CN115010384B - 一种氢氧化钙悬浮液及其高效、低成本的制备方法 - Google Patents

一种氢氧化钙悬浮液及其高效、低成本的制备方法 Download PDF

Info

Publication number
CN115010384B
CN115010384B CN202210709180.5A CN202210709180A CN115010384B CN 115010384 B CN115010384 B CN 115010384B CN 202210709180 A CN202210709180 A CN 202210709180A CN 115010384 B CN115010384 B CN 115010384B
Authority
CN
China
Prior art keywords
calcium hydroxide
quicklime
water
activity
hydroxide suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210709180.5A
Other languages
English (en)
Other versions
CN115010384A (zh
Inventor
陈婷
孔凡滔
程颖慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Qianjiang Superfine Powder Technology Co ltd
Original Assignee
Anhui Qianjiang Superfine Powder Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Qianjiang Superfine Powder Technology Co ltd filed Critical Anhui Qianjiang Superfine Powder Technology Co ltd
Priority to CN202210709180.5A priority Critical patent/CN115010384B/zh
Publication of CN115010384A publication Critical patent/CN115010384A/zh
Application granted granted Critical
Publication of CN115010384B publication Critical patent/CN115010384B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/02Lime
    • C04B2/04Slaking
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/02Lime
    • C04B2/04Slaking
    • C04B2/045After-treatment of slaked lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/02Lime
    • C04B2/04Slaking
    • C04B2/08Devices therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

本发明公开了一种氢氧化钙悬浮液的高效、低成本制备方法,将高活性生石灰和普通活性生石灰混合后粉碎过筛制成反应物生石灰,向水中加入活性促进剂和/或稳定剂制成消化用水,在搅拌器持续搅拌或者转筒不断转动的状态下,向反应器中按比例同时且连续加入消化用水和反应物生石灰,控制反应温度和停留时间,使消化反应温度在80℃以上的时间不超过70分钟且不低于30分钟;收集反应后的混合液,并将得到的混合液进行旋液分离和/或筛分,得到目标氢氧化钙悬浮液成品。本工艺可生产制得较高反应活性、高氢氧化钙含量和低粘度的氢氧化钙悬浮液,且工艺精巧流程短成本低,适用性高,且可以实现连续生产,提高了产品质量的稳定性和一致性。

Description

一种氢氧化钙悬浮液及其高效、低成本的制备方法
技术领域
本发明属于氢氧化钙生产技术领域,涉及一种氢氧化钙悬浮液及其高效、低成本的制备方法。
背景技术
氢氧化钙在酸性废水中和、脱除重金属离子、磷酸根离子、硫酸根离子、氟离子等水处理领域应用广泛。在水处理实践中,氢氧化钙一般与水配制成悬浮液使用或者由氧化钙湿法消化得到氢氧化钙悬浮液后使用。
氢氧化钙的优点是安全性好,价格较氢氧化钠、碳酸钠等无机碱性处理剂便宜,但缺点主要包括两方面:一是氢氧化钙微溶于水,与氢氧化钠等水溶性碱相比,在发生化学反应时,氢氧化钙要先溶解到水中,然后钙离子或者氢氧根离子再与废水中的有害物质发生反应,这就导致氢氧化钙在处理废水时,其处理速度较氢氧化钠等水溶性碱要慢,影响了水处理的效率;二是一般氢氧化钙悬浮液的固含量为5-10%(而水处理常用的氢氧化钠溶液浓度为30%以上),浓度再高就会导致悬浮液粘度过大,难以输送和计量,这显然增加了配浆环节的生产负荷和生产成本。除上述两项主要缺点外,氢氧化钙还存在反应不完全、需要过量添加,杂质含量高而导致水处理污泥量增多等问题。因此,从应用角度出发,具有高反应活性、高固含量、低粘度、低杂质含量的氢氧化钙悬浮液对于水处理行业是比较理想的。
研究发现,氢氧化钙在水中的溶解速度与颗粒尺寸有关,颗粒尺寸越小,溶解速度越快,而溶解速度越快,相应的化学反应速度也越快,氢氧化钙的反应活性就越好。但同时,颗粒尺寸越小,悬浮液的粘度也就越大,这就限制了悬浮液中氢氧化钙含量的提高。因此,要得到同时具有高反应活性、高含量和低粘度特点的氢氧化钙悬浮液,在技术上是存在困难的。
为解决上述问题,人们进行了大量的研究,主要包括:
(1)采用能与钙离子形成沉淀或微溶物质的添加剂来降低悬浮液的粘度,如在氧化钙与水进行消化反应时,向水中加入石膏等物质,降低石灰乳的粘度。但这一类方法会导致氢氧化钙反应活性的下降。
(2)在氢氧化钙悬浮液配置过程中或者氧化钙湿法消化过程中加入有机聚合物分散剂降低粘度,如专利W02018/048633A1中加入聚丙烯酸盐分散剂降低氢氧化钙悬浮液粘度。虽然加入分散剂能够降低悬浮液粘度,但并不能减小氢氧化钙的一次粒径,也即对改善氢氧化钙的反应活性作用不大。
(3)采用湿法研磨的方法(或者研磨+分散剂)的方法降低氢氧化钙的颗粒尺寸,进而提高氢氧化钙的反应活性,如US2019002301公开的方法。这种方法增加了悬浮液的制备步骤,较为繁琐,且虽然粒径变小,但相应的添加剂的添加比例也要增加,对生产成本带来较为明显的影响。
(4)通过改变消化工艺来制备高活性、低粘度悬浮液。比如专利 CN106470960和US2019092684中采用向石灰中逐步加水的方式来制备氢氧化钙悬浮液,水中含有分散剂或者无机盐。这种方式对消化设备要求很高,因为在低水灰比时石灰消化产物呈糊状,粘度极高,普通设备无法满足要求。
(5)采用高活性石灰作为原料,利用高活性石灰反应速度快的特点降低氢氧化钙颗粒尺寸,提高其反应活性。但高活性石灰存在价格较高、所得到的氢氧化钙浆料成本较高的缺点,同时还存在所得到的石灰浆料粘度相对较高的缺点。
(6)在工业上也采用价格较低的普通活性的石灰作为原料来制备氢氧化钙悬浮液,但为了解决普通活性石灰消化慢、产物活性低的问题,通常采用60℃以上的高温水消化,且消化后要长时间陈化以使消化反应完全。这种工艺中,高温水的来源和长时间的陈化都使得用普通活性石灰生产氢氧化钙悬浮液的效率变低、成本升高。
综上所述,现有技术中制备氢氧化钙悬浮液的方法存在很多不足,限制了氢氧化钙悬浮液在各个领域的应用,另外氢氧化钙悬浮液的生产过程中的消化反应以一次反应生成居多,对于连续反应生成产物的探究很少,各批次生产的产物之间存在一致性较差的问题。
发明内容
为了填补现有技术的空白,本发明提供一种高效、低成本制备的氢氧化钙悬浮液的方法,以克服现有技术存在的不足,成本低且实现连续生产,生产的悬浮液成品稳定性高、一致性好。
本发明的技术方案:
一种氢氧化钙悬浮液的高效、低成本制备方法,包括以下步骤:
S1:反应物生石灰的制备:将活性度不低于360的高活性生石灰和活性度 240-320的普通活性生石灰分别经粉碎和过筛工序,筛选出颗粒粒径小于8mm 的生石灰,再按质量比为1∶2-9∶1称重、均匀混合后备用,再经粉碎和过筛工序,筛选出颗粒粒径小于8mm的生石灰,称重备用;
S2:消化用水的制备:向带有搅拌器的容器中加入水温为20℃-45℃的水,并向水中加入活性促进剂和/或稳定剂,搅拌溶解制成消化用水,所述消化用水与反应物生石灰的质量比为2∶1-4∶1,所述活性促进剂和/或稳定剂添加总质量与反应物生石灰的质量比为5∶1000-35∶1000,所述活性促进剂是指溶于水后能使水呈碱性且与氢氧化钙混合不生成沉淀的物质,所述稳定剂为小分子分散剂、糖醇和糖类物质中的一种或多种混合物;
S3:在反应器的搅拌器持续搅拌或者转筒不断转动的状态下,向反应器中按比例同时且连续加入消化用水和反应物生石灰,控制反应温度和停留时间,使消化反应温度在80℃以上的时间不超过70分钟且不低于30分钟,再打开反应器的阀门向外排放反应后的混合液,出料速度等于消化用水和反应物生石灰加料速度,控制出料速度等于加料速度以保持反应器内物料质量不变,所述出料速度是指每分钟排放的混合液的重量,所述加料速度是指每分钟加入的消化用水和反应物生石灰的总重量;
S4:收集反应后的混合液,并将得到的混合液进行旋液分离和/或筛分,除去其中的大颗粒杂质,得到目标氢氧化钙悬浮液成品。
进一步地,所述S1中,筛选出的备用的生石灰颗粒粒径尺寸小于5mm。
进一步地,所述S1中,高活性生石灰的活性度不低于380。
进一步地,所述S1中,高活性生石灰与普通活性生石灰的质量比为7∶3- 8∶2。
进一步地,所述活性促进剂为氢氧化钠、氢氧化钾、醋酸钠、甲酸钠、一乙醇胺、二乙醇胺和三乙醇胺中的一种或多种混合物。
进一步地,所述稳定剂为焦磷酸钾、六偏磷酸钠、木糖醇、山梨糖醇、赤藓糖醇、蔗糖、葡萄糖、果糖中的一种或多种混合物。
进一步地,所述活性促进剂和/或稳定剂的添加总质量与备用的生石灰质量的比为10∶1000-25∶1000。
进一步地,反应器为带搅拌装置的反应器或回转式消化反应器。
一种氢氧化钙悬浮液,由上述任一制备方法制得的氢氧化钙悬浮液,所述氢氧化钙悬浮液中氢氧化钙质量含量约25-45%,粒径分布为3.5μm≤D50≤6u m,D97≤25μm,D100≤45μm,25℃粘度≤330厘泊(厘泊即cP, 1cP=1mPa.s),反应活性t90≤5.5秒。
步骤S1中所提到的生石灰,是按YB/T 1052005《冶金石灰物理检验方法》中规定的方法测试,由活性度不低于360、优选不低于380的高活性石灰与活性度240-320的普通活性石灰组成。普通石灰活性低于240会延缓反应速度并降低产物氢氧化钙活性,而高于320则导致成本上升,不经济。将生石灰粉碎后使用可以使消化反应过程更加均匀平稳,减少多孔块状石灰引起的爆沸、局部过热等现象发生,有利于产品质量的稳定。粉碎过筛后生石灰颗粒不宜大于8mm,否则容易引起爆沸等现象发生;粉碎过筛后的生石灰颗粒尺寸优选小于5mm,实验发现,该尺寸对消除爆沸等现象效果更加显著。高活性石灰与普通活性石灰质量比为1∶2-9∶1,优选7∶3-8∶2。高活性生石灰与普通活性生石灰比例低于1∶2,则产物活性不好,而高于9∶1,则降低成本的效果不显著。高活性石灰与普通活性石灰比例为7∶3-8∶2时,产物在性能和成本的平衡方面取得最优效果。
步骤S2中,消化用水温低于20℃会导致所得到的氢氧化钙悬浮液反应活性下降,而高于45℃会导致氢氧化钙悬浮液粘度明显上升。所提到的活性促进剂是指溶于水后能使水呈碱性的物质,但不包括能够与氢氧化钙反应生成沉淀的物质,优选氢氧化钠、氢氧化钾、醋酸钠、甲酸钠、一乙醇胺、二乙醇胺和三乙醇胺等。所提到的稳定剂具有提高氢氧化钙反应活性和减少氢氧化钙颗粒团聚的双重作用,可以单独使用也可以与活性促进剂一同使用,优选的稳定剂包括小分子分散剂如焦磷酸钾、六偏磷酸钠,糖醇如木糖醇、山梨糖醇、赤藓糖醇以及糖类物质,如蔗糖、葡萄糖、果糖等。活性促进剂和/或稳定剂的添加总质量为活性生石灰质量的0.5-3.5%,优选1-2.5%。消化反应的水灰质量比为 2∶1-4∶1,水灰比太低则粘度过高,而水灰比高于4∶1则悬浮液中氢氧化钙含量较低,经济性不好。生石灰和消化用水按设定的比例分别计量加入消化反应器中,加入速度根据反应器容积和设定的物料停留时间决定,并保证任意时刻加入的水和生石灰的质量比都符合设定值要求。
步骤S3中,生石灰与水发生消化反应生成氢氧化钙时,会放出热量导致反应体系温度升高,对氢氧化钙悬浮液制备来说,温度升高有利于消化反应更完全,但长时间的高温会导致氢氧化钙反应活性下降,因此,消化反应温度在 80℃以上的时间不宜超过70分钟且不应低于30分钟。
步骤S4中,正常生产时,消化产物连续出料,出料速度与物料加料速度保持一致,以确保生产的连续稳定。消化反应出料得到的悬浮液,通过旋液分离器和/或振动筛等方式去除大颗粒,这一步骤可以去除石灰原料中夹带的、未反应的杂质,如氧化硅、氧化铝、未烧透的石灰石等,提高了悬浮液中氢氧化钙的含量,减少污水处理时产生的污泥量。
综上,本发明的有益效果为:
(1)本发明通过连续式制备工艺能够大幅提高氢氧化钙悬浮液的生产效率,同时,使用连续式生产工艺,产品的质量稳定性和一致性更高。
(2)本发明使用高活性生石灰与普通活性石灰复配,降低了原材料的成本,令人意想不到的是:反应过程中,高活性生石灰优先反应放出热量提高水温,加快了普通活性生石灰的消化速度和消化产物的反应活性,克服了普通活性生石灰的消化速度慢和产物反应活性低的问题,打破了行业中不会选用普通活性生石灰制备高反应活性氢氧化钙悬浮液的技术偏见,还解决了单纯使用高活性生石灰所带来的高成本问题,同时也解决了单纯使用普通活性石灰消化需要的消化水温较高且需要长时间陈化的问题,在保证产品性能的前提下降低了生产成本。按本发明方案制备得到的悬浮液与同样条件下单纯使用高活性石灰得到的悬浮液相比,虽然反应活性略有下降,但粘度更低,适合于对悬浮液粘度和流动性要求更高的应用领域。
(3)本发明通过对原料、工艺、助剂的精确控制,制得高反应活性、高氢氧化钙含量、低粘度的氢氧化钙悬浮液,并通过旋液分离或过筛的方法去除悬浮液中的大颗粒杂质,解决目前氢氧化钙在水处理应用时存在的反应速度慢、生产效率低、添加量高、污泥多等问题。
(4)本发明所用的添加剂均为常用小分子化学试剂,未选择使用价格高的聚合物分散剂,通过调整不同试剂的组合实现最优效果;同时本发明的实施对设备要求低,不需要特殊的设备、如高扭矩的消化机等,操作简单,反应流程短,工艺流程适用性好,降低了生产成本。
具体实施方式
下面对本发明的具体实施方式进行详细说明。
实施例1
S1,反应物生石灰的制备:分别将活性度为400的高活性生石灰和活性度为240-320的普通活性生石灰使用粉碎机粉碎并过筛选取颗粒粒径尺寸<8mm 的粉末,按质量比9∶1混合均匀,制成反应物生石灰。将制成的反应物生石灰称取20kg加入到生石灰料仓里,该料仓带有失重喂料装置能够控制石灰的出料速度,消化反应时,根据生石灰的消耗速度,继续按上述配比向料仓中补充混合均匀的生石灰反应物;
S2:消化用水的制备:向带有搅拌器的罐体(容器)中加入79.84kg的水,水温控制在45℃,向水中加入80g的氢氧化钠和80g的焦磷酸钾,即该消化用水中溶解有浓度为0.1%的氢氧化钠和浓度为0.1%的焦磷酸钾,该罐体带有控制放料速度的流量控制阀,消化反应时,根据消化水的消耗速度,及时按上述配方比例向容器中加入消化用水,即补充水和添加剂;
S3:在带有冷凝回流装置的0.08m3搅拌式反应器中,在搅拌状态下,分别按0.8kg/分钟和0.2kg/分钟的速度向反应器中加入消化用水和反应物生石灰。生石灰和水混合后反应体系迅速升温至80℃以上,从加料开始70分钟内反应釜(即反应器)不放料,70分钟后打开反应釜底部阀门用泵出料,控制出料速度为1kg/分钟以保持反应釜内物料质量不变,实现原料连续加入和反应后的混合液连续出料的连续式制备。
S4:收集反应后的混合液,并将得到的混合液过200目筛,除去其中的大颗粒杂质,得到目标氢氧化钙悬浮液成品。
所得到的氢氧化钙悬浮液,其中氢氧化钙的含量按GB/T 27815-2011《工业乳状氢氧化钙》中规定的方法测试;悬浮液粘度使用NDJ-9S旋转粘度计测试,将悬浮液温度稳定在25℃,使用2号或3号转子在60转/分钟的转速下测试;悬浮液中的固体颗粒的粒径分布使用激光粒度仪测试;悬浮液中氢氧化钙的反应活性采用电导率法测定,即,根据悬浮液中氢氧化钙含量,称取含氢氧化钙0.1g的悬浮液,将其快速倒入700g去离子水中(水温25℃),同时记录去离子水电导率随时间的变化,计算从倒入氢氧化钙悬浮液到电导率达到最大值的90%时所消耗的时间,记为t90,t90越小,表示氢氧化钙溶解速度越快,反应活性也越高。
经测定,本实施例制得的氢氧化钙悬浮液其各项指标为:氢氧化钙含量 25%,t90=4.6秒,粘度145cP,D50=6μm,D97=20.9μm,D100=41μm。
实施例2
参照实施例1,在带有冷凝回流装置的0.08m3搅拌式反应器中,在搅拌状态下,分别按1kg/分钟和0.5kg/分钟的速度向反应器中加入消化用水和反应物生石灰,其中生石灰由活性为360的高活性石灰与活性为320的普通生石灰按质量比1∶2组成,颗粒度<5mm,水温度为20℃,水中溶解浓度为0.22%的醋酸钠和浓度为1%的葡萄糖。生石灰和水混合后反应体系迅速升温至80℃以上,从加料开始40分钟内反应釜不放料,40分钟后打开反应釜底部阀门用泵出料,控制出料速度为1.5kg/分钟以保持反应釜内物料质量不变,实现原料连续加入和产物连续出料的连续式制备。
出料的反应后的混合液过200目筛,经检测,得到氢氧化钙含量45%, t90=4.5秒,粘度330cP,D50=5.7μm,D97=18.5μm,D100=40.5μm的氢氧化钙悬浮液的氢氧化钙悬浮液。
实施例3
参照实施例1,在带有冷凝回流装置的0.08m3搅拌式反应器中,在搅拌状态下,分别按1.2kg/分钟和0.4kg/分钟的速度向反应器中加入消化用水和反应物生石灰,其中生石灰活性为380的高活性石灰与活性为260的普通生石灰按质量比17∶3组成,颗粒度<5mm,水温度为25℃,水中溶解浓度为0.67%的山梨糖醇和浓度为0.33%的六偏磷酸钠。生石灰和水混合后反应体系迅速升温至 80℃以上,从加料开始40分钟内反应釜不放料,40分钟后打开反应釜底部阀门用泵出料,控制出料速度为1.6kg/分钟以保持反应釜内物料质量不变,实现原料连续加入和产物连续出料的连续式制备。
出料的反应后的混合液过200目筛,经检测,得到氢氧化钙含量35%, t90=5.1秒,粘度295cP,D50=5.9μm,D97=25μm,D100=42μm的氢氧化钙悬浮液。
实施例4
参照实施例1,在带有冷凝回流装置的0.08m3搅拌式反应器中,在搅拌状态下,分别按0.8kg/分钟和0.2kg/分钟的速度向反应器中加入消化用水和反应物生石灰,其中生石灰活性为390的高活性石灰与活性为280的普通生石灰按质量比1∶1组成,颗粒度<5mm,水温度为30℃,水中溶解浓度为0.25%的三乙醇胺、0.25%的木糖醇和0.125%的蔗糖。生石灰和水混合后反应体系迅速升温至80℃以上,从加料开始60分钟内反应釜不放料,60分钟后打开反应釜底部阀门用泵出料,控制出料速度为1kg/分钟以保持反应釜内物料质量不变,实现原料连续加入和产物连续出料的连续式制备。
出料的反应后的混合液过200目筛,经检测,得到氢氧化钙含量25%, t90=5.5秒,粘度111cP,D50=6μm,D97=21.2μm,D100=45μm的氢氧化钙悬浮液。
实施例5
参照实施例1,在带有冷凝回流装置的0.08m3搅拌式反应器中,在搅拌状态下,分别按1.5kg/分钟和0.5kg/分钟的速度向反应器中加入消化用水和反应物生石灰,其中生石灰活性为380的高活性石灰与活性为320的普通生石灰按质量比7∶3组成,颗粒度<5mm,水温度为30℃,水中溶解浓度为0.33%的赤藓糖醇和浓度为0.39%的六偏磷酸钠。生石灰和水混合后反应体系迅速升温至 80℃以上,从加料开始30分钟内反应釜不放料,30分钟后打开反应釜底部阀门用泵出料,控制出料速度为2kg/分钟以保持反应釜内物料质量不变,实现原料连续加入和产物连续出料的连续式制备。
出料的反应后的混合液过200目筛,经检测,得到氢氧化钙含量35%, t90=3.6秒,粘度216cP,D50=3.5μm,D97=18μm,D100=36.5μm的氢氧化钙悬浮液。
实施例6
参照实施例1,在带有冷凝回流装置的0.08m3搅拌式反应器中,在搅拌状态下,分别按1.5kg/分钟和0.5kg/分钟的速度向反应器中加入消化用水和反应物生石灰,其中生石灰活性为390的高活性石灰与活性为310的普通生石灰按质量比8∶2组成,颗粒度<5mm,水温度为40℃,水中溶解浓度为0.44%的二乙醇胺和浓度为0.14%的六偏磷酸钠。生石灰和水混合后反应体系迅速升温至 80℃以上,从加料开始30分钟内反应釜不放料,30分钟后打开反应釜底部阀门用泵出料,控制出料速度为2kg/分钟以保持反应釜内物料质量不变,实现原料连续加入和产物连续出料的连续式制备。
出料的反应后的混合液过200目筛,经检测,得到氢氧化钙含量35%, t90=3.4秒,粘度234cP,D50=4.3μm,D97=19μ m,D100=40μm的氢氧化钙悬浮液。
对比例
采用与实施例1同样的反应设备和反应工艺,所不同的是反应物生石灰使用是活性度400的高活性生石灰作为原料。
在带有冷凝回流装置的0.08m3搅拌式反应器中,在搅拌状态下,分别按 0.8kg/分钟和0.2kg/分钟的速度向反应器中加入消化用水和反应物生石灰,其中生石灰由活性为400的高活性石灰单独组成,颗粒粒径尺寸<5mm,消化用水温度为45℃,消化用水中溶解有浓度为0.1%的氢氧化钠和浓度为0.1%的焦磷酸钾。生石灰和水混合后反应体系迅速升温至80℃以上,从加料开始70分钟内反应釜不放料,70分钟后打开反应釜底部阀门用泵出料,控制出料速度为 1kg/分钟以保持反应釜内物料质量不变,实现原料连续加入和产物连续出料的连续式制备。
出料的反应后的混合液过200目筛,经检测,得到氢氧化钙含量25%, t90=4.5秒,粘度176cP,D50=5.5μm,D97=20μm,D100=40μm的氢氧化钙悬浮液。
对比发现,使用高活性石灰与普通活性石灰按一定比例混合后作为原料得到的氢氧化钙悬浮液与同样条件下单纯使用高活性石灰得到的悬浮液相比,虽然反应活性略有下降,但悬浮液粘度更低。因此,本发明适合于对氢氧化钙悬浮液粘度和流动性要求更高,而对反应活性要求相对较高,且对成本较为敏感的应用领域。
综上所述,本工艺可生产制得较高反应活性、高氢氧化钙含量和低粘度的氢氧化钙悬浮液,其各项性能指标为氢氧化钙质量含量约25-45%,粒径分布为 3.5μm≤D50≤6μm,D97≤25μm,Di00≤45μm,25℃粘度≤330厘泊(厘泊即cP,1cP=1mPa.s),反应活性t90≤5.5秒,且工艺精巧流程短,无需昂贵设备和添加剂,进一步降低反应物生石灰的成本,极大的降低了总体成本,提高了氢氧化钙悬浮液的适用性,且可以实现连续生产,提高了产品质量的稳定性和一致性。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。

Claims (10)

1.一种氢氧化钙悬浮液的高效、低成本制备方法,其特征在于:包括以下步骤:
S1:反应物生石灰的制备:将活性度不低于360的高活性生石灰和活性度240-320的普通活性生石灰分别经粉碎和过筛工序,筛选出颗粒粒径小于8mm的生石灰,再按质量比为1:2-9:1称重、均匀混合后备用;
S2:消化用水的制备:向带有搅拌器的容器中加入水温为20℃-45℃的水,并向水中加入活性促进剂和/或稳定剂,搅拌溶解制成消化用水,所述消化用水与反应物生石灰的质量比为2:1-4:1,所述活性促进剂和/或稳定剂添加总质量与反应物生石灰的质量比为5:1000-35:1000,所述活性促进剂是指溶于水后能使水呈碱性且与氢氧化钙混合不生成沉淀的物质,所述稳定剂为小分子分散剂和糖类物质中的一种或多种混合物;
S3:在反应器的搅拌器持续搅拌或者转筒不断转动的状态下,向反应器中按比例同时且连续加入消化用水和反应物生石灰,控制反应温度和停留时间,使消化反应温度在80℃以上的时间不超过70分钟且不低于30分钟,再打开反应器的阀门向外排放反应后的混合液,出料速度等于消化用水和反应物生石灰加料速度,控制出料速度等于加料速度以保持反应器内物料质量不变,所述出料速度是指每分钟排放的混合液的重量,所述加料速度是指每分钟加入的消化用水和反应物生石灰的总重量;
S4:收集反应后的混合液,并将得到的混合液进行旋液分离和/或筛分,除去其中的大颗粒杂质,得到目标氢氧化钙悬浮液成品。
2.如权利要求1所述的一种氢氧化钙悬浮液的高效、低成本制备方法,其特征在于:所述稳定剂为糖醇。
3.如权利要求1所述的一种氢氧化钙悬浮液的高效、低成本制备方法,其特征在于:所述S1中,筛选出的备用的生石灰颗粒粒径尺寸小于5mm。
4.如权利要求1所述的一种氢氧化钙悬浮液的高效、低成本制备方法,其特征在于:所述S1中,高活性生石灰的活性度不低于380。
5.如权利要求1所述的一种氢氧化钙悬浮液的高效、低成本制备方法,其特征在于:所述高活性生石灰与普通活性生石灰的质量比为7:3-8:2。
6.如权利要求1所述的一种氢氧化钙悬浮液的高效、低成本制备方法,其特征在于:所述活性促进剂为氢氧化钠、氢氧化钾、醋酸钠、甲酸钠、一乙醇胺、二乙醇胺和三乙醇胺中的一种或多种混合物。
7.如权利要求1所述的一种氢氧化钙悬浮液的高效、低成本制备方法,其特征在于:所述稳定剂为焦磷酸钾、六偏磷酸钠、木糖醇、山梨糖醇、赤藓糖醇、蔗糖、葡萄糖、果糖中的一种或多种混合物。
8.如权利要求1所述的一种氢氧化钙悬浮液的高效、低成本制备方法,其特征在于:所述活性促进剂和/或稳定剂的添加总质量与备用的生石灰质量的比为10:1000-25:1000。
9.如权利要求1所述的一种氢氧化钙悬浮液的高效、低成本制备方法,其特征在于:反应器为带搅拌装置的反应器或回转式消化反应器。
10.一种氢氧化钙悬浮液,其特征在于:由权利要求1-9任一项所述的制备方法制得,所述氢氧化钙悬浮液中氢氧化钙质量含量25-45%,粒径分布为3.5μm≤D50≤6μm,D97≤25μm,D100≤45μm,25℃粘度≤330厘泊,反应活性t90≤5.5秒。
CN202210709180.5A 2022-06-21 2022-06-21 一种氢氧化钙悬浮液及其高效、低成本的制备方法 Active CN115010384B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210709180.5A CN115010384B (zh) 2022-06-21 2022-06-21 一种氢氧化钙悬浮液及其高效、低成本的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210709180.5A CN115010384B (zh) 2022-06-21 2022-06-21 一种氢氧化钙悬浮液及其高效、低成本的制备方法

Publications (2)

Publication Number Publication Date
CN115010384A CN115010384A (zh) 2022-09-06
CN115010384B true CN115010384B (zh) 2023-05-23

Family

ID=83077449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210709180.5A Active CN115010384B (zh) 2022-06-21 2022-06-21 一种氢氧化钙悬浮液及其高效、低成本的制备方法

Country Status (1)

Country Link
CN (1) CN115010384B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125423A (ja) * 2012-12-27 2014-07-07 Tosoh Corp 水酸化カルシウム水性懸濁液の製造方法
CN104609745B (zh) * 2015-01-21 2016-10-26 南宁苏格尔科技有限公司 一种制糖用石灰乳的生产控制方法
WO2017152960A1 (en) * 2016-03-08 2017-09-14 S.A. Lhoist Recherche Et Developpement Process for manufacturing a milk of slaked lime of great fineness and milk of lime of great fineness thereby obtained with process water

Also Published As

Publication number Publication date
CN115010384A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
US11401183B2 (en) Process for manufacture of hydroxide slurry
CN101570342B (zh) 一种利用低品位石灰石湿法制备硅酮密封胶专用高白度纳米碳酸钙的方法
US5906804A (en) Magnesium hydroxide slurries
CN112358205A (zh) 一种高活性氢氧化钙的制备方法
CN115108737B (zh) 一种高活性氢氧化钙悬浮液的高效、低成本制备方法
CN115010384B (zh) 一种氢氧化钙悬浮液及其高效、低成本的制备方法
CN114988725B (zh) 一种氢氧化钙悬浮液及其高效制备方法
TW201718409A (zh) 具共聚添加劑的高固體pcc
CN114956609B (zh) 一种低成本氢氧化钙悬浮液及其制备方法
EP0772570B1 (en) Magnesium hydroxide slurries
CN114956608B (zh) 一种低粘度、低成本氢氧化钙悬浮液及其制备方法
CN115093133B (zh) 一种高活性氢氧化钙悬浮液及其高效的制备方法
CN114853368B (zh) 一种低粘度氢氧化钙悬浮液及其制备方法
CN115108738B (zh) 一种氢氧化钙悬浮液及其制备方法
JPH10167775A (ja) 消石灰の製造方法
US20030141485A1 (en) Long term-stabilized magnesium hydroxide suspension for covering iron mineral, a process for its production and application
JP2656443B2 (ja) 水酸化マグネシウムの製造方法
JPH10120448A (ja) 消石灰の製造方法
CN111450724B (zh) 一种低杂质含量的氢氧化镁悬浮液及其制备方法
CN114644354B (zh) 铝碳酸镁的制备方法
CN113683107A (zh) 一种砂磨机法生产亚微米氢氧化铝及氧化铝方法
CN111892091B (zh) 一种钻井泥浆用四氧化三锰的制备方法
AU685305B2 (en) Magnesium hydroxide slurries
CN117486506A (zh) 一种高钙含量液体石灰的制备方法
JPH07107239B2 (ja) 製紙方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant