CN115036489B - 一种基于钛酸锂异质结构的储锂材料的制备方法 - Google Patents

一种基于钛酸锂异质结构的储锂材料的制备方法 Download PDF

Info

Publication number
CN115036489B
CN115036489B CN202210744865.3A CN202210744865A CN115036489B CN 115036489 B CN115036489 B CN 115036489B CN 202210744865 A CN202210744865 A CN 202210744865A CN 115036489 B CN115036489 B CN 115036489B
Authority
CN
China
Prior art keywords
lithium
solution
lto
heterostructure
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210744865.3A
Other languages
English (en)
Other versions
CN115036489A (zh
Inventor
陈俊松
周亿广
肖书浩
李欣研
吴睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202210744865.3A priority Critical patent/CN115036489B/zh
Publication of CN115036489A publication Critical patent/CN115036489A/zh
Application granted granted Critical
Publication of CN115036489B publication Critical patent/CN115036489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种基于钛酸锂异质结构的储锂材料的制备方法,属于锂离子电池电极材料制备的技术领域。发明首先对含有钛源和锂源的溶液进行静电纺丝,然后在氩气气氛下进行碳化处理,得到含有LTO/RT异质结构的钛酸锂纳米棒复合材料。该方法操作简单,合成的纳米棒状特殊结构可以缩短锂离子的扩散路径,粗糙的表面可以暴露更多的活性位点;同时非化学计量比的钛源和锂源在材料内部产生了LTO/RT的异质结构,通过内建电场的建立提高电子导电性,有效的缓解了LTO导电性低的问题,从而提升了材料的电化学性能,并且温度传感测试表明了该电极材料有着高安全性,适合规模化生产和应用。

Description

一种基于钛酸锂异质结构的储锂材料的制备方法
技术领域
本发明属于锂离子电池电极材料制备技术领域,具体涉及一种基于钛酸锂异质结构的储锂材料的制备方法。
背景技术
锂离子电池作为一种先进的储能设备,由于其能量密度高,已经成为了便携式电子设备和电动汽车储能不可缺少的一部分。作为电池重要的组成部分,负极材料直接影响电池性能。目前已经商业化的锂离子电池负极为石墨材料,为嵌入脱出的反应机理,在循环过程中会出现较严重的体积膨胀;同时由于嵌锂电位低,容易析出锂枝晶造成电池短路而引发安全事故。
钛酸锂(LTO)是另一种常见的负极材料。一方面,它具有较高的嵌锂电位可以减少锂枝晶的产生,从而提高安全性;另一方面,它在脱嵌锂的过程中体积变化非常小,被称为“零应变”材料,使其具有优良的循环稳定性。虽然LTO在锂离子电池中的应用潜力很大,但是其电导率低,高倍率性能差,在一定程度上阻碍了其发展。目前关于提高LTO的导电性的方法主要为碳包覆,但通常涉及复杂多步的合成过程。专利CN101752560B和CN104577092A公开了将LTO与不同的非活性碳材料进行复合提高导电性的方法,而碳材料的引入容易降低材料的振实密度。
发明内容
本发明的目的在于,提高材料的电子电导与离子输运性能,从而提供导电性,同时解决现有技术大量碳材料的引入降低了材料的振实密度的问题。
为实现上述目的,本发明的技术方案如下:
一种基于钛酸锂异质结构的储锂材料的制备方法,包括以下步骤:
步骤1:将0.1-0.16 g的95%的醋酸锂(C2H3O2Li)溶解在含有2 mL无水乙醇和1 mL的冰醋酸(C2H4O2)溶液中,然后加入0.9712 g的98%的四异丙醇钛(TTIP;液体)搅拌均匀,标记为溶液A;
步骤2:将分子量为130万的PVP溶解在2 mL无水乙醇中,标记为溶液B;
步骤3:在磁力搅拌机上搅拌溶液A,并且将溶液B缓慢倒入溶液A中持续搅拌10分钟;
步骤4:在混合溶液中加入0.2 g的六水合硝酸锌(Zn(NO3)2•6H2O),磁力搅拌下搅拌3小时;
步骤5:用步骤四的得到的最终溶液在纺丝机上面以15 kV的电压,进速0.5mL h-1得到纤维状的样品,然后在管式炉里面氩气(Ar)气氛下900度煅烧2小时,升温速率2oC/min,最终得到具有纳米棒状含异质结的钛酸锂。
作为优选的,所述醋酸锂为0.15 g。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.本发明在纺丝纳米纤维前驱体中加入锌盐作为一种常用的造孔剂在纳米棒中形成多孔结构从而增加活性位点的暴露;高于LTO中锂钛化学计量比的锂盐投放量在LTO中引入了金红石TiO2(RT),从而于原位构筑了LTO/RT异质结构。在LTO与RT的两相界面处诱导产生内建电场而提高电子导电,有效缓解LTO导电性低的问题。
2.本发明制备技术简便易操作,适合大规模的工业化生产。
3.本发明降低了大量碳材料的引入,对材料振实密度降低的问题得到了很好的解决。
附图说明
图1为本发明锂离子电池电极材料的电镜图;
图2为本发明锂离子电池电极材料的物理表征图;
图3为本发明锂离子电池电极材料的比表面积测试图;
图4为本发明锂离子电池电极材料的电化学性能测试图;
图5为本发明锂离子电池电极材料的电化学阻抗测试图及对应的拟合分析;
图6为本发明锂离子电池电极材料与磷酸铁锂(LiFePO4)组合组装全电池的电化学性能图;
图7为发明锂离子电池电极材料的电化学阻抗测试拟合结果及对应的锂离子扩散系数结果。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合实施方式和附图,对本发明作进一步地详细描述。
一种高安全性锂离子电池材料的制备方法,包括以下步骤:
实施例1
步骤1:将0.15 g 95%的醋酸锂(C2H3O2Li)溶解在含有2 mL无水乙醇和1 mL的冰醋酸(C2H4O2)中,然后加入0.9712 g 98%的四异丙醇钛(TTIP;液体)搅拌均匀,标记为溶液A;
步骤2:将分子量为130万的聚乙烯吡咯烷酮(PVP)溶解在2 mL无水乙醇中,标记为溶液B;
步骤3:在磁力搅拌机上搅拌溶液A,并且将溶液B缓慢倒入溶液A中持续搅拌10分钟;
步骤4:在混合溶液中加入0.2 g的六水合硝酸锌(Zn(NO3)2•6H2O),磁力搅拌下搅拌3小时;
步骤5:用步骤四的得到的最终溶液在纺丝机上面以15 kV的电压,进速0.5 mL h-1得到纤维状的样品,然后在管式炉里面氩气气氛下900度煅烧2小时,升温速率2oC/min,最终得到含有异质结构的钛酸锂纳米棒(LTO/RT)。
实施例2
步骤1:将0.1 g 95%的醋酸锂(C2H3O2Li)溶解在含有2 mL无水乙醇和1 mL的冰醋酸(C2H4O2)中,然后加入0.9712 g 98%的四异丙醇钛(TTIP;液体)搅拌均匀,标记为溶液A;
步骤2:将分子量为130万的聚乙烯吡咯烷酮(PVP)溶解在2 mL无水乙醇中,标记为溶液B;
步骤3:在磁力搅拌机上搅拌溶液A,并且将溶液B缓慢倒入溶液A中持续搅拌10分钟;
步骤4:在混合溶液中加入0.2 g的六水合硝酸锌(Zn(NO3)2•6H2O),磁力搅拌下搅拌3小时;
步骤5:用步骤四的得到的最终溶液在纺丝机上面以15 kV的电压,进速0.5 mL h-1得到纤维状的样品,然后在管式炉里面氩气气氛下900度煅烧2小时,升温速率2oC/min,最终得到含有异质结构的钛酸锂纳米棒(LTO/RT),与实施例1相比,RT的含量增多。
实施例3
步骤1:将0.16 g 95%的醋酸锂(C2H3O2Li)溶解在含有2 mL无水乙醇和1 mL的冰醋酸(C2H4O2)中,然后加入0.9712 g 98%的四异丙醇钛(TTIP;液体)搅拌均匀,标记为溶液A;
步骤2:将分子量为130万的聚乙烯吡咯烷酮(PVP)溶解在2 mL无水乙醇中,标记为溶液B;
步骤3:在磁力搅拌机上搅拌溶液A,并且将溶液B缓慢倒入溶液A中持续搅拌10分钟;
步骤4:在混合溶液中加入0.2 g的六水合硝酸锌(Zn(NO3)2•6H2O),磁力搅拌下搅拌3小时;
步骤5:用步骤四的得到的最终溶液在纺丝机上面以15 kV的电压,进速0.5 mL h-1得到纤维状的样品,然后在管式炉里面氩气气氛下900度煅烧2小时,升温速率2oC/min,最终得到含有异质结构的钛酸锂纳米棒(LTO/RT),与实施例1相比,RT含量减少。
实施例4
按照实施例1的步骤,仅将步骤1中的95%的醋酸锂(C2H3O2Li)的加入量变成0.175g,其余步骤不变。所得到的样品为纯相的钛酸锂纳米棒(记为LTO)。
实施例5
按照实施例1的步骤,仅将步骤1中的95%的醋酸锂(C2H3O2Li)的加入量变成0 g,其余步骤不变。所得样品为纯相的金红石二氧化钛纳米棒(记为RT)。
图1为实施例1的电镜图等,先通过静电纺丝机纺出纤维状的含钛源和醋酸锂的前驱体,然后在氩气气氛下进行碳化处理,最终除去Zn盐并且生成了稳定的纳米棒状含异质结的LTO/RT。从图1a,1b和1c图可以看到成功制备了纳米棒状的钛酸锂,表面的粗糙不平是由于Zn盐的挥发所导致。从图d中可以观察到来自于不同晶体的衍射环,说明了构成本发明材料中异质结的两相的存在。从高分辨透射电镜图(图1e)可以观察到该材料含有三种不同的晶格间距,对应着两种不同的物质钛酸锂和金红石型二氧化钛,证明了异质结的存在。
图2为本发明电池材料的物理表征图,从X射线电子衍射图谱(XRD;图2a)可以看到由实施例2和实施例3所合成的LTO和RT,分别良好对应Li4Ti5O12(49-0207)和金红石 TiO2(21-1276),且没有其他的杂相峰的出现,相比于实施例1,醋酸锂和钛源的适量比例会合成纯相的LTO(实施例4),而不加入醋酸锂则会合成纯相的RT(实施例5),说明纯相的LTO和RT可以通过调整醋酸锂和钛源加入的比例来合成,且LTO/RT中的RT的含量也可以通过醋酸锂的加入比例来对应的合成(实施例2、实施例3)。而实施例1所合成的LTO/RT的XRD衍射谱则是由上述两相构成,与图1的电镜图对应良好。接下来通过电感耦合等离子体原子发射光谱法(ICP-AES)测定了实施例1中各相的含量,结果表明,Ti和Li的含量比例分别为41.34 wt%和4.41 wt%,这意味着LTO/RT中RT的含量约为8.56 wt%。从X射线光电子能谱全谱(XPS;图2b)证明了实施例1中的元素有Li,Ti,O,N和C,并无其他杂质元素的存在,与XRD图谱形成了良好的对应。图2c是对应的Ti 2p光谱图,459.25eV和464.98 eV处的两个峰分别对应于Ti2p3/2和Ti 2p1/2,并且两个峰的差值为5.73 eV显示了价态为+4的Ti离子。O 1s光谱(图2d)在530.65 eV和532.48 eV处分为两个峰,分别归属于Ti-O和C=O键。图2e显示C 1s光谱可以分成四个峰。主峰位于284.69 eV和285.78eV,分别对应sp2杂化碳(C=C)和C-N键,C-N键的存在证实了N成功掺杂到碳网络中。而287.59 eV和290.36 eV的两个峰是由C-O峰和π-π*跃迁所引起的。在N 1s光谱中可以发现三个峰(图2f)在398.8 eV、399.8 eV和401.2 eV的结合能处,分别对应吡啶氮、吡啶氮和石墨氮。N的引入可以在碳支架上产生结构缺陷,有利于提高电子导电性。
图3是对本发明电极材料以及对比样品进行的比表面积(BET)等信息的测试,从图3a可以看到三个实施例样品都没有明显的滞后环,LTO/RT,LTO和RT的比表面积分别是24.4m2g−1, 53.1 m2g−1和44.1 m2g−1,图3b说明三种样品的孔径分布均在4~8 nm且峰形清晰,佐证了锌盐的成功作用。
为了证明实施例1所合成的LTO/RT相比于实施例4(LTO)和实施例5(RT)所带来的电化学性能的提升,利用金属锂作为对电极,组装了半电池并测试了三个实施例的电化学性能。从图4a所示的循环伏安(CV)曲线可以明显看出,实施例1和实施例4在~1.5/~1.7 V处都显示出一对明确的氧化还原峰,对应着Li离子在Li4Ti5O12中的插入/离开和两相氧化还原转换(Li4Ti5O12+ 3Li++ 3e-⇌Li7Ti5O12)。需要指出的是,实施例1与实施例4相比显示出了更高的电流峰值,并且两个峰之间的电压差更小,说明极化更小,由此说明实施例1对实施例4的电化学过程有促进作用。而实施例5的电流峰值与其他两个电极材料相比可以忽略不计,说明表现出了非常差的锂存储活性。然后,样品在1 C(1 C=175 mAh g-1)的电流速率下进行充放电测试,电位窗口为1.0-2.5 V(vs. Li/Li+)。在实施例1和实施例4电极的充放电曲线中发现了1.55 V左右的电压平台(图4b),对应于尖晶石LTO的嵌锂和脱锂反应,而这个平台在实施例5中并没有发现。图4c是对三种实施例的倍率性能从1 C到50 C进行了测试,可以看到,在每个电流密度下,实施例1的容量都要高于实施例4和实施例5,并且在越高的电流密度下这种优势更明显,说明在实施例1中电子和锂离子的转移要多一些。接下来,分别在较高电流密度10 C(图4d)和30 C(图4e)对三种材料进行了充放电循环测试,可以看到实施例1的放电容量均高于实施例4和实施例5,在30 C电流密度下实施例1(LTO/RT)的容量保持率仍在90.3%。说明在异质结中LTO和RT可能存在一定的协同效应,从而产生了“1+1>2”的效果。
随后,对三个实施例样品(LTO/RT、LTO和RT)进行了电化学阻抗测试和拟合分析(图5a),分析结果如图7所示,实施例1有着比实施例4和实施例5更小的界面电阻(Rs)和电荷转移阻抗(Rct),并且通过下面的公式计算出了三个实施例的锂离子扩散系数,得出实施例1有着比实施例4和实施例5更高的锂离子扩散系数,说明在实施例1里面有着更快的电子电导和锂离子传输。
公式中R为气体常数(8.313 J K-1mol-1);T为绝对温度(298.15 K);A为电极表面积;F为法拉第常数(96500 C mol-1);n为氧化还原反应半反应中转移的电子数;C是锂离子的浓度;σ表示从Z’~ω1/2曲线的斜率可以得到的Warburg因子,如图5b所示。最后,为了验证实施例1(LTO/RT)的商用潜力,申请人使用商业化的磷酸铁锂(LiFePO4)作为正极与实施例1进行配对组装了全电池(LFP//LTO/RT;图6a),图6b的充放电曲线说明全电池的工作电压在1.8 V左右,图6c说明了全电池也有着良好的倍率性能,最后在1 C的电流密度下对全电池进行了充放电循环测试,可以看到200圈后容量仍然保持在138.6mAh g-1,说明了实施例1在锂离子电池中的应用潜力。并且,通过温度传感器测试表明实施例1在充放电的过程中有着稳定且呈规律性的温度变化,且变化值也在可接受的范围内,证明实施例1具有较高的安全性,适合规模化的生产和应用。
本发明合成含有LTO/金红石TiO2(RT)的异质结构来提高其导电性,从而提升材料的储锂性能和安全性。本发明通过在合成过程中优化锂盐的量,在LTO中可控引入RT相,构筑LTO/RT异质结构,在两相界面处诱导产生内建电场,提高材料的电子电导与离子输运性能,体现了比纯相LTO或RT更为突出的可逆容量和高倍率性能,达到了“1+1>2”的效果,从而解决了LTO导电率低、倍率性差的问题。此外,本发明避免了大量碳材料的引入,电极的振实密度和电池的能量密度得到了提高。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (2)

1.一种基于钛酸锂异质结构的储锂材料的制备方法,其特征在于,包括以下步骤:
步骤1:将0.1-0.16 g的95%的醋酸锂溶解在含有2 mL无水乙醇和1 mL的冰醋酸溶液中,然后加入0.9712 g的98%的四异丙醇钛搅拌均匀,标记为溶液A;
步骤2:将分子量为130万的PVP溶解在2 mL无水乙醇中,标记为溶液B;
步骤3:在磁力搅拌机上搅拌溶液A,并且将溶液B缓慢倒入溶液A中持续搅拌10分钟;
步骤4:在混合溶液中加入0.2 g的六水合硝酸锌,磁力搅拌下搅拌3小时;
步骤5:用步骤四的得到的最终溶液在纺丝机上面以15 kV的电压,进速0.5 mL h-1得到纤维状的样品,然后在管式炉里面氩气气氛下900度煅烧2小时,升温速率2 oC/min,最终得到具有纳米棒状含异质结的钛酸锂。
2.根据权利要求1所述的一种基于钛酸锂异质结构的储锂材料的制备方法,其特征在于,所述醋酸锂为0.15 g。
CN202210744865.3A 2022-06-27 2022-06-27 一种基于钛酸锂异质结构的储锂材料的制备方法 Active CN115036489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210744865.3A CN115036489B (zh) 2022-06-27 2022-06-27 一种基于钛酸锂异质结构的储锂材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210744865.3A CN115036489B (zh) 2022-06-27 2022-06-27 一种基于钛酸锂异质结构的储锂材料的制备方法

Publications (2)

Publication Number Publication Date
CN115036489A CN115036489A (zh) 2022-09-09
CN115036489B true CN115036489B (zh) 2023-11-17

Family

ID=83126480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210744865.3A Active CN115036489B (zh) 2022-06-27 2022-06-27 一种基于钛酸锂异质结构的储锂材料的制备方法

Country Status (1)

Country Link
CN (1) CN115036489B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752560A (zh) * 2010-01-13 2010-06-23 北京大学 钛酸锂-碳复合纳米材料及其制备方法与应用
KR101400605B1 (ko) * 2013-04-29 2014-05-27 한국과학기술원 광소결을 이용한 금속산화물-촉매 복합 소재와 그 제조 방법 및 이를 이용한 날숨 진단 및 유해환경 모니터링 센서
CN107706408A (zh) * 2017-08-17 2018-02-16 中国第汽车股份有限公司 一种纳米纤维钛酸锂复合材料的制备方法
CN108933252A (zh) * 2018-09-04 2018-12-04 江南大学 锂离子电池用钛酸锂和二氧化钛复合材料及其制备方法
CN110010909A (zh) * 2019-04-08 2019-07-12 上海电力学院 一种钴、氮共掺杂碳纳米纤维催化剂的制备方法及应用
CN110571429A (zh) * 2019-09-18 2019-12-13 宁波大学 一种碳包覆钴、二氧化钛与钛酸锂复合材料及其制备方法
CN114006000A (zh) * 2021-11-05 2022-02-01 电子科技大学 一种抗-SO3H中毒的Pt基氧还原反应催化剂的制备方法
CN114388752A (zh) * 2021-12-09 2022-04-22 格力钛新能源股份有限公司 一种链状纤维结构钛酸锂复合物及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752560A (zh) * 2010-01-13 2010-06-23 北京大学 钛酸锂-碳复合纳米材料及其制备方法与应用
KR101400605B1 (ko) * 2013-04-29 2014-05-27 한국과학기술원 광소결을 이용한 금속산화물-촉매 복합 소재와 그 제조 방법 및 이를 이용한 날숨 진단 및 유해환경 모니터링 센서
CN107706408A (zh) * 2017-08-17 2018-02-16 中国第汽车股份有限公司 一种纳米纤维钛酸锂复合材料的制备方法
CN108933252A (zh) * 2018-09-04 2018-12-04 江南大学 锂离子电池用钛酸锂和二氧化钛复合材料及其制备方法
CN110010909A (zh) * 2019-04-08 2019-07-12 上海电力学院 一种钴、氮共掺杂碳纳米纤维催化剂的制备方法及应用
CN110571429A (zh) * 2019-09-18 2019-12-13 宁波大学 一种碳包覆钴、二氧化钛与钛酸锂复合材料及其制备方法
CN114006000A (zh) * 2021-11-05 2022-02-01 电子科技大学 一种抗-SO3H中毒的Pt基氧还原反应催化剂的制备方法
CN114388752A (zh) * 2021-12-09 2022-04-22 格力钛新能源股份有限公司 一种链状纤维结构钛酸锂复合物及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electrospun dual phase Li4Ti5O12-TiO2/C nanocomposites as anodes for high-rate lithium-ion batteries;Liu Dan等;《Integrated Ferroelectrics》;146-154 *
In-situ construction of Li4Ti5O12/rutile TiO2 heterostructured nanorods for robust and high-power lithium storage;Zhou, YG等;《NANO RESEARCH》;1513-1521 *
Mesoporous Li4Ti5O12/carbon nanofibers for high-rate Lithium- ion batteries;Jie Wang等;《Journal of Alloys and Compounds》;171-176 *

Also Published As

Publication number Publication date
CN115036489A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
Zhang et al. Preparation and characterization of W-doped Li4Ti5O12 anode material for enhancing the high rate performance
Wang et al. Fe2O3@ C core@ shell nanotubes: porous Fe2O3 nanotubes derived from MIL-88A as cores and carbon as shells for high power lithium ion batteries
Ding et al. Octagonal prism shaped lithium iron phosphate composite particles as positive electrode materials for rechargeable lithium-ion battery
Sun et al. Carbon-coated mesoporous LiTi2 (PO4) 3 nanocrystals with superior performance for lithium-ion batteries
Yan et al. Porous SnO 2–Fe 2 O 3 nanocubes with improved electrochemical performance for lithium ion batteries
Zheng et al. Nanocomposite of ultra-small MoO2 embedded in nitrogen-doped carbon: In situ derivation from an organic molybdenum complex and its superior Li-Ion storage performance
Liu et al. Bi2O3/Bi nanocomposites confined by N-doped honeycomb-like porous carbon for high-rate and long-life lithium storage
Luo et al. Comprehensive utilization of metallurgic waste in manganese electrowinning: towards high performance LiMn2O4
Li et al. 3D heterostructure Fe3O4/Ni/C nanoplate arrays on Ni foam as binder-free anode for high performance lithium-ion battery
CN111564610B (zh) 一种碳纳米管修饰的碳包覆磷化亚铜-铜复合颗粒及其制备方法和应用
KR101392388B1 (ko) 탄소나노섬유 복합체, 그 제조방법 및 이를 이용한 리튬이차전지용 음극활물질
Xia et al. Hierarchical B-doped carbon nanotube with enhanced electrochemical lithium storage
CN116354405A (zh) 一种原位碳包覆硫酸亚铁钠复合正极材料、制备及钠离子电池
Lan et al. Nano-MnS@ N doped lignite derived carbon composites as superior anode material for sodium-ion batteries
CN109192938B (zh) 一种柔性材料及其制备方法与应用
Zhu et al. MoO2-Mo2C uniformly encapsulated into N, P co-doped carbon nanofibers as a freestanding anode for high and long-term lithium storage
CN114031079A (zh) 碳化钼碳纳米纤维复合材料及其制备方法和应用
Peng et al. Nanosheet architecture of MnO2/carbon with improved reaction kinetics toward advanced zinc energy storage
Feng et al. Uniform gallium oxyhydroxide nanorod anodes with superior lithium-ion storage
CN115036489B (zh) 一种基于钛酸锂异质结构的储锂材料的制备方法
Wang et al. An aqueous zinc pyrovanadate nanowire cathode doped by nitrogen-doped carbon from PANI calcination for capacity and stability enhancement
Wang et al. Hybrid nanostructure of sanwhich-like porous Co3O4 nanorods/exfoliate graphite composite for lithium-ion batteries
Cao et al. A facile route to metal oxides/single-walled carbon nanotube macrofilm nanocomposites for energy storage
CN112125339B (zh) 单一晶面的氧化钨与碳纳米片复合储钠材料的形成方法
CN110655112B (zh) 一种水系电池的锰氧化物正极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant