CN115029769B - 一种纳米孪晶铜膜转变为单晶铜膜的制备方法 - Google Patents

一种纳米孪晶铜膜转变为单晶铜膜的制备方法 Download PDF

Info

Publication number
CN115029769B
CN115029769B CN202210739103.4A CN202210739103A CN115029769B CN 115029769 B CN115029769 B CN 115029769B CN 202210739103 A CN202210739103 A CN 202210739103A CN 115029769 B CN115029769 B CN 115029769B
Authority
CN
China
Prior art keywords
copper film
crystal copper
nano twin
clamping plate
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210739103.4A
Other languages
English (en)
Other versions
CN115029769A (zh
Inventor
张志杰
施权
高幸
魏红
周旭
耿遥祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN202210739103.4A priority Critical patent/CN115029769B/zh
Publication of CN115029769A publication Critical patent/CN115029769A/zh
Application granted granted Critical
Publication of CN115029769B publication Critical patent/CN115029769B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/103Other heavy metals copper or alloys of copper
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76888By rendering at least a portion of the conductor non conductive, e.g. oxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种纳米孪晶铜膜转变为单晶铜膜的制备方法,包括以下步骤:(1)采用酸溶液对纳米孪晶铜膜进行预处理;(2)将预处理后的纳米孪晶铜膜沿厚度方向夹持于冷夹板和热夹板中进行热处理,冷夹板的温度为‑20℃至30℃,热夹板的温度为200‑300℃;(3)保持步骤(2),待热处理结束后,即得单晶铜膜,所述纳米孪晶铜膜为沿厚度方向具有(111)择优晶体取向,所述单晶铜膜为沿厚度取向为(100)晶面取向。本发明所采用的制备方法可在低温下实现由纳米孪晶铜膜到单晶铜膜的转变,可避免热损失,简单易实现,成本低,适合大规模生产。

Description

一种纳米孪晶铜膜转变为单晶铜膜的制备方法
技术领域
本发明涉及膜的制备方法,具体涉及一种纳米孪晶铜膜转变为单晶铜膜的制备方法。
背景技术
在三维系统封装技术中,键合是实现多层芯片堆叠和垂直互连的关键技术。在众多键合技术中,Cu-Cu直接键合凭借其优良的导热导电性能、抗电迁移性能、结合界面的机械强度高以及封装制造中的兼容性和低成本等优势,成为3D封装中硅通孔(TSV)互连的主要键合方式。Cu-Cu直接键合是在真空条件下,通过热压的方式使Cu原子相互扩散形成界面互连。然而,Cu-Cu直接键合虽然具有诸多优点,但键合过程通常需要较高的键合温度(>350℃),极易对芯片造成热损伤。因此,降低键合温度成为了该领域的技术瓶颈。
为克服这一挑战,高度(111)择优晶体取向的纳米孪晶铜成为了研究人员和企业界关注的焦点。使用(111)择优晶体取向纳米孪晶铜进行键合,键合温度可以降低到200℃。但键合完成后,在微凸点键合处留下一个键合界面,该界面的存在使微凸点的剪切强度较低。因此,如果能够消除键合界面,这将对微凸点的剪切性能有很大的改善。在电镀(111)择优晶体取向纳米孪晶中存在一层由纳米尺度的晶粒组成的过渡层,该层具有热不稳定性,因此,电镀(111)择优晶体取向纳米孪晶铜薄膜在400℃温度下退火60min后,其晶粒向(100)晶体取向方向转变,同时伴随着晶粒的异常长大,这种转变对消除Cu-Cu直接键合的键合界面具有重要意义。此外,这种转变对铜膜在凸点下金属化层(UBM)和再布线层(RDL)中的应用同样具有积极地影响,利用力学与电学性能优异、工艺简单、成本低廉的(100)晶体取向单晶铜,作为凸点下UBM或再布线层RDL,可以解决电子工业中的单晶铜工艺繁琐、成本昂贵、难以实际应用等问题。然而,对于该方法在微互连中的应用,这一转变温度明显过高。因此,有必要通过必要的技术手段降低(111)择优晶体取向纳米孪晶铜薄膜的晶粒取向转变温度,避免其对芯片造成的热损伤。
发明内容
发明目的:为了解决现有技术存在的技术问题,本发明旨在提供一种加工温度低、简单易实现的纳米孪晶铜膜转变为单晶铜膜的制备方法。
技术方案:本发明所述纳米孪晶铜膜转变为单晶铜膜的制备方法,包括以下步骤:
(1)采用酸溶液对纳米孪晶铜膜进行预处理;
(2)将预处理后的纳米孪晶铜膜沿厚度方向夹持于冷夹板和热夹板中进行热处理,冷夹板的温度为-20℃至30℃,热夹板的温度为200-300℃;
(3)保持步骤(2),待热处理结束后,即得单晶铜膜。
进一步地,所述步骤(1)中的纳米孪晶铜膜的厚度为10-50μm,纳米孪晶铜膜为沿厚度方向具有(111)择优晶体取向,形状为圆柱形、线形、矩形或不规则形,纳米孪晶铜膜为单独存在或附着在基板上,基板为铜或硅。
进一步地,所述步骤(1)中的酸溶液为柠檬酸水溶液,浓度为4-6%,本发明通过柠檬酸水溶液预处理去除纳米孪晶铜膜表面的氧化膜,既可达到有效去除氧化膜的作用,又不损伤纳米孪晶铜膜的表面。
进一步地,所述步骤(2)中冷夹板和热夹板之间的温度梯度为1×103-6×104℃/cm,在此温度梯度范围内,既可加快(111)择优晶体取向的纳米孪晶铜膜向(100)晶体取向的单晶铜膜的转变过程,又不至于使加热温度过高(>300℃)。
进一步地,所述步骤(3)中的单晶铜膜为沿厚度取向为(100)晶面取向,晶粒尺寸达300-400μm,步骤(2)的保持时间为10-60min。
发明原理:本发明将(111)择优晶体取向的纳米孪晶铜膜沿厚度方向夹持于冷、热两夹板中间,通过合理的冷、热夹板温度设定,使择优晶体取向纳米孪晶铜膜两侧产生一定的温度梯度并保持一定时间,温度梯度促使金属原子发生热迁移,加速(111)择优晶体取向的纳米孪晶铜膜转变为沿厚度方向为(100)晶体取向的单晶铜膜,显著提高键合效率。
有益效果:与现有技术相比,本发明具有以下显著优点:
(1)加工温度低,与现有400℃的加工温度相比,本发明选择的热板最高温度为300℃,显著降低了工艺温度,减少了微电子制造过程中的热损伤;
(2)简单易实现,本发明中(100)晶体取向的单晶铜膜只需通过简单的对(111)择优晶体取向的纳米孪晶铜膜进行电镀及温度梯度老化即可制得,克服了提拉法制备单晶铜的复杂性;此外,(100)晶体取向的单晶铜膜可以做到数微米至数十微米厚,可获得任意厚度、形状的样品,克服了提拉法制备的单晶铜尺寸的限制;
(3)与现有半导体及封装工艺兼容性好,工艺简单易实现,成本低,适合大规模生产。
附图说明
图1为本发明实施例1晶面为(111)的纳米孪晶铜膜的XRD图;
图2为本发明实施例1制得的晶面为(100)的单晶铜膜的XRD图。
具体实施方式
下面,结合具体实施例和附图进一步对本发明进行说明。
实施例1:本发明所述纳米孪晶铜膜转变为单晶铜膜的制备方法,包括以下步骤:
(1)采用5%柠檬酸水溶液对单独存在、不规则形状、厚度为40μm、沿厚度方向具有(111)择优晶体取向的纳米孪晶铜膜进行预处理,图1为本发明实施例1晶面为(111)的纳米孪晶铜膜的XRD图;
(2)将预处理后的纳米孪晶铜膜沿厚度方向夹持于冷夹板和热夹板中进行热处理,冷夹板的温度为0℃,热夹板的温度为200℃,温度梯度为5×104℃/cm;
(3)将步骤(2)保持20min,即得沿厚度方向为(100)晶体取向的单晶铜膜,晶粒尺寸可达400μm,图2为本发明在温度梯度为5×104℃/cm下保持20min制得的晶面为(100)的单晶铜膜的XRD图,图中Cu的强衍射峰为(200),(200)面与(100)面都是一个方向的晶面,属于同一晶面族。在XRD测试中,因为Cu的点阵结构为面心立方结构,只有当衍射面(hkl)指数为全奇数或全偶数时才产生衍射,而当其衍射面(hkl)指数为奇偶混杂时,其衍射消光。因此,在单晶铜膜的XRD图中,强衍射峰为(200),而不是(100)。
实施例2:本发明所述纳米孪晶铜膜转变为单晶铜膜的制备方法,包括以下步骤:
(1)采用5%柠檬酸水溶液对附着在厚度为100μm的铜基板上、矩形、厚度为12μm、沿厚度方向具有(111)择优晶体取向的纳米孪晶铜膜进行预处理;
(2)将预处理后的纳米孪晶铜膜沿厚度方向夹持于冷夹板和热夹板中进行热处理,冷夹板的温度为-20℃,热夹板的温度为200℃,温度梯度为1.96×104℃/cm;
(3)将步骤(2)保持45min,即得沿厚度方向为(100)晶体取向的单晶铜膜,晶粒尺寸可达300μm。
实施例3:本发明所述纳米孪晶铜膜转变为单晶铜膜的制备方法,包括以下步骤:
(1)采用5%柠檬酸水溶液对单独存在、圆柱形、厚度为50μm、沿厚度方向具有(111)择优晶体取向的纳米孪晶铜膜进行预处理;
(2)将预处理后的纳米孪晶铜膜沿厚度方向夹持于冷夹板和热夹板中进行热处理,冷夹板的温度为20℃,热夹板的温度为300℃,温度梯度为5.6×104℃/cm;
(3)将步骤(2)保持10min,即得沿厚度方向为(100)晶体取向的单晶铜膜,晶粒尺寸可达400μm。
实施例4:本发明所述纳米孪晶铜膜转变为单晶铜膜的制备方法,包括以下步骤:
(1)采用5%柠檬酸水溶液对附着在厚度为100μm的硅基板上、矩形、厚度为20μm、沿厚度方向具有(111)择优晶体取向的纳米孪晶铜膜进行预处理;
(2)将预处理后的纳米孪晶铜膜沿厚度方向夹持于冷夹板和热夹板中进行热处理,冷夹板的温度为0℃,热夹板的温度为200℃,温度梯度为1.67×104℃/cm;
(3)将步骤(2)保持60min,即得沿厚度方向为(100)晶体取向的单晶铜膜,晶粒尺寸可达400μm。

Claims (7)

1.一种纳米孪晶铜膜转变为单晶铜膜的制备方法,其特征在于,包括以下步骤:
(1)采用酸溶液对纳米孪晶铜膜进行预处理;
(2)将预处理后的纳米孪晶铜膜沿厚度方向夹持于冷夹板和热夹板中进行热处理,冷夹板的温度为-20℃至30℃,热夹板的温度为200-300℃;
(3)保持步骤(2),待热处理结束后,即得单晶铜膜;
所述步骤(1)中的纳米孪晶铜膜的厚度为10-50μm,纳米孪晶铜膜为沿厚度方向具有(111)择优晶体取向;
所述步骤(3)中的单晶铜膜为沿厚度取向为(100)晶面取向。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中的纳米孪晶铜膜的形状为矩形或不规则形。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中的纳米孪晶铜膜为单独存在或附着在基板上。
4.根据权利要求3所述的制备方法,其特征在于,所述基板为铜或硅。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中的酸溶液为柠檬酸水溶液。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中冷夹板和热夹板之间的温度梯度为1×103-6×104℃/cm。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中,步骤(2)的保持时间为10-60min。
CN202210739103.4A 2022-06-28 2022-06-28 一种纳米孪晶铜膜转变为单晶铜膜的制备方法 Active CN115029769B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210739103.4A CN115029769B (zh) 2022-06-28 2022-06-28 一种纳米孪晶铜膜转变为单晶铜膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210739103.4A CN115029769B (zh) 2022-06-28 2022-06-28 一种纳米孪晶铜膜转变为单晶铜膜的制备方法

Publications (2)

Publication Number Publication Date
CN115029769A CN115029769A (zh) 2022-09-09
CN115029769B true CN115029769B (zh) 2023-11-21

Family

ID=83127548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210739103.4A Active CN115029769B (zh) 2022-06-28 2022-06-28 一种纳米孪晶铜膜转变为单晶铜膜的制备方法

Country Status (1)

Country Link
CN (1) CN115029769B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040086911A (ko) * 2003-04-03 2004-10-13 한국기계연구원 단결정이나 단결정 배향성을 지니는 금속표면에전기도금되어 이축집합조직을 갖는 합금 또는 금속 도금층및 그 제조방법
CN101949004A (zh) * 2010-09-10 2011-01-19 常州大学 一种纳米铜膜基铜纳米结构的制备方法
CN107904654A (zh) * 2017-01-12 2018-04-13 北京大学 一种大尺寸单晶铜箔的制备方法
CN110273176A (zh) * 2018-03-16 2019-09-24 中国科学院化学研究所 一种制备大面积铜Cu(111)单晶的方法
CN112442729A (zh) * 2019-08-30 2021-03-05 北京石墨烯研究院 一种制备大面积单晶铜箔的方法
CN112522775A (zh) * 2020-11-26 2021-03-19 深圳大学 一种晶圆级单晶铜箔的制备方法及规整石墨烯的制备方法
CN112553681A (zh) * 2020-11-21 2021-03-26 嘉兴固美科技有限公司 一种大块体单晶铜的制备方法
CN112899768A (zh) * 2021-01-20 2021-06-04 南方科技大学 单晶铜的制备方法
CN114411233A (zh) * 2022-01-11 2022-04-29 大连理工大学 一种快速制备(100)单晶铜的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743525B (zh) * 2019-07-30 2021-10-21 國立陽明交通大學 類單晶薄膜及其製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040086911A (ko) * 2003-04-03 2004-10-13 한국기계연구원 단결정이나 단결정 배향성을 지니는 금속표면에전기도금되어 이축집합조직을 갖는 합금 또는 금속 도금층및 그 제조방법
CN101949004A (zh) * 2010-09-10 2011-01-19 常州大学 一种纳米铜膜基铜纳米结构的制备方法
CN107904654A (zh) * 2017-01-12 2018-04-13 北京大学 一种大尺寸单晶铜箔的制备方法
CN110273176A (zh) * 2018-03-16 2019-09-24 中国科学院化学研究所 一种制备大面积铜Cu(111)单晶的方法
CN112442729A (zh) * 2019-08-30 2021-03-05 北京石墨烯研究院 一种制备大面积单晶铜箔的方法
CN112553681A (zh) * 2020-11-21 2021-03-26 嘉兴固美科技有限公司 一种大块体单晶铜的制备方法
CN112522775A (zh) * 2020-11-26 2021-03-19 深圳大学 一种晶圆级单晶铜箔的制备方法及规整石墨烯的制备方法
CN112899768A (zh) * 2021-01-20 2021-06-04 南方科技大学 单晶铜的制备方法
CN114411233A (zh) * 2022-01-11 2022-04-29 大连理工大学 一种快速制备(100)单晶铜的方法

Also Published As

Publication number Publication date
CN115029769A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
TWI490962B (zh) 電性連接結構及其製備方法
JP6272805B2 (ja) 2つの金属表面を永久的に接続するための方法
CN104716059B (zh) 一种三维封装芯片堆叠用金属间化合物键合方法及键合结构
KR102248760B1 (ko) 접합 조성물 및 이를 이용한 접합 방법
CN104637831A (zh) 一种基于铜纳米线的铜铜键合工艺
CN112317972B (zh) 一种单向性耐高温焊接接头的低温快速制造方法
Lai et al. Characterization of interfacial structure for low-temperature direct bonding of Si substrates sputtered with Ag nanotwinned films
CN115029769B (zh) 一种纳米孪晶铜膜转变为单晶铜膜的制备方法
Zhang et al. Large-area substrate bonding with single-printing silver paste sintering for power modules
Yang et al. Morphology evolution and grain orientations of intermetallic compounds during the formation of full Cu3Sn joint
CN114411233B (zh) 一种快速制备(100)单晶铜的方法
CN116550975B (zh) 一种金刚石/铜复合材料制备方法
Yu et al. Optimization of Ag-Ag direct bonding for wafer-level power electronics packaging via design of experiments
CN103334080A (zh) AlN膜表面金属化层制备方法
JP2024510580A (ja) 銅-銅直接接合のための方法及びアセンブリ
Sakai et al. A low temperature Cu-Cu direct bonding method with VUV and HCOOH treatment for 3D integration
CN111661840B (zh) 一种亚稳态石墨烯薄膜的制备方法
Murugesan et al. Cu-Cu direct bonding through highly oriented Cu grains for 3D-LSI applications
Liu et al. Analysis of microstructures and fractures in Ag–In transient liquid phase bonded joints
Oh et al. Diffusional hillock growth in Ag stress migration bonding for power device interconnections
Chen et al. Stress Analysis of Cu/Sn Bump Eutectic Bonding Interface
CN114473110B (zh) 一种抗电迁移抗氧化的焊膏及其应用
Li et al. Research on low temperature bonding using nanoporous copper
Zhu et al. Rapid manufacturing of complete intermetallic joints using Cu/Sn foam composite by ultrasonic-assisted soldering
Shi et al. Fabrication of full intermetallic compound interconnects with single crystal (111) Cu under bump metallization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant