CN115025723A - 经神经生长因子及多巴胺改良的peg-plga微球 - Google Patents

经神经生长因子及多巴胺改良的peg-plga微球 Download PDF

Info

Publication number
CN115025723A
CN115025723A CN202210506336.XA CN202210506336A CN115025723A CN 115025723 A CN115025723 A CN 115025723A CN 202210506336 A CN202210506336 A CN 202210506336A CN 115025723 A CN115025723 A CN 115025723A
Authority
CN
China
Prior art keywords
solution
dopamine
nerve growth
growth factor
stem cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210506336.XA
Other languages
English (en)
Inventor
王宗贵
赵畅
魏显艳
赵胤
程金章
杨景朴
金成勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202210506336.XA priority Critical patent/CN115025723A/zh
Publication of CN115025723A publication Critical patent/CN115025723A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/13Nerve growth factor [NGF]; Brain-derived neurotrophic factor [BDNF]; Cilliary neurotrophic factor [CNTF]; Glial-derived neurotrophic factor [GDNF]; Neurotrophins [NT]; Neuregulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/40Polyhydroxyacids, e.g. polymers of glycolic or lactic acid (PGA, PLA, PLGA); Bioresorbable polymers

Abstract

本发明涉及一种经神经生长因子及多巴胺改良的PEG‑PLGA微球,属于生物材料领域。将PVA溶液与神经生长因子溶液混合均匀;聚乳酸‑羟基乙酸共聚物、聚乙二醇‑聚乳酸‑羟基乙酸共聚物分别溶解于二氯甲烷中,混合,制得白色微球,将多巴胺加入三羟甲基氨基甲烷溶液溶解,向其中加入白色微球,搅拌。本发明能解决现存干细胞移植治疗中细胞体外扩增效率低、耗时长的问题,对骨髓间充质干细胞的增殖起到显著促进作用,提高干细胞移植治疗的安全性,在促进骨髓间充质干细胞增殖的同时,对其旁分泌功能也有显著提升,bFGF能够参与血管生成、损伤修复,并且能促进神经组织的生长发育,骨髓间充质干细胞旁分泌bFGF增多将提高干细胞移植治疗的效率。

Description

经神经生长因子及多巴胺改良的PEG-PLGA微球
技术领域
本发明涉及生物材料领域,尤其涉及一种经神经生长因子及多巴胺改良的PEG-PLGA微球。
背景技术
间充质干细胞(Mesenchymal Stem Cell,MSC)具有自我更新能力,并具有成骨、成脂、成纤维等多向分化潜能,同时由于其表面缺乏主要组织相容性复合物II(MHCII)的表达,从而在移植过程中不存在免疫排斥反应,成为近年来再生医学领域的关注点。间充质干细胞MSC来源丰富,从最初被发现时的骨髓,至今已可从包括脐带、脂肪组织、扁桃体、牙髓、嗅觉粘膜等组织中提取。尽管间充质干细胞MSC具有多种来源,且在组织修复、抗炎和抗氧化方面具有显著作用,但其分离培养过程耗时长、细胞离体后在体外增殖缓慢、不同来源细胞随传代进行,其细胞活性及分化潜能明显下降。如何加速间充质干细胞MSC在体外培养过程中的增殖效率,使其能较早达到临床应用所需的细胞密度和数量成为当下丞待解决的问题。
发明内容
本发明提供一种经神经生长因子及多巴胺改良的PEG-PLGA微球,以解决间充质干细胞MSC在体外培养过程中的增殖效率低的问题。
本发明采取的技术方案是,包括下列步骤:
(1)称取一定量聚乙烯醇PVA 124,加入到去离子水中,制成浓度为5mg/mL的溶液,放入80℃的水浴锅中,搅拌至PVA全部溶解,得到均一的PVA溶液,将所得PVA溶液与浓度为20μg/ml的神经生长因子NGF溶液按50:1混合均匀;
(2)称取聚乳酸-羟基乙酸共聚物PLGA12k溶解于二氯甲烷制得A溶液;称取聚乙二醇-聚乳酸-羟基乙酸共聚物PEG5k-PLGA45k溶于二氯甲烷制得B溶液;A、B两溶液浓度均为0.5g/mL,将A、B溶液按2:1混合,于800rpm的磁力搅拌条件下逐滴滴加至第一步得到的溶液中,AB混合溶液与步骤(1)溶液比例为1:2,至二氯甲烷全部挥发,所得分散液经冻干处理得到白色微球;
(3)将多巴胺DA加入浓度为0.25mmol/L的三羟甲基氨基甲烷Tris溶液溶解,制得0.5mg/mL溶液,称取步骤(2)得到的白色微球,以1g/100mL比例加入到上述DA溶液中,以800rpm速度在磁力搅拌器上搅拌12h,随后将溶液进行冻干处理,得到聚多巴胺PDA包覆的经神经生长因子NGF改性的微球。
本发明的积极效果是,经实验验证,本发明很好地解决了现存干细胞移植治疗中细胞体外扩增效率低、耗时长的问题,在发明材料的干预下,将二维细胞培养转化为三维立体培养,并且通过对微球进一步改性,使其表面凹凸不平,增加间充质干细胞MSC可贴附表面积,从而提高其增殖效率,对骨髓间充质干细胞BM-MSC的增殖起到显著促进作用。同时,增殖效率的提升减少了体外扩增至特定数量级所需传代的代数,降低了干细胞癌变的可能,提高了干细胞移植治疗的安全性。除此之外,还对发明材料干预下骨髓间充质干细胞BM-MSC对生长因子bFGF(碱性成纤维生长因子)的旁分泌水平进行测定,结果表明材料在促进骨髓间充质干细胞BM-MSC增殖的同时,对其旁分泌功能也有显著提升,bFGF能够参与血管生成、损伤修复,并且能促进神经组织的生长发育,骨髓间充质干细胞BM-MSC旁分泌bFGF增多无疑将提高干细胞移植治疗的效率。
附图说明
图1是材料表征测定中a,b,c三种材料ATR-FTIR谱图;
图2是材料表征测定中a,b,c三种材料XPS谱图;
图3是材料表征测定中a材料SEM图;
图4是材料表征测定中b材料SEM图,为10um比例尺;
图5是材料表征测定中b材料SEM图,为2um比例尺;
图6是材料表征测定中c材料SEM图;
图7是材料表征测定中a材料DLS测定图;
图8是材料表征测定中b材料DLS测定图;
图9是材料表征测定中c材料DLS测定图;
图10是不同材料处理后细胞增殖比较图;
图11是不同材料处理后p3代BM-MSC旁分泌bFGF数量对比图。
具体实施方式
实验仪器与材料
Figure BDA0003637368160000021
Figure BDA0003637368160000031
Figure BDA0003637368160000032
Figure BDA0003637368160000033
包括下列步骤:
(1)称取一定量聚乙烯醇PVA 124,加入到去离子水中,制成浓度为5mg/mL的溶液,放入80℃的水浴锅中,搅拌至PVA全部溶解,得到均一的PVA溶液,将所得PVA溶液与浓度为20μg/ml的神经生长因子NGF(Nerve Growth Factor)溶液按50:1混合均匀;
(2)称取聚乳酸-羟基乙酸共聚物PLGA12k溶解于二氯甲烷制得A溶液;称取聚乙二醇-聚乳酸-羟基乙酸共聚物PEG5k-PLGA45k溶于二氯甲烷制得B溶液;A、B两溶液浓度均为0.5g/mL,将A、B溶液按2:1混合,于800rpm的磁力搅拌条件下逐滴滴加至第一步得到的溶液中,AB混合溶液与步骤(1)溶液比例为1:2,至二氯甲烷全部挥发,所得分散液经冻干处理得到白色微球;
(3)将多巴胺DA加入浓度为0.25mmol/L的三羟甲基氨基甲烷Tris溶液溶解,制得0.5mg/mL溶液,称取步骤(2)得到的白色微球,以1g/100mL比例加入到上述DA溶液中,以800rpm速度在磁力搅拌器上搅拌12h,随后将溶液进行冻干处理,得到聚多巴胺PDA包覆的经神经生长因子NGF改性的微球。
下边通过实验来进一步说明本发明。
实验例1、材料表征测定
将得到的PDA包覆经神经生长因子NGF改性的微球记为c,同时以不加神经生长因子NGF和多巴胺DA的微球产物记为a,不加NGF只加DA的产物记为b作为对照。分别进行红外(ATR-FTIR)表征,x射线光电子能谱(XPS)表征,扫描电镜(SEM)表征以及纳米粒度电位仪(DLS)表征。
1、ATR-FTIR谱图见图1,结果说明:
a样品在3290cm-1,2933cm-1,1749cm-1以及1084cm-1处均有吸收峰出现,分别对应-OH,C-H,C=O以及C-O的吸收峰;
b样品与a样品相比,因为表面包覆了一层PDA,所以3290cm-1处-OH的吸收峰强度有所增强,并且1749cm-1处对应的C=O的吸收峰减弱并右移至1700cm-1处,可能是C=O在碱性条件下水解生成羧基导致;
c样品与b样品相比,原位于1749cm-1处对应于C=O的吸收峰又重新出现,对应于生长因子中的C=O,说明生长因子成功复合上去。
2、XPS谱图见图2,结果说明:
a样品仅有C,O两种元素,分别出现在285eV与532eV处,b样品因有PDA的包覆,因此在400eV左右出现了N元素的吸收峰。
3、a材料SEM图见图3(2um比例尺),结果说明:
a样品大致呈球形,表面较为光滑,仅有一些因干燥产生的裂纹存在,粒径约在16μm左右。
4、b材料SEM图见图4、图5,结果说明:
b样品大致也呈现为球形,但表面并不光滑,存在很多纳米级的小凸起,为DA聚合生成的PDA颗粒;另外,b样品的粒径约为23μm左右,比a样品的粒径大,说明PDA成功包覆在a样品表面;
5、c材料SEM图(10um比例尺)见图6,结果说明:
c样品同样呈现为球形,表面也有很多纳米级的小凸起且粒径更大,约33μm左右,其凹凸不平的沟槽可能是由于干燥过程导致。
6、a材料DLS测定图见图7,b材料DLS测定图见图8,c材料DLS测定图见图9,结果说明:
a样品平均粒径为17.3μm,b样品平均粒径为26.87μm,c样品平均粒径为36.07μm。DLS结果与SEM结果基本吻合。由于DLS测试得到的是水合直径,所以结果与SEM测出来的结果相比会偏大。
实验例2对骨髓间充质干细胞增值促进效果验证
1、材料与设备
Figure BDA0003637368160000051
Figure BDA0003637368160000052
2、实验流程
向DMEM低糖培养基中加入10%FBS,1%青/链霉素,用以进行BM-MSC培养。本实验所用小鼠骨髓来源MSC(BM-MSC)购自上海中乔新舟生物科技有限公司,按生产商说明进行细胞复苏及传代。
将前述所得a、b、c三种微球于液相转移至方形容器内,置于通风橱中使其溶剂挥发制成薄膜,按24孔板孔径大小裁剪后平铺于孔板底部,并进行灭菌处理。
BM-MSC达到80%饱和时,用移液枪将上清培养基移除,加入1ml胰酶消化1min,待贴壁细胞全部悬浮,加入培养基终止消化过程,1500r,离心5min,弃上清,将细胞沉淀用培养基重悬,并计数。每个24孔板的孔中加入1ml含2.5*104BM-MSC的培养基,于37℃,5%CO2培养箱内培养。用CCK8试剂盒于第1,4,7天进行细胞增殖测定。使用GraphPadPrism5制图。
3、实验结果
见图10,结果说明:所制得a、b、c三种微球对于BM-MSC无毒性,a组无添加微球材料细胞生长情况与无材料对照组无明显差异,b、c两组对BM-MSC增殖有明显促进作用,且c组效果更好。
实验例3对骨髓间充质干细胞bFGF(碱性成纤维生长因子,basicfibroblastgrowth factor)分泌情况影响
1、材料与设备
Figure BDA0003637368160000061
2、实验流程
将p3代BM-MSC计数,按1*105/孔接种至分别含有a、b、c三种微球的96孔板(微球薄膜制备同5.1.2)中,向对照组(不含任何材料)及a、b、c各组分别加入培养基,培养48h后取细胞上清进行上清液中bFGF含量测定,测定方法严格按照试剂盒所提供说明书进行。
3、实验结果
见图11,结果说明:以对照组bFGF表达量为参照,将对照组平均bFGF表达量设定为1,与对照组及a组相比,b组和c组BM-MSC分泌出更多的bFGF,结果有统计学意义,且c组较b组的促进作用更加明显。

Claims (1)

1.一种经神经生长因子及多巴胺改良的PEG-PLGA微球,其特征在于,包括下列步骤:
(1)称取一定量聚乙烯醇PVA 124,加入到去离子水中,制成浓度为5mg/mL的溶液,放入80℃的水浴锅中,搅拌至PVA全部溶解,得到均一的PVA溶液,将所得PVA溶液与浓度为20μg/ml的神经生长因子NGF溶液按50:1混合均匀;
(2)称取聚乳酸-羟基乙酸共聚物PLGA12k溶解于二氯甲烷制得A溶液;称取聚乙二醇-聚乳酸-羟基乙酸共聚物PEG5k-PLGA45k溶于二氯甲烷制得B溶液;A、B两溶液浓度均为0.5g/mL,将A、B溶液按2:1混合,于800rpm的磁力搅拌条件下逐滴滴加至第一步得到的溶液中,AB混合溶液与步骤(1)溶液比例为1:2,至二氯甲烷全部挥发,所得分散液经冻干处理得到白色微球;
(3)将多巴胺DA加入浓度为0.25mmol/L的三羟甲基氨基甲烷Tris溶液溶解,制得0.5mg/mL溶液,称取步骤(2)得到的白色微球,以1g/100mL比例加入到上述DA溶液中,以800rpm速度在磁力搅拌器上搅拌12h,随后将溶液进行冻干处理,得到聚多巴胺PDA包覆的经神经生长因子NGF改性的微球。
CN202210506336.XA 2022-05-10 2022-05-10 经神经生长因子及多巴胺改良的peg-plga微球 Pending CN115025723A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210506336.XA CN115025723A (zh) 2022-05-10 2022-05-10 经神经生长因子及多巴胺改良的peg-plga微球

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210506336.XA CN115025723A (zh) 2022-05-10 2022-05-10 经神经生长因子及多巴胺改良的peg-plga微球

Publications (1)

Publication Number Publication Date
CN115025723A true CN115025723A (zh) 2022-09-09

Family

ID=83120831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210506336.XA Pending CN115025723A (zh) 2022-05-10 2022-05-10 经神经生长因子及多巴胺改良的peg-plga微球

Country Status (1)

Country Link
CN (1) CN115025723A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116983269A (zh) * 2023-07-26 2023-11-03 上海交通大学医学院附属第九人民医院 一种载细胞多孔微球及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770577A (en) * 1994-11-14 1998-06-23 Amgen Inc. BDNF and NT-3 polypeptides selectively linked to polyethylene glycol
CN102389585A (zh) * 2011-07-07 2012-03-28 中山大学 一种在生物医用材料表面负载活性分子的方法
CN104470505A (zh) * 2012-03-30 2015-03-25 国家医疗保健研究所 微球组合物及其制备方法和应用
WO2018131890A1 (ko) * 2017-01-11 2018-07-19 영남대학교 산학협력단 폴리도파민으로 코팅된 폴리(락틱-코-글리콜산) 마이크로스피어 및 이를 이용한 세포 표면 개질 방법
CN109157530A (zh) * 2018-08-21 2019-01-08 东南大学 一种包载bdnf基因质粒的peg-plga纳米微球及其制备方法和应用
CN113209383A (zh) * 2021-05-17 2021-08-06 吉林大学 一种负载bmp-2基因缓释涂层的peek复合生物植入材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770577A (en) * 1994-11-14 1998-06-23 Amgen Inc. BDNF and NT-3 polypeptides selectively linked to polyethylene glycol
CN102389585A (zh) * 2011-07-07 2012-03-28 中山大学 一种在生物医用材料表面负载活性分子的方法
CN104470505A (zh) * 2012-03-30 2015-03-25 国家医疗保健研究所 微球组合物及其制备方法和应用
WO2018131890A1 (ko) * 2017-01-11 2018-07-19 영남대학교 산학협력단 폴리도파민으로 코팅된 폴리(락틱-코-글리콜산) 마이크로스피어 및 이를 이용한 세포 표면 개질 방법
CN109157530A (zh) * 2018-08-21 2019-01-08 东南大学 一种包载bdnf基因质粒的peg-plga纳米微球及其制备方法和应用
CN113209383A (zh) * 2021-05-17 2021-08-06 吉林大学 一种负载bmp-2基因缓释涂层的peek复合生物植入材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116983269A (zh) * 2023-07-26 2023-11-03 上海交通大学医学院附属第九人民医院 一种载细胞多孔微球及其制备方法和应用

Similar Documents

Publication Publication Date Title
Goh et al. Microcarrier culture for efficient expansion and osteogenic differentiation of human fetal mesenchymal stem cells
Yang et al. Biomass microcapsules with stem cell encapsulation for bone repair
Ding et al. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review
Wang et al. 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells
Yan et al. Dispersible and dissolvable porous microcarrier tablets enable efficient large-scale human mesenchymal stem cell expansion
Kang et al. Porous poly (lactic-co-glycolic acid) microsphere as cell culture substrate and cell transplantation vehicle for adipose tissue engineering
Boo et al. Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture
CN115025723A (zh) 经神经生长因子及多巴胺改良的peg-plga微球
Nguyen et al. Tissue regeneration of human mesenchymal stem cells on porous gelatin micro-carriers by long-term dynamic in vitro culture
TW202024320A (zh) 附著性細胞之浮游培養用培養基組合物
CN111334469A (zh) Pbmc体外3d甲基纤维素琼脂糖水凝胶培养基及其制备方法
Rogers et al. A scalable system for generation of mesenchymal stem cells derived from induced pluripotent cells employing bioreactors and degradable microcarriers
Tang et al. Deconstructing, replicating, and engineering tissue microenvironment for stem cell differentiation
CN1778905A (zh) 一种脂肪间充质干细胞的分离培养方法及其应用
Li et al. Umbilical cord derived mesenchymal stem cell-GelMA microspheres for accelerated wound healing
Mahmood et al. In vitro differentiation and maturation of human embryonic stem cell into multipotent cells
Li et al. Synthesis of photo-reactive poly (vinyl alcohol) and construction of scaffold-free cartilage like pellets in vitro
CN112852709A (zh) 小鼠肺类器官培养方法
CN115537387B (zh) 一种无支架3d微组织及其构建方法
TW202117003A (zh) 用以懸浮培養接著性細胞的培養基組成物之製造方法
CN115350322B (zh) 一种神经酸钙纳米颗粒的制备方法及其在制备骨缺损修复材料中的应用
Xia et al. Microcarriers containing “Hypoxia-engine” for simultaneous enhanced osteogenesis and angiogenesis
CN100395330C (zh) 胚胎干细胞源性肝卵圆细胞的体外诱导和分离提纯培养方法
CN114686421A (zh) 一种肺组织脱细胞外基质微载体的制备方法及其应用
CN116121174A (zh) 一种鸡胚胎成纤维细胞体外三维培养和分离的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220909