CN115018078A - 量子电路操作方法及装置、电子设备和介质 - Google Patents

量子电路操作方法及装置、电子设备和介质 Download PDF

Info

Publication number
CN115018078A
CN115018078A CN202210522467.7A CN202210522467A CN115018078A CN 115018078 A CN115018078 A CN 115018078A CN 202210522467 A CN202210522467 A CN 202210522467A CN 115018078 A CN115018078 A CN 115018078A
Authority
CN
China
Prior art keywords
quantum
gates
value
quantum circuit
parameterized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210522467.7A
Other languages
English (en)
Inventor
王鑫
幺宏顺
李沐瑾
余展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Baidu Netcom Science and Technology Co Ltd
Original Assignee
Beijing Baidu Netcom Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baidu Netcom Science and Technology Co Ltd filed Critical Beijing Baidu Netcom Science and Technology Co Ltd
Priority to CN202210522467.7A priority Critical patent/CN115018078A/zh
Publication of CN115018078A publication Critical patent/CN115018078A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本公开提供了一种量子电路操作方法、装置、电子设备、计算机可读存储介质和计算机程序产品,涉及计算机领域,尤其涉及量子电路、量子计算技术领域。实现方案为:获取多个训练数据对,每个训练数据对包括的输入数据值和标签值,输入数据值和标签值之间的关系对应于周期性偶函数;对于每一个训练数据对:将量子电路从初始量子态开始运行,并对所获得的量子态进行测量以获得测量结果,量子电路包括交替串联的L个数据编码门以及L+1个参数化量子门,参数化量子门均包括相应的待训练参数;根据训练数据对所对应的测量结果以及相对应的标签值确定损失函数的函数值;调节量子电路中的参数化量子门的待训练参数以最小化损失函数。

Description

量子电路操作方法及装置、电子设备和介质
技术领域
本公开涉及计算机领域,尤其涉及量子电路、量子计算技术领域,具体涉及一种量子电路操作方法、装置、电子设备、计算机可读存储介质和计算机程序产品。
背景技术
日常生产生活中很多问题都属于函数模拟的问题,比如股票走势预测、天气预报等。随着人工智能技术的发展,深度神经网络(Deep Neural Network,DNN)被广泛地应用于解决上述问题。然而DNN模型需要的参数很多,对于大型的DNN参数量常常数以亿计,另外模型的超参数也很难调节,训练时很容易过拟合。
随着量子计算领域的飞速的发展,近期的量子计算设备已经可以支持一些浅层量子电路的实验。因此,如何利用量子计算设备解决上述问题成为关键。
发明内容
本公开提供了一种量子电路操作方法、装置、电子设备、计算机可读存储介质和计算机程序产品。
根据本公开的一方面,提供了一种量子电路操作方法,包括:获取多个训练数据对,所述训练数据对包括所述量子电路的输入数据值以及与所述输入数据值相关的标签值,所述输入数据值和所述标签值之间的关系对应于周期性偶函数;将所述量子电路从初始量子态开始运行,并对所获得的量子态进行测量以获得测量结果,其中,所述量子电路包括交替串联的L个数据编码门以及L+1个参数化量子门,所述L个数据编码门用于对所述训练数据对中的输入数据值进行编码,所述L+1个参数化量子门均包括相应的待训练参数,其中L为正整数;根据所述测量结果和所述标签值,确定损失函数的函数值;以及调节所述量子电路中的所述L+1个参数化量子门的待训练参数以最小化所述损失函数。
根据本公开的另一方面,提供了一种量子电路操作装置,包括:获取单元,配置为获取多个训练数据对,所述训练数据对包括所述量子电路的输入数据值以及与所述输入数据值相关的标签值,所述输入数据值和所述标签值之间的关系对应于周期性偶函数;测量单元,配置为将所述量子电路从初始量子态开始运行,并对所获得的量子态进行测量以获得测量结果,其中,所述量子电路包括交替串联的L个数据编码门以及L+1个参数化量子门,所述L个数据编码门用于对所述训练数据对中的输入数据值进行编码,所述L+1个参数化量子门均包括相应的待训练参数,其中L为正整数;确定单元,配置为根据所述测量结果以及所述标签值,确定损失函数的函数值;以及调节单元,配置为调节所述量子电路中的所述L+1个参数化量子门的待训练参数以最小化所述损失函数。
根据本公开的另一方面,提供了一种电子设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;存储器存储有可被至少一个处理器执行的指令,该指令被至少一个处理器执行,以使至少一个处理器能够执行本公开所述的方法。
根据本公开的另一方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,该计算机指令用于使计算机执行本公开所述的方法。
根据本公开的另一方面,提供了一种计算机程序产品,包括计算机程序,该计算机程序在被处理器执行时实现本公开所述的方法。
根据本公开的一个或多个实施例,通过对具有预设结构的量子电路进行操作,可以模拟任意的周期性偶函数,并且该量子电路结构包括较少的参数量和量子比特数,在利用量子设备进行函数模拟时更具有实用性和有效性,节省了量子计算资源。
应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
附图示例性地示出了实施例并且构成说明书的一部分,与说明书的文字描述一起用于讲解实施例的示例性实施方式。所示出的实施例仅出于例示的目的,并不限制权利要求的范围。在所有附图中,相同的附图标记指代类似但不一定相同的要素。
图1示出了根据本公开的实施例的量子电路操作方法的流程图;
图2示出了根据本公开的一个实施例的量子电路示意图;
图3示出了基于图2所示量子电路以及深度神经网络进行函数模拟的结果示意图;
图4示出了根据本公开的另一个实施例的量子电路示意图;
图5示出了基于图3所示量子电路以及深度神经网络进行函数模拟的结果示意图;
图6示出了根据本公开的实施例的量子电路操作装置的结构框图;以及
图7示出了能够用于实现本公开的实施例的示例性电子设备的结构框图。
具体实施方式
以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
在本公开中,除非另有说明,否则使用术语“第一”、“第二”等来描述各种要素不意图限定这些要素的位置关系、时序关系或重要性关系,这种术语只是用于将一个元件与另一元件区分开。在一些示例中,第一要素和第二要素可以指向该要素的同一实例,而在某些情况下,基于上下文的描述,它们也可以指代不同实例。
在本公开中对各种所述示例的描述中所使用的术语只是为了描述特定示例的目的,而并非旨在进行限制。除非上下文另外明确地表明,如果不特意限定要素的数量,则该要素可以是一个也可以是多个。此外,本公开中所使用的术语“和/或”涵盖所列出的项目中的任何一个以及全部可能的组合方式。
下面将结合附图详细描述本公开的实施例。
迄今为止,正在应用中的各种不同类型的计算机都是以经典物理学为信息处理的理论基础,称为传统计算机或经典计算机。经典信息系统采用物理上最容易实现的二进制数据位存储数据或程序,每一个二进制数据位由0或1表示,称为一个位或比特,作为最小的信息单元。经典计算机本身存在着不可避免的弱点:一是计算过程能耗的最基本限制。逻辑元件或存储单元所需的最低能量应在kT的几倍以上,以避免在热胀落下的误动作;二是信息熵与发热能耗;三是计算机芯片的布线密度很大时,根据海森堡不确定性关系,电子位置的不确定量很小时,动量的不确定量就会很大。电子不再被束缚,会有量子干涉效应,这种效应甚至会破坏芯片的性能。
量子计算机(quantum computer)是一类遵循量子力学性质、规律进行高速数学和逻辑运算、存储及处理量子信息的物理设备。当某个设备处理和计算的是量子信息,运行的是量子算法时,他就是量子计算机。量子计算机遵循着独一无二的量子动力学规律(特别是量子干涉)来实现一种信息处理的新模式。对计算问题并行处理,量子计算机比起经典计算机有着速度上的绝对优势。量子计算机对每一个叠加分量实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算机的输出结果,这种计算称为量子并行计算。量子并行处理大大提高了量子计算机的效率,使得其可以完成经典计算机无法完成的工作,例如一个很大的自然数的因子分解。量子相干性在所有的量子超快速算法中得到了本质性的利用。因此,用量子态代替经典态的量子并行计算,可以达到经典计算机不可比拟的运算速度和信息处理功能,同时节省了大量的运算资源。
在实际问题中,通常只知道自变量x∈Rd和因变量y∈R的具体数值,而不知道产生这一变化的多元函数f:Rd→R的具体形式。函数模拟问题就是已知数据x∈Rd和y∈R,找到一个可能实现这种变化的参数化模型fθ(例如DNN模型)使其对于任意精度ε>0满足|f(x)-fθ(x)|<ε。
函数模拟是人工智能领域重要的问题,在实际生活中有着广泛的应用。随着人工智能技术的发展,深度神经网络(DNN)被广泛地应用于解决日常生产生活中的函数模拟的问题,比如股票走势预测、天气预报等。然而DNN模型需要的参数很多,对于大型的DNN参数量常常数以亿计,会消耗巨大的计算资源。另外,由于损失函数空间随着参数变多会变得更复杂,即很难进行优化,同时会带来过拟合的风险。而量子计算近几年得到了飞速的发展,近期的量子计算设备已经可以支持一些浅层量子电路的实验。因此,如何利用量子计算机对于经典计算机在机器学习任务上的性能优势来解决实际生活中抽象出来的函数模拟的问题,具有重要意义。
通常,可以将过数据编码电路{S(ωj,x)}以及参数化量子电路{W(j)j)}串联构成量子神经网络(Quantum Neural Network,QNN),从而通过该量子神经网络来模拟相应的函数,其中ωj和θj均为可训练的参数。但是在通过数据编码电路{S(ωj,x)}对输入数据进行编码时,额外引入了可训练参数,使得参数量变多,可能导致难以进行参数的更新优化,训练成本较高。
因此,根据本公开的实施例提供了一种量子电路的操作方法,通过该量子电路可以用于对周期性偶函数进行模拟,该方法包括:获取多个训练数据对,训练数据对包括量子电路的输入数据值以及与输入数据值相关的标签值,输入数据值和标签值之间的关系对应于周期性偶函数;将量子电路从初始量子态开始运行,并对所获得的量子态进行测量以获得测量结果,量子电路包括交替串联的L个数据编码门以及L+1个参数化量子门,L个数据编码门用于对训练数据对中的输入数据值进行编码,L+1个参数化量子门均包括相应的待训练参数,其中L为正整数;根据测量结果和标签值,确定损失函数的函数值;以及调节量子电路中的L+1个参数化量子门的待训练参数以最小化损失函数。
根据本公开的实施例,通过对具有预设结构的量子电路进行操作,可以模拟任意的周期性偶函数,并且该量子电路结构包括较少的参数量和量子比特数,在利用量子设备进行函数模拟时更具有实用性和有效性,节省了量子计算资源。
图1示出了根据本公开的实施例的量子电路操作方法的流程图,如图1所示,方法100包括:在步骤110中,获取多个训练数据对,多个训练数据对中的每个训练数据对包括量子电路的输入数据值以及与输入数据值相关的标签值,其中每个训练数据中的输入数据值和标签值之间的关系对应于周期性偶函数;在步骤120中,对于多个训练数据对中的每一个:将量子电路从初始量子态开始运行,并对所获得的量子态进行测量以获得测量结果,其中量子电路包括交替串联的L个数据编码门以及L+1个参数化量子门,L个数据编码门用于对该训练数据对中的输入数据值进行编码,所述L+1个参数化量子门均包括相应的待训练参数,其中L为正整数;在步骤130中,根据所述多个训练数据对中的至少一个训练数据对所对应的测量结果以及相对应的标签值确定损失函数的函数值;以及在步骤140中,调节所述量子电路中的所述L+1个参数化量子门的待训练参数以最小化所述损失函数。
量子神经网络(QNN)又称为参数化量子电路(Parameterized Quantum Circuits,PQC),而量子电路是量子计算领域最常用的描述工具。量子电路由量子门组成,每个量子门操作在数学上可用酉矩阵表示。在本公开中,量子电路包括可训练的参数化量子门以及数据编码门,其中参数化量子门包括可训练参数,数据编码门不包括可训练参数,用于对输入所述量子电路的数据进行编码。
在步骤120中,对于多个训练数据对中的每一个:将所述量子电路从初始量子态开始运行,并对所获得的量子态进行测量以获得测量结果。
在本公开中,将待训练的L+1个参数化量子门以及L个数据编码门交替串联以构成所述量子电路。也即,以参数化量子门开始,依次串接编码门和参数化量子门(以参数化量子门结尾),整体构成量子电路。示例地,对于构造的L+1个参数化量子门{W(0)0),W(1)1),…,W(L)L)}和L个数据编码门{S(1)(x),S(2)(x),…,S(L)(x)},其所构成的量子电路对应的数学形式如下所示:
U(θ,x)=W(0)0)S(1)(x)W(1)1)S(2)(x)…S(L)(x)W(L)L)
其中,x为输入数据,在函数模拟的问题中为需要模拟的函数的自变量;θ=(θ0,…,θL)。这里,θ为量子电路中可训练的参数向量,即参数化量子电路的可训练参数。这里,L个数据编码门不包括待训练参数。
示例地,在对天气进行预测和分析领域中,输入数据可以为温度和/或湿度等数据,与输入数据相关的预测数据(即对应于标签数据)可以为雨/晴等。
需要注意的是,L的具体数值可以根据需要灵活设置,在此不作限制。在本公开中,初始量子态可以为任何合适的量子态,例如|0>态、|1>态等,在此不作限制。
根据一些实施例,在所述量子电路中,所述L个数据编码门均为泡利Z旋转门,所述L+1个参数化量子门路均为泡利X旋转门或泡利Y旋转门。
示例地,所对应的量子电路的数学形式可以表示为公式(1)所示:
Figure BDA0003642249430000071
其中,L为电路深度,x为输入数据,在函数模拟的问题中为需要模拟的函数的自变量;θ=(θ0,…,θL)。这里,θ为量子电路中可训练的参数向量,Ryj)和Rz(x)为泡利旋转门,其具体形式可以如公式(2)和(3)所示:
Figure BDA0003642249430000072
Figure BDA0003642249430000073
可以理解的是,在上述示例中虽然基于泡利Y旋转门和泡利Z旋转门RyRzRy的形式构建量子电路,但是也可以根据具体情况考虑基于泡利X旋转门和泡利Z旋转门RxRzRx的形式构建量子电路,以进行函数模拟。
根据一些实施例,通过预设测量方法对所获得的量子态进行测量,该预设测量方法包括但不限于:泡利X测量、泡利Y测量和泡利Z测量。
根据一些实施例,基于梯度下降法调节所述L+1个参数化量子电路的待训练参数。
根据一些实施例,可以基于待模拟周期函数的最高频率确定量子电路的电路深度L。
在根据本公开的一个示例性实施例中,假设待模拟的函数f(x)如公式(4)所示:
Figure BDA0003642249430000074
在该实施例中,可以基于函数f(x)训练数据集为
Figure BDA0003642249430000075
xi为函数自变量,即量子电路的输入数据值;yi为函数值,即标签值;(xi,yi)为一个训练数据对,M为训练数据集中的训练数据对个数。设置量子电路的电路深度L,也即数据编码门的个数,参数化量子门比数据编码门多一个。基于上述数据执行以下步骤:
在步骤1,准备L+1个参数化量子门{Ry0),…,RyL)}和L个数据编码门{RZ(xi)},其中θ={θ0,…,θL}T是电路中可训练的参数,xi输入的第一参数数据。
在步骤2,对于训练数据集中的每对数据(xi,yi),重复以下步骤3-5。
在步骤3,将初始量子态设为|0>态(可以用向量[1,0]T表示)。对于所有的j=1,…,L,依次交替执行数据编码门RZ(xi)和参数化量子门Ryj),最后执行参数化量子门Ry0)。所有量子门整体记为量子电路U(θ,x)。
在步骤4,U(θ,x)运行完成后,对所获得的量子态进行测量以得到期望值
Figure BDA0003642249430000086
作为预测的函数输出值。其中,
Figure BDA0003642249430000087
表示U的共轭转置,Z为泡利Z矩阵。
在步骤5,计算预测值<Z>i与真实值yi间的平方误差:li(θ)=|<Z>i-yi|2
在步骤6,对于训练数据集中的至少一个数据对(例如所有数据对)(xi,yi),计算均方误差:
Figure BDA0003642249430000081
并将其作为损失函数。
在步骤7,通过梯度下降法或者其他最优化方法调节量子电路中的参数θ,重复步骤2-7直到损失函数l不再下降或者达到设定的迭代次数,此时得到参数化量子门的参数记为θ*
Figure BDA0003642249430000082
作为输出,并将其代入量子电路中的参数化量子门
Figure BDA0003642249430000083
中。基于该量子电路,通过测量其期望值即可模拟函数f(x)。
可以理解的是,虽然在上述实施例中基于可观测量Z获得期望值,但是也可以根据具体使用的硬件设备和应用场景选择其它适合的可观测量,例如可观测量X或可观测量Y,其中,
Figure BDA0003642249430000084
Figure BDA0003642249430000085
为泡利矩阵,i为虚数单位。
可以理解的是,在上述实施例中仅示例性地采用均方误差等确定损失函数,但是其他合适的损失函数的形式也是可能的,在此不作限制。
在根据本公开的一个示例性应用中,基于本公开实施例的方法来模拟公式(5)所示的函数:
Figure BDA0003642249430000091
其中所构建的量子电路可以如图2所示,即Ry0)、Ry1)和Ry2)为参数化量子门,{θ0、θ1、θ2}为可训练参数,Rz(x)为数据编码门,其中L=2。
将根据本公开实施例的方法与根据经典的深度神经网络方法进行对比,其结果可以如图3所示。在图3中,训练数据集中xi的取值范围为[-π,π];“training point”为训练数据集的数据点;“object function”即为函数f(x);“DNN fitting size=1-3-3-1 withsnake”为一种深度神经网络(DNN)模型,需要使用15=1*3+3*3+3*1个训练参数以及特殊的激活函数x+sin2(x);“QNN fitting L=2 with Ry”为图2中所示量子电路的模拟结果,其包括3个参数。
根据图3可以看出,相比于经典的深度神经网络方法,根据本公开实施例的方法可以更好地模拟目标函数,同时不会出现过拟合。
在根据本公开的另一个示例性应用中,基于本公开实施例的方法来模拟公式(6)所示的函数:
Figure BDA0003642249430000092
本案例中使用的QNN的量子电路图可以如图4所示,即Ry0)、Ry1)、Ry2)、Ry3)、Ry4)和Ry5)为参数化量子门,{θ0、θ1、θ2、θ3、θ4、θ5}为可训练参数,Rz(x)为数据编码门,其中L=5。
将根据本公开实施例的方法与根据经典的深度神经网络方法进行对比,其结果可以如图5所示。在图5中,训练数据集中xi的取值范围为[-π,π];“training point”为训练数据集的数据点;“object function”即为函数f(x);“DNN fitting size=1-12-9-1 withsnake”为一种深度神经网络(DNN)模型,需要使用129=1*12+12*9+9*1个训练参数以及特殊的激活函数x+sin2(x);“QNN fitting L=5 with Ry”为图4中所示量子电路的模拟结果,其包括6个参数。
根据图5可以看出,对于更复杂的函数,根据本公开实施例的方法也能完美的模拟,而经典的深度神经网络方法只能在训练区间上模拟。
在本公开实施例的方法中,其电路深度可以基于函数项数确定,例如公式(5)所示的函数的最高频率项为cos(2x),则可以设置电路深度L=2,公式(6)所示的函数的最高频率项为cos(5x),则可以设置电路深度L=5。因此,可以准确的利用量子计算机资源。
根据图3和图5的对比结果可以看出,根据本公开实施例的方法相比于经典的深度神经网络方法在训练参数量上具有明显优势。并且,根据图3可以看出,经典的深度神经网络方法出现了过拟合现象,即过多的关注样本点,而忽略了数据本身的模式(矩阵框位置),而根据本公开实施例的方法,在确定电路深度后所模拟函数的频率即可确定,因此不会出现过拟合现象。根据本公开实施例的方法不仅在训练集[-π,π]区间内完美地拟合函数,而且在区间之外也可以完成模拟,而经典的深度神经网络方法在[-π,π]区间之外完全不能拟合,说明根据本公开实施例的方法学习到了函数的本质特征。
根据本公开的实施例,如图6所示,还提供了一种量子电路操作装置600,包括:获取单元610,配置为获取多个训练数据对,所述训练数据对包括所述量子电路的输入数据值以及与所述输入数据值相关的标签值,所述输入数据值和所述标签值之间的关系对应于周期性偶函数;测量单元620,配置为将所述量子电路从初始量子态开始运行,并对所获得的量子态进行测量以获得测量结果,其中,所述量子电路包括交替串联的L个数据编码门以及L+1个参数化量子门,所述L个数据编码门用于对所述训练数据对中的输入数据值进行编码,所述L+1个参数化量子门均包括相应的待训练参数,其中L为正整数;确定单元630,配置为根据所述测量结果以及所述标签值,确定损失函数的函数值;以及调节单元640,配置为调节所述量子电路中的所述L+1个参数化量子门的待训练参数以最小化所述损失函数。
这里,量子电路操作装置600的上述各单元610~640的操作分别与前面描述的步骤110~140的操作类似,在此不再赘述。
根据本公开的实施例,还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。
参考图7,现将描述可以作为本公开的服务器或客户端的电子设备700的结构框图,其是可以应用于本公开的各方面的硬件设备的示例。电子设备旨在表示各种形式的数字电子的计算机设备,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
如图7所示,电子设备700包括计算单元701,其可以根据存储在只读存储器(ROM)702中的计算机程序或者从存储单元708加载到随机访问存储器(RAM)703中的计算机程序,来执行各种适当的动作和处理。在RAM 703中,还可存储电子设备700操作所需的各种程序和数据。计算单元701、ROM 702以及RAM 703通过总线704彼此相连。输入/输出(I/O)接口705也连接至总线704。
电子设备700中的多个部件连接至I/O接口705,包括:输入单元706、输出单元707、存储单元708以及通信单元709。输入单元706可以是能向电子设备700输入信息的任何类型的设备,输入单元706可以接收输入的数字或字符信息,以及产生与电子设备的用户设置和/或功能控制有关的键信号输入,并且可以包括但不限于鼠标、键盘、触摸屏、轨迹板、轨迹球、操作杆、麦克风和/或遥控器。输出单元707可以是能呈现信息的任何类型的设备,并且可以包括但不限于显示器、扬声器、视频/音频输出终端、振动器和/或打印机。存储单元708可以包括但不限于磁盘、光盘。通信单元709允许电子设备700通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据,并且可以包括但不限于调制解调器、网卡、红外通信设备、无线通信收发机和/或芯片组,例如蓝牙TM设备、802.11设备、WiFi设备、WiMax设备、蜂窝通信设备和/或类似物。
计算单元701可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元701的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元701执行上文所描述的各个方法和处理,例如方法100。例如,在一些实施例中,方法100可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元708。在一些实施例中,计算机程序的部分或者全部可以经由ROM 702和/或通信单元709而被载入和/或安装到电子设备700上。当计算机程序加载到RAM 703并由计算单元701执行时,可以执行上文描述的方法100的一个或多个步骤。备选地,在其他实施例中,计算单元701可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行方法100。
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、复杂可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,也可以为分布式系统的服务器,或者是结合了区块链的服务器。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行、也可以顺序地或以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
虽然已经参照附图描述了本公开的实施例或示例,但应理解,上述的方法、系统和设备仅仅是示例性的实施例或示例,本发明的范围并不由这些实施例或示例限制,而是仅由授权后的权利要求书及其等同范围来限定。实施例或示例中的各种要素可以被省略或者可由其等同要素替代。此外,可以通过不同于本公开中描述的次序来执行各步骤。进一步地,可以以各种方式组合实施例或示例中的各种要素。重要的是随着技术的演进,在此描述的很多要素可以由本公开之后出现的等同要素进行替换。

Claims (13)

1.一种量子电路操作方法,包括:
获取多个训练数据对,所述训练数据对包括所述量子电路的输入数据值以及与所述输入数据值相关的标签值,所述输入数据值和所述标签值之间的关系对应于周期性偶函数;
将所述量子电路从初始量子态开始运行,并对所获得的量子态进行测量以获得测量结果,其中,所述量子电路包括交替串联的L个数据编码门以及L+1个参数化量子门,所述L个数据编码门用于对所述训练数据对中的输入数据值进行编码,所述L+1个参数化量子门均包括相应的待训练参数,其中L为正整数;
根据所述测量结果和所述标签值,确定损失函数的函数值;以及
调节所述量子电路中的所述L+1个参数化量子门的待训练参数以最小化所述损失函数。
2.如权利要求1所述的方法,其中,在所述量子电路中,所述L个数据编码门均为泡利Z旋转门,所述L+1个参数化量子门均为泡利X旋转门或泡利Y旋转门。
3.如权利要求1所述的方法,其中,通过预设测量方法对所获得的量子态进行测量,所述预设测量方法包括以下项中的至少一项:泡利X测量、泡利Y测量和泡利Z测量。
4.如权利要求1所述的方法,其中,基于梯度下降法调节所述L+1个参数化量子门的待训练参数。
5.如权利要求1所述的方法,其中,根据所述周期性偶函数的最高频率确定所述L。
6.一种量子电路操作装置,包括:
获取单元,配置为获取多个训练数据对,所述训练数据对包括所述量子电路的输入数据值以及与所述输入数据值相关的标签值,所述输入数据值和所述标签值之间的关系对应于周期性偶函数;
测量单元,配置为将所述量子电路从初始量子态开始运行,并对所获得的量子态进行测量以获得测量结果,其中,所述量子电路包括交替串联的L个数据编码门以及L+1个参数化量子门,所述L个数据编码门用于对所述训练数据对中的输入数据值进行编码,所述L+1个参数化量子门均包括相应的待训练参数,其中L为正整数;
确定单元,配置为根据所述测量结果以及所述标签值,确定损失函数的函数值;以及
调节单元,配置为调节所述量子电路中的所述L+1个参数化量子门的待训练参数以最小化所述损失函数。
7.如权利要求6所述的装置,其中,在所述量子电路中,所述L个数据编码门均为泡利Z旋转门,所述L+1个参数化量子门均为泡利X旋转门或泡利Y旋转门。
8.如权利要求6所述的装置,其中,通过预设测量方法对所获得的量子态进行测量,所述预设测量方法包括以下项中的至少一项:泡利X测量、泡利Y测量和泡利Z测量。
9.如权利要求6所述的装置,其中,基于梯度下降法调节所述L+1个参数化量子门的待训练参数。
10.如权利要求6所述的方法,其中,根据所述周期性偶函数的最高频率确定所述L。
11.一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-5中任一项所述的方法。
12.一种存储有计算机指令的非瞬时计算机可读存储介质,其中,所述计算机指令用于使所述计算机执行根据权利要求1-5中任一项所述的方法。
13.一种计算机程序产品,包括计算机程序,其中,所述计算机程序在被处理器执行时实现权利要求1-5中任一项所述的方法。
CN202210522467.7A 2022-05-13 2022-05-13 量子电路操作方法及装置、电子设备和介质 Pending CN115018078A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210522467.7A CN115018078A (zh) 2022-05-13 2022-05-13 量子电路操作方法及装置、电子设备和介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210522467.7A CN115018078A (zh) 2022-05-13 2022-05-13 量子电路操作方法及装置、电子设备和介质

Publications (1)

Publication Number Publication Date
CN115018078A true CN115018078A (zh) 2022-09-06

Family

ID=83068494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210522467.7A Pending CN115018078A (zh) 2022-05-13 2022-05-13 量子电路操作方法及装置、电子设备和介质

Country Status (1)

Country Link
CN (1) CN115018078A (zh)

Similar Documents

Publication Publication Date Title
CN114219076B (zh) 量子神经网络训练方法及装置、电子设备和介质
CN113496285A (zh) 基于量子电路的数据处理方法及装置、电子设备和介质
CN112561069A (zh) 模型处理方法、装置、设备、存储介质及产品
CN113011593B (zh) 消除量子测量噪声的方法及系统、电子设备和介质
CN114580647B (zh) 量子系统的模拟方法、计算设备、装置及存储介质
CN114021728B (zh) 量子数据测量方法及系统、电子设备和介质
CN113298262A (zh) 量子设备去噪方法和装置、电子设备、计算机可读介质
CN113807525A (zh) 量子电路操作方法及装置、电子设备和介质
CN113705793B (zh) 决策变量确定方法及装置、电子设备和介质
CN113379058B (zh) 量子模拟方法及装置、电子设备及存储介质
CN112529196B (zh) 量子纠缠探测方法、装置、电子设备及存储介质
CN112561068A (zh) 模拟方法、计算设备、经典设备、存储设备及产品
JP7334298B2 (ja) 量子測定機器の較正方法および装置、電子機器ならびに媒体
CN115345309A (zh) 系统特征信息的确定方法、装置、电子设备和介质
AU2022263561A1 (en) Quantum measurement device calibration method and apparatus, electronic device and medium
CN112529195B (zh) 量子纠缠探测方法、装置、电子设备及存储介质
CN113098802B (zh) 量子噪声信道的逆映射分解方法及装置、电子设备和介质
CN112990472B (zh) 消除量子噪声的方法及装置、电子设备和介质
CN115329971A (zh) 消除振幅阻尼噪声的方法及装置、电子设备和介质
CN115018078A (zh) 量子电路操作方法及装置、电子设备和介质
CN114580649A (zh) 消除量子泡利噪声的方法及装置、电子设备和介质
CN115577789A (zh) 量子纠缠程度确定方法、装置、设备及存储介质
CN114492823A (zh) 消除量子噪声的方法及装置、电子设备和介质
US11960859B2 (en) Automated process for discovering optimal programs and circuits in new computing platforms
CN115577776A (zh) 基态能量的确定方法、装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination