CN115032351A - 一种蒺藜皂苷d抗肺纤维化作用机制的研究方法 - Google Patents

一种蒺藜皂苷d抗肺纤维化作用机制的研究方法 Download PDF

Info

Publication number
CN115032351A
CN115032351A CN202210656628.1A CN202210656628A CN115032351A CN 115032351 A CN115032351 A CN 115032351A CN 202210656628 A CN202210656628 A CN 202210656628A CN 115032351 A CN115032351 A CN 115032351A
Authority
CN
China
Prior art keywords
ted
target
pulmonary fibrosis
group
biomarker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210656628.1A
Other languages
English (en)
Inventor
安明
杨雪苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Medical College of Inner Mongolia University of Science and Technology
Original Assignee
Baotou Medical College of Inner Mongolia University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Medical College of Inner Mongolia University of Science and Technology filed Critical Baotou Medical College of Inner Mongolia University of Science and Technology
Priority to CN202210656628.1A priority Critical patent/CN115032351A/zh
Publication of CN115032351A publication Critical patent/CN115032351A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/324Control of physical parameters of the fluid carrier of pressure or speed speed, flow rate

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种蒺藜皂苷D抗肺纤维化作用机制的研究方法,属于药理学机制研究领域。本发明基于UHPLC‑MS技术检测博莱霉素(BLM)致肺纤维化小鼠及TED干预后的血浆代谢物,通过代谢组学的处理方法共识别到29种生物标志物,经TED治疗后其中19种生物标志物均有回调趋势,对上述生物标志物进行通路富集分析并利用Cytoscape构建生物标志物‑靶标‑疾病网络图。本发明通过对生物标志物和疾病靶点的相关性进行分析,可更全面、可靠的从整体水平评价TED治疗肺纤维化作用机制,为中药治疗疾病作用机制的阐明提供新方法。

Description

一种蒺藜皂苷D抗肺纤维化作用机制的研究方法
技术领域
本发明涉及药理学机制研究技术领域,尤其涉及一种蒺藜皂苷D抗肺纤维化作用机制的研究方法。
背景技术
肺纤维化是一种呈进行性、不可逆转性发展的慢性呼吸系统疾病,也是呼吸系统疾病中致死率较高的肺部疾病。大量研究表明肺纤维化的发生与炎性介质产生、成纤维细胞增殖、细胞外基质(ECM)过度聚集有关,他们不仅参与肺组织结构的破坏,还参与了肺组织重塑过程。该病频发于中老年人群中,加重了社会经济负担;据研究表明在新型冠状病毒肺炎(COVID-19)疾病中康复的患者也面临着发展为肺纤维化的严重风险,非典型肺炎-CoV-2(SARS-CoV-2)感染后,肺纤维化的风险可能很高。因此,肺纤维化患者人群可能仍会大幅增加,该疾病在今后的临床工作中会带来极大的医疗需求。肺纤维化发病率和死亡率仍在上升,尚未发现可以逆转肺纤维化的药物,只能通过改善其临床症状缓解纤维化进程,目前仍缺乏有效的治疗手段。
蒺藜(Tribulus terrestris L.)为蒺藜科蒺藜属一年生草本植物的干燥成熟果实,别名刺蒺藜、硬蒺藜、白蒺藜等,是我国传统中药,具有广泛的药理作用。蒺藜入肝经,具有平肝潜阳之功效,从中医角度来看,肺主肃降,肝升肺降则气机调畅,气血上下贯通,所以二者的关系主要表现在人体气血的升降运行上。中医所说的肺不仅是肺脏,而是肺系即是肺的一个系统,包括肺与大肠。肺为"相傅之官",主气;大肠为"传导之官",变化水谷,传导糟粕。肺纤维化的持续性发展与肺失肃降有关,因此可以通过蒺藜调理肝,帮助肝的纳气,达到肺气之肃降的目的,从而使大肠传导如常。蒺藜皂苷D(TED)是蒺藜果实中主要有效成分之一,具有抗炎、抑癌等药理作用。
代谢组学与网络药理学的结合可以更全面的阐述治疗药物与疾病间的相关性,明确药物对机体的作用情况。目前没有关于采用代谢组学与网络药理学相结合探讨TED抗肺纤维化相关文献的报道。为了明确TED在体内发挥抗肺纤维化的作用,本发明采用非靶向血浆代谢组学的方法揭示TED干预肺纤维化后的代谢谱,并寻找可靠、稳定的生物标志物。采用网络药理学的方法将生物标志物及其相应的靶点与疾病靶点结合分析,明确TED纠正肺纤维化小鼠代谢物水平过程中可能作用的生物靶点,并将相关靶点通过ELISA进行量化,全面、系统地阐述TED抗肺纤维化的作用机制,以期为TED治疗肺纤维化的后续研究提供新思路。
发明内容
本发明的目的是基于非靶向代谢组学结合网络药理学探究TED抗肺纤维化的作用机制,全面、系统地阐述TED干预肺纤维化后的体内作用情况,为TED的临床应用提供新思路。
为了实现以上技术方案,本发明提供了以下技术方案:
技术方案一:一种蒺藜皂苷D抗肺纤维化作用机制的研究方法,包括以下步骤:基于UHPLC-MS技术检测博莱霉素致肺纤维化小鼠及TED干预后的血浆代谢物,通过代谢组学的处理方法鉴定得到生物标志物,然后再采用网络药理学对所述生物标志物与肺纤维化对应的靶点进行关联分析。
进一步地,所述的研究方法,包括以下步骤:
(1)动物分组:空白组、模型组、阳性组、TED低剂量组、TED中剂量组和TED高剂量组;
(2)样本收集:通过眼眶取血获得步骤(1)中各分组小鼠全血,离心取上清得血浆;
(3)药效学评价:用ELISA试剂盒定量检测所述血浆中TNF-α、Hyp、IL-1β和TGF-β1的蛋白表达水平;
(4)代谢组学分析:对所述血浆进行前处理后,采用超高效液相色谱-质谱(UHPLC-MS)分析获得正离子和负离子模式下的原始数据,之后再使用Masslynx4.1对所述原始数据进行预处理;
(5)统计分析:经步骤(4)预处理后获得的空白组和模型组、模型组和TED高剂量组的数据进行多变量分析后,根据各组的聚类和分离情况得到代谢物,将所述代谢物导入人类代谢组数据库获得潜在生物标志物;
(6)建立网络图:将所述潜在生物标志物及其相应的靶点与疾病靶点交互,得到交互靶点,通过交互靶点建立生物标志物-靶点-疾病网络图。
进一步地,步骤(1)除空白组外,第一天每组小鼠均在气管内注射博莱霉素,构建小鼠动物模型。
进一步地,步骤(3)定量检测时,血浆样品在450nm处测量吸光度。
进一步地,步骤(4)中所述的血浆样本前处理具体为:血浆中加入甲醇去除蛋白,并用初始流动相复溶,然后采用UHPLC-MS联用技术进行分析。
进一步地,步骤(4)中所述预处理时保留所有代谢物的峰面积数据,单组空值不多于50%或所有组中空值不多于50%的峰面积,以筛选内源性代谢物。
进一步地,步骤(5)中根据各组的聚类和分离情况,将可变重要性值>1,p<0.05,FC值>1或FC<1的代谢物进一步分析。
进一步地,步骤(6)建立所述生物标志物-靶点-疾病-信号通路网络图具体的为:将所述生物标志物和疾病靶点交叉得到直接靶点,依次输入STRING数据库,搜索生物标志物得分大于0.95的间接靶点最后采用Cytoscape软件构建生物标志物-靶点-疾病网络图。
技术方案二:一种所述的蒺藜皂苷D在抗肺纤维化中的应用。
技术方案三:一种所述的生物标志物在抗肺纤维化中的应用。
与现有技术相比,本发明的有益效果:
本发明基于UHPLC-MS技术检测博莱霉素(BLM)致肺纤维化小鼠及TED干预后的血浆代谢物,通过代谢组学的处理方法共识别到29种生物标志物,经TED治疗后上述生物标志物均有回调趋势,采用MetaboAnalyst对上述生物标志物进行通路富集分析。通过代谢组学鉴定得到的潜在生物标志物与疾病的相关性无法全面阐释,一般情况下将潜在生物标志物与文献相结合进行探讨,但有些潜在生物标志物无法从文献中获得全部信息,因此结合网络药理学的手段,将潜在生物标志物及其相应靶点与疾病靶点结合,有利于全面阐述TED干预肺纤维化后机体的变化情况,为TED治疗肺纤维化提供新方法。
本发明构建了生物标志物-靶点-疾病-网络图,通过在线数据库鉴定出生物标志物及其相应靶点和疾病靶点取交集,将交互靶点进行验证,通过Cytoscape构建生物标志物-靶标-疾病-网络图。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为IL-1β在特定组小鼠血浆中的表达水平,*与模型组相比,*p<0.05,**p<0.01,#与空白组相比,#p<0.05,##p<0.01,其中,control为空白组,model为模型组,TED(L)为TED低剂量组,TED(M)为TED中剂量组,TED(H)为TED高剂量组,positive为吡非尼酮组;
图2为TNF-α在特定组小鼠血浆中的表达水平,*与模型组相比,*p<0.05,**p<0.01,#与空白组相比,#p<0.05,##p<0.01,其中,control为空白组,model为模型组,TED(L)为TED低剂量组,TED(M)为TED中剂量组,TED(H)为TED高剂量组,positive为吡非尼酮组;
图3为Hyp在特定组小鼠血浆中的表达水平,*与模型组相比,*p<0.05,**p<0.01,#与空白组相比,#p<0.05,##p<0.01,其中,control为空白组,model为模型组,TED(L)为TED低剂量组,TED(M)为TED中剂量组,TED(H)为TED高剂量组,positive为吡非尼酮组;
图4为TGF-β1在特定组小鼠血浆中的表达水平,*与模型组相比,*p<0.05,**p<0.01,#与空白组相比,#p<0.05,##p<0.01,其中,control为空白组,model为模型组,TED(L)为TED低剂量组,TED(M)为TED中剂量组,TED(H)为TED高剂量组,positive为吡非尼酮组;
图5为正离子模式下血浆数据的三维PCA得分图;其中,CON为空白组,TED(H)为TED高剂量组,MOD为模型组,其中n=7,小鼠/组,QC为质控样品(n=7);
图6为负离子模式下血浆数据的三维PCA得分图;其中,CON为空白组,TED(H)为TED高剂量组,MOD为模型组,其中n=7,小鼠/组,QC为质控样品(n=7);
图7为PLS-DA得分图在正离子模式下进行判别,CON为空白组,TED(H)为TED高剂量组,MOD为模型组(n=7,小鼠/组);
图8为PLS-DA得分图在负(B)离子模式下进行判别,CON为空白组,TED(H)为TED高剂量组,MOD为模型组(n=7,小鼠/组);
图9为PLS-DA模式的交叉验证(200次随机排列)在正离子模式下进行判别,CON为空白组,TED(H)为TED高剂量组,MOD为模型组(n=7,小鼠/组);
图10为PLS-DA模式的交叉验证(200次随机排列)在负离子模式下进行判别;CON为空白组,TED(H)为TED高剂量组,MOD为模型组(n=7,小鼠/组);
图11为29个潜在生物标志物的代谢通路图;
图12为生物标志物-靶点-疾病-网络图,其中,生物标志物为黄色;疾病为红色;直接目标为橙色;间接目标为绿色。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本申请说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
实施例1
步骤1、动物分组及模型的建立:60只SPF级雄性小鼠,体重30±2g,分为空白组、模型组、阳性组(吡非尼酮)、TED低剂量组(TED(L))、TED中剂量组(TED(M))和TED高剂量组(TED(H))组。除空白组外,每组小鼠均在气管内注射博莱霉素(BLM)(5mg/kg)。第二天,通过灌胃分别给予小鼠不同剂量的TED(5mg/kg、10mg/kg或20mg/kg)、阳性组吡非尼酮(200mg/kg)或生理盐水(空白组和模型组);
步骤2、样本收集及前处理:通过眼眶取小鼠全血,于3000rpm离心10min,取上清,-80℃保存用于代谢组学分析和酶联免疫吸附法(ELISA)测定;
步骤3、药效学评价:用ELISA试剂盒定量检测TNF-α、Hyp、IL-1β和TGF-β1血浆中蛋白表达水平,以评价TED对肺纤维化的药效作用。根据试剂盒说明书,使用特定的ELISA试剂盒测量这些细胞因子水平,血浆样品在重复的孔中进行,使用酶标仪(ThermoScientificTM)在450nm处测量吸光度,详见图1-4,模型组中TNF-α、Hyp、IL-1β和TGF-β1血浆中蛋白表达水平均升高,经TED治疗后各指标均降低。
步骤4、血浆样本前处理:80μL血浆中加入240μL甲醇去除蛋白,并用初始流动相复溶,采用超高效液相色谱-质谱联用技术进行分析,QC样品每8次注入一次,通过QC样品的聚集程度来评价分析过程中仪器的稳定性和重现性;
步骤5、UHPLC-MS分析及数据采集:数据采集使用Waters Quattro微型API三重四极质谱仪。电喷雾离子源温度设为110℃,毛细管电压设为3kV,锥体电压设为35V。氮气为脱溶气体、雾化气体和锥压气体,脱溶温度设为400℃,脱溶流速设为450L/h。采用全扫描正负离子模式,扫描范围为m/z 50-1500;
色谱条件:采用ACQUITY UHPLCTM BEH C18色谱柱(2.1×100mm,1.7μm,Waters,USA),流动相A和B分别为水(含0.1%甲酸)和乙腈,洗脱程序见表1,流速为0.2mL/min,柱温为50℃,自动进样温度为4℃,进样量为10μL;
表1 UHPLC-MS梯度洗脱程序
时间(min) 流动相A% 流动相B% Curve
0 98 2 -
2 98 2 6
4 70 30 6
8 10 90 6
10 5 95 6
12 5 95 6
13 98 2 6
15 98 2 6
步骤6、代谢组学数据处理:使用Masslynx4.1(Waters Corporation)对UHPLC-MS所得原始数据进行预处理,通过调整参数进行检测和校准,具体参数见表2。保留所有代谢物的峰面积数据,单组空值不多于50%或所有组中空值不多于50%的峰面积,以筛选内源性代谢物。此过程为数据归一化,该方法的建立可以有效避免外源性代谢物的干扰;
表2代谢组学数据分析的详细参数
Figure BDA0003688238150000071
步骤7、潜在生物标志物的鉴定:通过Masslynx4.1将获得的空白组和模型组、模型组和TED(H)组数据导入SIMCA(Umetrics 13.0版,Umea,Sweden)进行多变量分析。进行主成分分析(PCA)和偏最小二乘法判别分析(PLS-DA)来观察各组的聚类和分离情况,详见图5-10。PCA方法的优势在于可以剔除异常值,建立良好的分析模型,使用PLS-DA模型评估各组的血浆样品中的代谢物,可变重要性(VIP)值>1,p<0.05,Fold change值(FC)>1或FC<1的代谢物被用于进一步分析。然后,将这些代谢物导入人类代谢组数据库(HMDB)(www.hmdb.ca/),以获得潜在的生物标志物并进行注释(见表3)。使用MetaboAnalyst 5.0确定代谢途径,详见图11,并使用GraphPad Prism 8对差异性代谢物进行热图分析。数据以平均值(M)±标准差(SD)表示。单向方差分析(ANOVA)被用来筛选差异性化合物。用SPSS进行t检验来筛选各组间的差异性代谢物,p<0.05被认为具有统计学意义,用Origin 2018制作条形图;
表3观察ESI+和ESI-模型中肺纤维化小鼠血浆中潜在生物标志物的变化
Figure BDA0003688238150000072
Figure BDA0003688238150000081
Figure BDA0003688238150000091
步骤8、建立生物标志物-靶点-疾病-网络图,详见图12,为了进一步明确生物标志物和肺纤维化之间的关系,寻找生物标志物及其相应的靶点与疾病相交的靶点,构建生物标志物-靶点-疾病-网络图。肺纤维化的疾病靶点是从CTD(http://ctdbase.org/)和TTD(http://db.idrblab.org/ttd/)数据库中收集的;各生物标志物的SMILES结构从Pubchem(https://pubchem.ncbi.nlm.nih.gov/)获得,并从SwissTargetPrediction(http://www.swisstargetprediction.ch/)数据库中获得直接靶点,分别为CCR2、CCR3、CFD、ESR1、FGF1、FGF2、MMP2、MMP9、MTOR、STAT3、TERT和TNF,将直接靶点依次输入STRING数据库,搜索得分大于0.95的间接靶点,最后,采用Cytoscape软件(3.2.1版,美国)构建生物标志物-靶点-疾病网络图。
本发明基于UHPLC-MS技术检测BLM致肺纤维化小鼠及TED干预后的血浆代谢物,通过代谢组学的处理方法共识别到29种生物标志物。经TED治疗后19种生物标志物均有回调趋势,采用MetaboAnalyst对上述生物标志物进行通路富集分析,发现肺纤维化与脂质代谢密切相关。但代谢组学鉴定得到的潜在生物标志物无法全面阐释与肺纤维化的相关性,本发明结合网络药理学的手段,将潜在生物标志物及其相应靶点与疾病靶点结合,有利于全面阐述TED干预肺纤维化后机体的变化情况。本发明为TED治疗肺纤维化提供新方法。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

1.一种蒺藜皂苷D抗肺纤维化作用机制的研究方法,其特征在于,包括以下步骤:基于UHPLC-MS技术检测博莱霉素致肺纤维化小鼠及TED干预后的血浆代谢物,通过代谢组学的处理方法鉴定得到生物标志物,然后再采用网络药理学对所述生物标志物与肺纤维化对应的靶点进行关联分析。
2.根据权利要求1所述的研究方法,其特征在于,包括以下步骤:
(1)动物分组:空白组、模型组、阳性组、TED低剂量组、TED中剂量组和TED高剂量组;
(2)样本收集:通过眼眶取血获得步骤(1)中各分组小鼠全血,离心取上清得血浆;
(3)药效学评价:用ELISA试剂盒定量检测所述血浆中TNF-α、Hyp、IL-1β和TGF-β1的蛋白表达水平;
(4)代谢组学分析:对所述血浆进行前处理后,采用UHPLC-MS分析获得正离子和负离子模式下的原始数据,之后再使用Masslynx4.1对所述原始数据进行预处理;
(5)统计分析:经步骤(4)预处理后获得的空白组和模型组、模型组和TED高剂量组的数据进行多变量分析后,根据各组的聚类和分离情况得到代谢物,将所述代谢物导入人类代谢组数据库获得潜在生物标志物;
(6)建立网络图:将所述潜在生物标志物及其相应的靶点与疾病靶点交互,得到交互靶点,通过交互靶点建立生物标志物-靶点-疾病网络图。
3.根据权利要求2所述的研究方法,其特征在于,步骤(1)除空白组外,第一天每组小鼠均在气管内注射博莱霉素,构建小鼠动物模型。
4.根据权利要求2所述的研究方法,其特征在于,步骤(3)定量检测时,血浆样品在450nm处测量吸光度。
5.根据权利要求2所述的研究方法,其特征在于,步骤(4)中所述的血浆样本前处理具体为:血浆中加入甲醇去除蛋白,并用初始流动相复溶,然后采用UHPLC-MS联用技术进行分析。
6.根据权利要求2所述的研究方法,其特征在于,步骤(4)中所述预处理时保留所有代谢物的峰面积数据,单组空值不多于50%或所有组中空值不多于50%的峰面积,以筛选内源性代谢物。
7.根据权利要求2所述的研究方法,其特征在于,步骤(5)中根据各组的聚类和分离情况,将可变重要性值>1,p<0.05,FC值>1或FC<1的代谢物进一步分析。
8.根据权利要求2所述的研究方法,其特征在于,步骤(6)建立所述生物标志物-靶点-疾病-信号通路网络图具体的为:将所述生物标志物和疾病靶点交叉得到直接靶点,依次输入STRING数据库,搜索生物标志物得分大于0.95的间接靶点最后采用Cytoscape软件构建生物标志物-靶点-疾病网络图。
9.一种如权利要求1中所述的蒺藜皂苷D在抗肺纤维化中的应用。
10.一种如权利要求1中所述的生物标志物在抗肺纤维化中的应用。
CN202210656628.1A 2022-06-10 2022-06-10 一种蒺藜皂苷d抗肺纤维化作用机制的研究方法 Pending CN115032351A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210656628.1A CN115032351A (zh) 2022-06-10 2022-06-10 一种蒺藜皂苷d抗肺纤维化作用机制的研究方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210656628.1A CN115032351A (zh) 2022-06-10 2022-06-10 一种蒺藜皂苷d抗肺纤维化作用机制的研究方法

Publications (1)

Publication Number Publication Date
CN115032351A true CN115032351A (zh) 2022-09-09

Family

ID=83125107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210656628.1A Pending CN115032351A (zh) 2022-06-10 2022-06-10 一种蒺藜皂苷d抗肺纤维化作用机制的研究方法

Country Status (1)

Country Link
CN (1) CN115032351A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082443A (zh) * 2019-04-23 2019-08-02 中国科学院城市环境研究所 基于代谢组学表征颗粒物暴露肺代谢异常标志物筛选的小鼠模型构建方法
CN111855831A (zh) * 2020-05-15 2020-10-30 温州医科大学 大黄酸与姜黄素联用延缓肾纤维化进程差异代谢物代谢通路及研究方法
CN114099484A (zh) * 2021-12-09 2022-03-01 四川省中医药转化医学中心 四氢姜黄素在制备预防和/或治疗2型糖尿病合并非酒精性脂肪肝的药物中的用途
CN114394890A (zh) * 2022-01-19 2022-04-26 上海市第一人民医院 五味子醇甲代谢物及其在制备抗特发性肺纤维化的药物中的应用
CN114414671A (zh) * 2021-12-10 2022-04-29 天津中医药大学 两色金鸡菊治疗糖尿病差异代谢物代谢通路的研究方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082443A (zh) * 2019-04-23 2019-08-02 中国科学院城市环境研究所 基于代谢组学表征颗粒物暴露肺代谢异常标志物筛选的小鼠模型构建方法
CN111855831A (zh) * 2020-05-15 2020-10-30 温州医科大学 大黄酸与姜黄素联用延缓肾纤维化进程差异代谢物代谢通路及研究方法
CN114099484A (zh) * 2021-12-09 2022-03-01 四川省中医药转化医学中心 四氢姜黄素在制备预防和/或治疗2型糖尿病合并非酒精性脂肪肝的药物中的用途
CN114414671A (zh) * 2021-12-10 2022-04-29 天津中医药大学 两色金鸡菊治疗糖尿病差异代谢物代谢通路的研究方法
CN114394890A (zh) * 2022-01-19 2022-04-26 上海市第一人民医院 五味子醇甲代谢物及其在制备抗特发性肺纤维化的药物中的应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MIN QIU 等: "Terrestrosin D from Tribulus terrestris attenuates bleomycin-induced inflammation and suppresses fibrotic changes in the lungs of mice", PHARMACEUTICAL BIOLOGY, vol. 57, no. 1, pages 694 - 700, XP018535803 *
ZHENGHUA WU 等: "Schisandrol A, the main active ingredient of Schisandrae Chinensis Fructus, inhibits pulmonary fibrosis through suppression of the TGF-β signaling pathway as revealed by UPLC-Q-TOF/MS, network pharmacology and experimental verification", JOURNAL OF ETHNOPHARMACOLOGY, vol. 289, pages 1 - 19 *
李欣 等: "基于UPLC-LTQ-Orbitrap-MS及网络药理学的复方黄柏液治疗糖尿病足活性成分研究", 中国中药杂志, vol. 44, no. 10, pages 2110 - 2117 *
柏付娟 等: "基于网络药理学和分子对接技术探索热毒宁 注射液治疗新型冠状病毒肺炎的机制", 沈阳药科大学学报, vol. 39, no. 4, pages 464 - 476 *
潘国凤 等: "基于网络药理学养阴清肺口服液对肺损伤的保护作用及机制研究", 中药药理与临床, vol. 34, no. 1, pages 19 - 24 *
瞿介明: "呼吸与危重症医学 2019-2020", 中华医学电子音像出版社, pages: 284 - 285 *

Similar Documents

Publication Publication Date Title
Zhang et al. Integrated strategy for accurately screening biomarkers based on metabolomics coupled with network pharmacology
Liu et al. Biomarkers of primary dysmenorrhea and herbal formula intervention: an exploratory metabonomics study of blood plasma and urine
Li et al. An ultra-robust fingerprinting method for quality assessment of traditional Chinese medicine using multiple reaction monitoring mass spectrometry
Zhang et al. Metabolomic study of raw and bran-fried Atractylodis Rhizoma on rats with spleen deficiency
CN109507337A (zh) 一种基于血尿中代谢产物预测甘地胶囊治疗糖尿病肾病机制的新方法
Wang et al. Thrombin-based discovery strategy of bioactive-chemical quality marker combination for pollen of Typha orientalis by metabolomics coupled with chemometrics
CN104933277A (zh) 基于代谢组学数据建立分析预测糖尿病认知功能障碍平台的方法
Huang et al. Dynamic urinary metabolomics analysis based on UHPLC-Q-TOF/MS to investigate the potential biomarkers of blood stasis syndrome and the effects of Danggui Sini decoction
Jiang et al. Metabolomic profiles delineate the effect of Sanmiao wan on hyperuricemia in rats
Zhang et al. Components study on antitussive effect and holistic mechanism of Platycodonis Radix based on spectrum-effect relationship and metabonomics analysis
Wu et al. Lipidomics study of plasma phospholipid metabolism in early type 2 diabetes rats with ancient prescription Huang-Qi-San intervention by UPLC/Q-TOF-MS and correlation coefficient
Lu et al. A metabonomic approach to the effect evaluation of treatment in patients infected with influenza A (H1N1)
Ding et al. A network pharmacology-integrated metabolomics strategy for clarifying the difference between effective compounds of raw and processed Farfarae flos by ultra high-performance liquid chromatography-quadrupole-time of flight mass spectrometry
Song et al. Untargeted metabolomics reveals novel serum biomarker of renal damage in rheumatoid arthritis
Hua et al. Metabolomics analysis of Pulsatilla decoction on treatment of wetness‐heat‐induced diarrhea in rats based on UPLC–Q/TOF–MS/MS
Li et al. High-throughput liquid chromatography mass-spectrometry-driven lipidomics discover metabolic biomarkers and pathways as promising targets to reveal the therapeutic effects of the Shenqi pill
Ma et al. Metabolomics profiles associated with the treatment of zuojin pill on patients with chronic nonatrophic gastritis
CN113406226B (zh) 一种基于非靶向代谢组学检测gist患者血浆中伊马替尼代谢物的方法
Liu et al. Discovery of potential Q‐marker of traditional Chinese medicine based on chemical profiling, chemometrics, network pharmacology, and molecular docking: Centipeda minima as an example
Yan et al. Metabolomics analysis reveals the mechanisms of the effect of Sijunzi decoction on spleen deficiency syndrome in a rat model
Lv et al. Qualitative identification and quantitative comparison of Physochlainae Radix from different regions based on chemometric methods
Liu et al. A comprehensive quality evaluation method of different medicinal parts of Physalis Calyx seu Fructus by fingerprints, chemometrics, antioxidant activity, network pharmacology and molecular docking
CN107860830A (zh) 一种寻常型银屑病血浆中生物标志物在其靶向药物的应用
CN115032351A (zh) 一种蒺藜皂苷d抗肺纤维化作用机制的研究方法
Guo et al. Plasma metabonomics study of the patients with acute anterior uveitis based on ultra-performance liquid chromatography–mass spectrometry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination