CN115028791A - 一种具有应力增强的液晶聚肟氨酯材料 - Google Patents

一种具有应力增强的液晶聚肟氨酯材料 Download PDF

Info

Publication number
CN115028791A
CN115028791A CN202210514463.4A CN202210514463A CN115028791A CN 115028791 A CN115028791 A CN 115028791A CN 202210514463 A CN202210514463 A CN 202210514463A CN 115028791 A CN115028791 A CN 115028791A
Authority
CN
China
Prior art keywords
liquid crystal
stress
dynamic
polyethylene glycol
dmg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210514463.4A
Other languages
English (en)
Other versions
CN115028791B (zh
Inventor
游正伟
王洋
郭越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN202210514463.4A priority Critical patent/CN115028791B/zh
Publication of CN115028791A publication Critical patent/CN115028791A/zh
Application granted granted Critical
Publication of CN115028791B publication Critical patent/CN115028791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3221Polyhydroxy compounds hydroxylated esters of carboxylic acids other than higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3819Low-molecular-weight compounds having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及一种具有应力增强的液晶聚肟氨酯材料,所述液晶聚肟氨酯的重复结构如式I所示。通过将肟氨酯键、液晶基元引入到聚氨酯体系中,将破坏性应力转化为有利因素显著提高材料力学性能。

Description

一种具有应力增强的液晶聚肟氨酯材料
技术领域
本发明属于聚合物材料领域,特别涉及一种具有应力增强的液晶聚肟氨酯材料。
背景技术
应力常常破坏传统材料的力学性能甚至导致材料断裂失效。为了延长材料的使用寿命,提高材料使用的安全性,研究人员发展了很多能够在受到破坏后部分或完全恢复力学性能的自愈合材料。研究最为广泛的一类自愈合材料是通过动态键的动态交换与重组实现的。但自愈合材料对力学性能的恢复仍比较有限。近年来,类肌肉的自增强材料开始发展,这类材料可以在应力反复加载过程中发生物理重排或化学反应(扩链或交联反应),通过增加物理或化学交联点来增强自身。但目前的自增强材料制备过程复杂,增强效果有限,亟待发展新型应力增益材料。
对于热致性液晶,液晶基元对为微应力敏感,在微应力下具有很好的重排能力,可以在微应力的作用下重新取向,取向后的液晶材料力学性能显著提升,但液晶基元的物理重排作用并不稳定,高温下取向仍会消失。热固性液晶聚合物因应力难以松弛无法实现取向。为通过单畴液晶实现制动,将能够实现交联网络重组的动态键引入到液晶弹性体中,成功固定了液晶的取向。液晶基元重组和实现化学网络重排动态键相结合的方式为制备高效率的应力增益材料提供了思路。液晶聚氨酯材料是一种特殊的液晶聚合物,因兼有液晶和聚氨酯的优良性能而被广泛关注。将肟氨酯动态键引入到液晶聚氨酯体系,动态肟氨酯键在合适的温度下能够解离释放应力,实现共价网络重组,同时液晶基元可在应力作用下取向重排,两者的协同作用拟将赋予材料优异的力学性能。
发明内容
针对现有技术的缺陷,本发明所要解决的技术问题是提供一种具有应力增强的液晶聚肟氨酯材料。
本发明的一种如下所示液晶动态聚肟氨酯,
Figure BDA0003639013240000011
Figure BDA0003639013240000012
其中x,n均为>1的整数。
所述液晶动态聚肟氨酯以含聚乙二醇、丁二酮肟、4-羟苯甲酸-4-羟基苯酯、二苯基甲烷二异氰酸酯、甘油的原料,在催化剂条件下,一步法缩聚获得。
本发明的一种液晶动态聚肟氨酯的制备方法,包括:
在保护气体条件下,将聚乙二醇、4-羟苯甲酸-4-羟基苯酯、丁二酮肟、溶剂混合,再加入甘油和催化剂,混匀,然后加入二苯基甲烷二异氰酸酯,搅拌,反应,挥发溶剂,得到上述所述的具有力学增益的液晶动态聚肟氨酯。
所述保护气体为氮气;所述聚乙二醇为除水聚乙二醇,具体为:将聚乙二醇升温至100~120℃,抽真空t≥1h,降至室温。
所述聚乙二醇为聚乙二醇400;所述溶剂为N,N-二甲基甲酰胺DMF;催化剂为二月桂酸二丁基锡DBTDL。
所述聚乙二醇、4-羟苯甲酸-4-羟基苯酯、丁二酮肟、甘油、二苯基甲烷二异氰酸酯的摩尔比为10~16:5~10:1~3:0.8~1.5:21~28。
所述反应温度为55~80℃,时间为6~12h。
本发明的一种应力增益液晶动态聚肟氨酯材料,所述材料为基于所述液晶动态聚肟氨酯的应力增益材料。
本发明提供一种具有应力增益效果的液晶聚肟氨酯材料的制备方法,包括:
将所述动态聚肟氨酯退火,然后在退火温度下拉伸,拉伸后保持使得应力释放,重复上述操作,得到应力增益液晶动态聚肟氨酯材料。
所述退火温度为70~120℃,时间为1~10min;在退火温度下拉伸至其长度为10~100%。
本发明的一种所述应力增益液晶动态聚肟氨酯材料的应用,如可变形机器人(以柔软形态进行保存在需要时可以对力学进行进行调节,实现力学增强)。
本发明将动态键引入到液晶聚氨酯体系中,同时实现了液晶的物理重排和动态共价网络的化学重组,制备了区别于传统应力次化材料,能够将破坏性应力转化为有利因素的大幅度提高自身力学性能的应力增益动态液晶聚肟氨酯材料。
有益效果
(1)本发明中DMG-CLCPU具有较高的热分解温度,有较宽的液晶相区间且在分解温度之前并未发现明显的液晶相转变;其玻璃化转变温度为22℃,无结晶熔融峰,为无定形聚合物。
(2)本发明的应力增益材料,材料在训练1次后,力学性能大幅度提升,DMG-CLCPU材料训练后不仅具有更高的强度和模量,其韧性也得到了提高,具有显著的技术效果。
附图说明
图1为交联液晶动态聚肟氨酯(DMG-CLCPU)的结构示意图;其中x,n均为>1的整数;
图2为交联液晶动态聚肟氨酯(DMG-CLCPU)及原料的全反射傅立叶变换红外吸收光谱;
图3为DMG-CLCPU在DMF(a)和THF(b)中溶胀前后照片;
图4为DMG-CLCPU在氮气气氛中的热失重曲线;
图5所示热台偏光显微镜记录的DMG-CLPCU在30℃(a)和200℃(b)的液晶相(比例尺=2μm);
图6为DMG-CLCPU的DSC曲线;
图7为DMG-CLCPU的训练过程示意图
图8同一DMG-CLCPU样条每次应力增益训练后的循环拉伸曲线;
图9为DMG-CLCPU样条应力增益训练不同次数后的单轴拉伸曲线;
图10DMG-CLCPU样条拉伸训练1次后的稳定状态。I.原始样条;II.拉伸训练1次后;III.拉伸训练1次后的样条在210℃退火5min;
图11 1mm厚的原始薄膜与训练4次(比尺=500μm)后(右侧)的双折射偏光差异图;
图12为DMG-CLCPU的应用展示:a.原始DMG-CLCPU加载50g重量后较大变形;b.训练4次后的DMG-CLCPU同等变形可加载2500g重量(比例尺=2.4cm);
图13为1mm厚的原始薄膜与训练4次后的抗刮擦性能对比图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
相关测试:
以下实施例中通过万能材料试验机来表征材料的力学性能,从制备的样品中裁出矩形样条(5mm×60mm×1mm),在室温下测试材料的力学性能,拉伸速率设定为20mm/min,每种材料测试3个样品,弹性模量通过初始2%~5%应变处的斜率得到,韧性取应力应变曲线的积分面积。
通过傅里叶红外光谱(FTIR)对合成的DMG-CLCPU及使用的原料的结构进行表征,使用衰减全反射(ATR)附件测试,设置扫描次数32次,波长扫描范围为4000cm-1~500cm-1,光谱分辨率为4cm-1
将原始的DMG-CLPCP(5mm×60mm×1mm)和锻炼4次后样条(2mm×182.5mm×0.45mm)薄膜在偏光显微镜暗场下观察双折射现象,对比两者各向异性的差异。
材料的热稳定性通过热重分析仪进行表征。样品测试前做真空干燥处理,测试在氮气氛围下进行,称取样品5-10mg,升温速率设置为10℃/min,升温范围为30-600℃。
使用差示扫描量热仪测量DMG-CLCPU的玻璃化转变温度(Tg)及液晶转变温度(TN-I),测试条件为:氮气氛围,速率为10℃/min。
将矩形样条(20mm×5mm×1mm)分为两组,每组三根样条,分别称量并记录每根的质量,然后将其分别放入都含有5ml DMF,THF的溶剂中,48h后,观察其是否溶胀或溶解,若溶胀,称量溶胀后每根样条的质量计算溶胀率。溶胀率等于=(每根样条溶胀后质量-每根样条溶胀前质量)/每根样条溶胀前质量。
实施例1
新型交联动态液晶聚肟氨酯(DMG-CLCPU)的合成:
将聚乙二醇(PEG400,3.257g)加入反应瓶中,升温至110℃,抽真空2h,以除去聚乙二醇中的吸附水。然后,降温至室温,去除真空,插上氮气球保持N2氛围。将4-羟苯甲酸-4-羟基苯酯(HPHB,1g)和丁二酮肟(DMG,0.126g)加入到8ml超干N,N-二甲基甲酰胺(DMF)中超声溶解,将其混合溶液缓慢加入到反应瓶中。将甘油(GYL,0.0428g)和催化剂二月桂酸二丁基锡(DBTDL,1wt%)缓慢加入到反应瓶中。待以上溶液搅拌均匀后,缓慢加入二苯基甲烷二异氰酸酯(MDI,3.575g)。然后在75℃,N2氛围下反应8h,经红外检测,此时异氰酸酯的特征峰已消失,说明反应已完成。然后倒入聚四氟乙烯模具中,在室温下密封的四氟塑料袋中挥发溶剂36h,然后将其放入烘箱中挥发溶剂,在36h内烘箱温度从30℃升温至75℃,最后在75℃下抽真空4h,得到新型交联液晶动态聚肟氨酯(DMG-CLCPU)。
利用衰减全反射-傅立叶红外光谱(ATR-FTIR)对合成的原料及最终产物的化学结构进行了表征,如图2所示,在2270cm-1的峰为异氰酸酯中-N=C=O的不对称伸缩振动吸收峰;在3298cm-1和1710cm-1的峰分别是氨基甲酸酯基团中的N-H和C=O的伸缩振动峰。相较于原料,最终产物的红外光谱中-N=C=O的峰消失,新产生了N-H和C=O的峰。这表明原料中的异氰酸酯基团与羟基已完全反应,并生成了氨基甲酸酯基团。此外产物中920cm-1为N-O的吸收峰,表明DMG被成功引入,形成了肟氨酯键。产物中1603cm-1为苯环的吸收峰,对比MDI的红外光谱,此处吸收峰变得更强,说明HPHB中苯环结构被成功引入。红外光谱中结构与设计的聚合物分子结构相符,表明DMG-CLCPU被成功合成。
液晶弹性体是具有低交联密度的液晶聚合物。与线性聚合物相比,交联结构可赋予材料优异的力学性能,热稳定性和耐溶剂性能,为了验证DMG-CLCPU交联结构,对其进行了溶胀实验。将两组DMG-CLCPU长方形样条(60mm×5mm×1mm)分别浸入溶剂N,N-二甲基甲酰胺(DMF)和线性聚氨酯的良溶剂四氢呋喃(THF)中,放置48h,如图3所示,观察两组样条都有溶胀现象,计算其溶胀率分别为945%±21%,220%±12%。
通过热重分析研究了DMG-CLCPU的热稳定性能,如图4所示,当温度升高至220℃时,DMG-CLCPU的质量仅有5%的损失,说明DMG-CLCPU具有良好的热稳定性。从图4可知,DMG-CLCPU的DTG曲线分别在180~200℃,200~240℃,240~380℃,380~420℃范围中出现4个峰,且DMG-CLCPU的质量在180~200℃之间损失了1.8%,此质量的减少量与丁二酮肟在的DMG-CLCPU中的质量分数接近,这表明该峰应该是由DMG-CLCPU中DMG-MDI动态链段高温解离产生的DMG升华所产生的。另外三个峰则分别由聚氨酯中液晶基元(HPHB)、软段(PEG400)和硬段(MDI)分解所致。高温下,动态肟氨酯键可以在较高的温度下首先发生断裂,解离出肟,具有一定的动态性。
DMG-CLCPU液晶性POM表征:
通过热台偏光显微镜对DMG-CLCPU的液晶相行为进行了研究。如图5所示,DMG-CLCPU在室温下可观察到众多斑点状纹理及少量的条状纹理向列型液晶相,由于液晶聚氨酯聚合物是由液晶基元链段与非液晶基元链段无规共聚而成,与全液晶聚合物相比,液晶微畴(由有序的液晶基元组成)之间存在更多的缺陷和位错,因此液晶相也呈现非连续状态。
DMG-CLCPU的热学性能研究
通过DSC测试了DMG-CLCPU的玻璃化转变温度(Tg)。如图6所示,DMG-CLCPU为21℃,说明其在室温下为弹性体。此外,DSC曲线在测试温度-60℃和200℃内均为出现结晶峰和熔融峰,这说明DMG-CLCPU为无定形聚合物,且在200℃以内未观察到液晶的清亮点,这与POM中未观察到熔点和各向同性转变(TN-I)的现象相吻合。
DMG-CLCPU的力学性能
如图8所示,应力应变曲线显示,室温下DMG-CLCPU的抗拉强度(0.66±0.02MPa),断裂伸长率接近自身长度的12倍,并可以随着应力释放缓慢恢复到原来的长度。弹性模量和韧性分别为:0.57±0.02MPa,4.95±0.42MPa。
实施例2
单根DMG-CLCPU样条拉伸训练后的力学增强效果:
将裁切好的DMG-CLCPU样条(约60mm×5mm×1mm)放置于自制的拉伸装置上在90℃烘箱中退火3min,然后再此温度下缓慢拉伸至其长度的50%,拉伸后在此温度下保持140min,使得应力完全释放。多次增强训练重复以上操作(图7)原始样条和训练1、2、3、4次样条的力学性能如图8所示,随着训练次数的增加,样条的在产生50%断裂伸长率时拉伸强度和弹性模量有显著提高。此外,可观察到,随着训练次数的增加,循环滞后环越来越大,屈服现象越来越明显,说明其弹性随训练次数减弱,这是由于随着训练次数增大,液晶基元排列更紧密有序,增强了其强度和模量。
实施例3
用5样条(约60mm×5mm×1mm)进行了不同次数的拉伸训练具体训练过程为:将裁切好的DMG-CLCPU样条放置于自制的拉伸装置上,在90℃烘箱中退火3min,然后再此温度下缓慢拉伸至其长度的50%,拉伸后在此温度下保持140min,使得应力完全释放,并对训练后的样条进行了单轴拉伸测试。训练不同次数样条的单轴拉伸曲线如图9所示。每次训练后其拉伸强度、弹性模量、韧性的具体数值如表1所示。训练4次后,其弹性模量、拉伸强度、和韧性分别增强为初始的1743、99、54倍。此结果证明了通过拉伸训练松弛应力过程中液晶基元的演化可以实现液晶动态聚肟氨酯材料的应力增益效果。
表1为DMG-CLCPU每次应力增益训练后的力学性能
Figure BDA0003639013240000061
尺寸稳定性测试:
对训练后的DMG-CLCPU别进行了尺寸稳定性和力学稳定性测试。
如图10所示,将训练1次的DMG-CLCPU样条室温拉伸后200℃放置5min,样条长度与训练1次后的长度相等,即形状固定率:Lxh/Lx=100%,这说明网络已完成了永久性重排,具有较好的尺寸稳定性。训练条件为:将裁切好的DMG-CLCPU样条(约60mm×5mm×1mm)放置于自制的拉伸装置上,在90℃烘箱中退火3min,然后再此温度下缓慢拉伸至其长度的50%,拉伸后在此温度下保持140min,使得应力完全释放,得到训练1次的样条。
双折射现象表征:
若液晶基元在拉伸训练方向取向,有序性增加,训练后拉伸方向和与之垂直的方向呈各项异性。各向异性的物质在偏光显微镜下可观察到双折射现象。将未训练的薄膜和训练后的薄膜放置于偏光显微镜下的暗场进行观察,如图11所示,未训练的薄膜偏振角度从0°旋转到180°始终处于暗场的颜色,未发生颜色变化,薄膜呈各向同性,而训练后的液晶条带偏振角度从0°旋转到180°颜色不断变换,有明显的双折射现象,呈各向异性,说明训练后液晶基元在训练方向存在一定程度的取向,有序度和规整性提高。
本发明中应力增益DMG-CLCPU的实际应用。
在训练前,DMG-CLCPU薄膜柔软且易于变形,50克的重量会导致较大的变形,同时原DMG-CLCPU容易被刮伤。如图12右图经过4次训练后,DMG-CLCPU就变得更加强壮,可以轻松举起2500克(自身重量的4900倍)(比例尺为12mm)。同时锻炼后的样条表现出优异的抗划伤能力如图13所示(比例尺为5mm)。

Claims (10)

1.一种含有动态肟氨酯键自增益液晶聚氨酯,其特征在于包含重复结构为:
Figure FDA0003639013230000011
Figure FDA0003639013230000012
其中x,n均为>1的整数。
2.一种液晶动态聚肟氨酯的制备方法,包括:
在保护气体条件下,将聚乙二醇、4-羟苯甲酸-4-羟基苯酯、丁二酮肟、溶剂混合,再加入甘油和催化剂,混匀,然后加入二苯基甲烷二异氰酸酯MDI,搅拌,反应,溶剂挥发,得到所述的含动态肟氨酯键的自增益液晶聚氨酯。
3.根据权利要求2所述制备方法,其特征在于,所述保护气体为氮气;所述聚乙二醇为除水聚乙二醇,具体为:将聚乙二醇升温至100~120℃,抽真空t≥1h,降至室温。
4.根据权利要求2所述制备方法,其特征在于,所述聚乙二醇为聚乙二醇400;所述溶剂为N,N-二甲基甲酰胺DMF;催化剂为二月桂酸二丁基锡DBTDL。
5.根据权利要求2所述制备方法,其特征在于,所述聚乙二醇、4-羟苯甲酸-4-羟基苯酯、丁二酮肟、甘油、二苯基甲烷二异氰酸酯MDI的摩尔比为10~16:5~10:1~3:0.8~1.5:21~28。
6.根据权利要求2所述制备方法,其特征在于,所述反应温度为55~80℃,时间为6~12h。
7.一种应力增益液晶动态聚肟氨酯材料,其特征在于,所述材料为基于权利要求1所述液晶动态聚肟氨酯的应力增益材料。
8.一种应力增益液晶动态聚肟氨酯材料的制备方法,包括:
将权利要求1所述动态聚肟氨酯退火,然后在退火温度下拉伸,拉伸后保持使得应力释放,重复上述操作,得到应力增益液晶动态聚肟氨酯材料。
9.根据权利要求8所述制备方法,其特征在于,所述退火温度为70~120℃,时间为1~10min;在退火温度下拉伸至其长度10~100%。
10.一种权利要求7所述应力增益液晶动态聚肟氨酯材料的应用。
CN202210514463.4A 2022-05-11 2022-05-11 一种具有应力增强的液晶聚肟氨酯材料 Active CN115028791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210514463.4A CN115028791B (zh) 2022-05-11 2022-05-11 一种具有应力增强的液晶聚肟氨酯材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210514463.4A CN115028791B (zh) 2022-05-11 2022-05-11 一种具有应力增强的液晶聚肟氨酯材料

Publications (2)

Publication Number Publication Date
CN115028791A true CN115028791A (zh) 2022-09-09
CN115028791B CN115028791B (zh) 2024-05-10

Family

ID=83121959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210514463.4A Active CN115028791B (zh) 2022-05-11 2022-05-11 一种具有应力增强的液晶聚肟氨酯材料

Country Status (1)

Country Link
CN (1) CN115028791B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105294974A (zh) * 2015-11-30 2016-02-03 黄河三角洲京博化工研究院有限公司 一种制备高冲击韧性聚氨酯树脂光学材料的方法
CN105829380A (zh) * 2013-12-18 2016-08-03 东洋橡胶工业株式会社 液晶聚氨酯弹性体及其制造方法
CN108137769A (zh) * 2015-12-24 2018-06-08 东洋橡胶工业株式会社 热响应性材料、以及使用了热响应性材料的热控制装置及纤维
CN109852326A (zh) * 2019-01-18 2019-06-07 东华大学 一种含有肟氨酯动态键的聚氨酯热熔胶黏剂及其制备方法
CN110066414A (zh) * 2019-04-09 2019-07-30 东华大学 一种多功能多重防护材料及其制备方法
JP2021080331A (ja) * 2019-11-15 2021-05-27 住友ベークライト株式会社 変性エポキシ樹脂、熱硬化性樹脂組成物、樹脂シート、及び金属ベース基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829380A (zh) * 2013-12-18 2016-08-03 东洋橡胶工业株式会社 液晶聚氨酯弹性体及其制造方法
CN105294974A (zh) * 2015-11-30 2016-02-03 黄河三角洲京博化工研究院有限公司 一种制备高冲击韧性聚氨酯树脂光学材料的方法
CN108137769A (zh) * 2015-12-24 2018-06-08 东洋橡胶工业株式会社 热响应性材料、以及使用了热响应性材料的热控制装置及纤维
CN109852326A (zh) * 2019-01-18 2019-06-07 东华大学 一种含有肟氨酯动态键的聚氨酯热熔胶黏剂及其制备方法
CN110066414A (zh) * 2019-04-09 2019-07-30 东华大学 一种多功能多重防护材料及其制备方法
JP2021080331A (ja) * 2019-11-15 2021-05-27 住友ベークライト株式会社 変性エポキシ樹脂、熱硬化性樹脂組成物、樹脂シート、及び金属ベース基板

Also Published As

Publication number Publication date
CN115028791B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
Estes et al. Infrared studies of segmented polyurethane elastomers. II. Infrared dichroism
Liaw The relative physical and thermal properties of polyurethane elastomers: effect of chain extenders of bisphenols, diisocyanate, and polyol structures
Lin et al. Segmental orientation studies of polyether polyurethane block copolymers with different hard segment lengths and distributions
Zhang et al. Bio-based shape memory polyurethanes (Bio-SMPUs) with short side chains in the soft segment
RU2489461C2 (ru) Полиуретановые эластомерные изделия из форполимеров с низким уровнем содержания свободного дифенилметандиизоцианата
Shi et al. Cross-linked polyurethane with dynamic phenol-carbamate bonds: properties affected by the chemical structure of isocyanate
US20060293487A1 (en) Polyurethanes, polyurethaneureas and polyureas and use thereof
Reddy et al. Synthesis and characterization of pyridine-based polyurethanes
Zhang et al. A thermally remendable and reprocessable crosslinked methyl methacrylate polymer based on oxygen insensitive dynamic reversible C–ON bonds
EP2875060B1 (en) Use of polyurea nanoparticles as performance modifiers in polyurethane materials
Mondal et al. Tailor‐Made Functional Polymethacrylates with Dual Characteristics of Self‐Healing and Shape‐Memory Based on Dynamic Covalent Chemistry
CN110872370B (zh) 一种低含磷交联剂在制备聚氨酯薄膜中的应用
CN110373016A (zh) 一种液晶聚丙烯酸酯-液晶聚氨酯互穿网络液晶弹性体
CN111269386B (zh) 离子型形状记忆聚氨酯、晶型a及其制备方法和用途
Ji et al. Shape memory polyurethane-ureas based on isophorone diisocyanate
Hatakeyama et al. Synthesis and physical properties of polyurethanes from saccharide‐based polycaprolactones
CN115028791B (zh) 一种具有应力增强的液晶聚肟氨酯材料
CN102352010A (zh) 一种水性聚氨酯-聚脲分散体的制备方法
Stanciu et al. Poly (ester-siloxane) urethane network structure from tensile properties
Maurya et al. Effect of polyester polyol chain length on the properties of transparent poly (ester-urethane-acrylate)/MMA copolymer for optical applications
Li et al. Enhancement of mechanochemical self-blocking and self-healing of early minor damages in polymers through hyperbranched architecture.
CN113121782B (zh) 聚氨酯弹性体原料、聚氨酯弹性体及其制备方法
Bai et al. Shape memory property of microcrystalline cellulose–poly (ε-caprolactone) polymer network with broad transition temperature
JP2002003564A (ja) ポリカルボジイミド化合物及びその製造方法
Prisacariu et al. Effect of increasing the hard segment percentage on the mechanical response of selected polyurethane films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant