots for visible light-induced simultaneous removal of tetracycline and hexavalent chromium
Kim et al. Photocatalytic co-oxidation of As (III) and Orange G using urea-derived g-C3N4 and persulfate
Pang et al. Combined microwave-induced and photocatalytic oxidation using zinc ferrite catalyst for efficient degradation of tetracycline hydrochloride in aqueous solution
Leelavathi et al. Sunlight-assisted degradation of textile pollutants and phytotoxicity evaluation using mesoporous ZnO/gC 3 N 4 catalyst
Liu et al. Advanced landfill leachate biochemical effluent treatment using Fe-Mn/AC activates O3/Na2S2O8 process: process optimization, wastewater quality analysis, and activator characterization
CN110756163A (zh) 一种纳米CoFe2O4/碳纤维毡复合材料及其制备方法和应用
CN115041168B (zh) 一种用于水处理的赤泥基光芬顿催化剂及其制备方法与应用
CN111974404A (zh) 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法
Wu et al. Heterogeneous Fenton-like degradation of an azo dye reactive brilliant orange by the combination of activated carbon–FeOOH catalyst and H2O2
Saeed et al. ZnO catalyzed degradation of methyl orange in aqueous medium
Tohamy et al. Boosting the adsorption capacity and photocatalytic activity of activated carbon by graphene quantum dots and titanium dioxide
Cechinel et al. Coal mining pyritic waste in Fenton-like processes: Raw and purified catalysts in Reactive Blue 21 dye discoloration
CN106362754A (zh) 去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿复合催化剂及其制备方法
Zhang et al. A stepwise processing strategy for treating highly acidic wastewater and comprehensive utilization of the products derived from different treating steps
Zhang et al. Efficient degradation of metronidazole wastewater over MIL-101 (Fe) Fenton catalysts
Ma et al. Iron pyrophosphate doped carbon nanocomposite for tetracycline degradation by activation of peroxymonosulfate
He et al. Preparation, characterization, and catalytic activity of a novel MgO/expanded graphite for ozonation of Cu-EDTA
Li et al. Preparation and application of red mud-based zero-valent iron heterogeneous Fenton catalyst: A new idea for red mud recycling
US10065182B2 (en) Method of water purification
Zarei et al. Photocatalytic decomposition of methylene blue and methyl orange dyes using pistachio biochar/CoFe2O4/Mn-Fe-LDH composite as H2O2 activator
CN115970693A (zh) 一种微藻改性氧化铁光芬顿催化剂及其制备方法和应用
Zhang et al. Removal of humic acid by peroxymonosulfate active with MnOx from the backwashing sludge of a filter for manganese removal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant