CN115007076A - 紫外光和水分双重触发的聚氨酯微胶囊及制备方法和应用 - Google Patents

紫外光和水分双重触发的聚氨酯微胶囊及制备方法和应用 Download PDF

Info

Publication number
CN115007076A
CN115007076A CN202210689930.7A CN202210689930A CN115007076A CN 115007076 A CN115007076 A CN 115007076A CN 202210689930 A CN202210689930 A CN 202210689930A CN 115007076 A CN115007076 A CN 115007076A
Authority
CN
China
Prior art keywords
triggered
polyurethane
moisture
ultraviolet
microcapsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210689930.7A
Other languages
English (en)
Inventor
孙魄韬
司马文霞
牛朝露
袁涛
杨鸣
赵明克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202210689930.7A priority Critical patent/CN115007076A/zh
Publication of CN115007076A publication Critical patent/CN115007076A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/025Applications of microcapsules not provided for in other subclasses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明公开了一种紫外光和水分双重触发的聚氨酯微胶囊及制备方法和应用,属于材料领域。该方法是将表面活性剂和水混合,得到表面活性剂溶液;将TDI预聚体溶解在有机溶剂中,得到溶解后的TDI预聚体溶液;将Fe3O4@SiO2纳米颗粒加入到TDI预聚体溶液中,超声分散均匀;然后加入芯材继续搅拌,得到混合液;将得到的混合液加入到表面活性剂溶液中得到乳液,之后在温度为40~60℃的条件下在乳液中加入1,4丁二醇,65~75℃的条件下反应0.5~1h,反应结束后冷却至室温,洗涤后干燥即得聚氨酯微胶囊。所制备的聚氨酯微胶囊克服了现有微胶囊体系单一触发机制的缺点以及造成基体本征性能下降的不足,为绝缘材料机械损伤与电损伤自修复提供新的思路。

Description

紫外光和水分双重触发的聚氨酯微胶囊及制备方法和应用
技术领域
本发明属于绝缘材料中新型微纳结构自修复材料制备技术领域,具体涉及一种紫外光和水分双重触发的聚氨酯微胶囊及其制备方法和应用。
背景技术
环氧树脂作为重要的基础绝缘材料,因其制造成本低廉、机械性能良好、绝缘性能优异,被广泛应用于电力装备、电子器件封装、军事航空等领域。然而,其在长期运行过程中会受到电、热、机械等应力的共同作用,不可避免地会在内部产生局部电树枝裂化,导致材料绝缘性能下降甚至提前失效。近年来,学者们尝试通过掺杂纳米颗粒的方式来抑制电树的发展,取得了一定的成效,但遗憾的是,该方法仅能一定程度上延缓电树的起始,一旦树枝产生则会迅速发展,导致材料裂化失效。
受到自然界生物自愈能力的启发,自修复技术引起了学者们的广泛关注。其中微胶囊方法被认为是一种很有前途的修复电损伤的理想方法,但挑战仍然存在,即1.如何实现智能的自我感知和自我触发。现有的微胶囊方案专注于物理损伤修复,依赖于传统的外部刺激,如高温、湿度和pH,这将降低电子的敏感性,甚至导致绝缘腐蚀。2.微胶囊所带来的负面影响,如基体的机械性能和电气性能的恶化,是绝缘材料工业应用中不可避免和不可接受的。3.微胶囊中有害成分的排放严重威胁着人员的健康和电气设备的安全运行(如排放的气体严重影响电气设备中高纯绝缘气体的电气性能)。4.微胶囊广泛且随机地存在于基质中,不能像靶向药物那样有针对性、循序渐进地分布,导致治疗效率低、消耗大、成本高、副作用多。
目前电气领域中针对微胶囊的研究已有一定进展,但针对自修复微胶囊存在的上述问题仍需进一步的研究。因此,研究一种使微胶囊在实现智能自我感知和自我触发功能的同时尽可能减少的对基体的负面影响,且环境友好的实现电树枝损伤和机械损伤靶向自修复的新型微胶囊具有重要意义。
发明内容
本发明是针对上述存在的技术问题提供一种紫外光和水分双重触发的聚氨酯微胶囊及其制备方法和应用。
一种紫外光和水分双重触发的聚氨酯微胶囊的制备方法,该方法包括以下步骤:
(1)将表面活性剂和水混合,得到表面活性剂溶液;
(2)将TDI预聚体溶解在有机溶剂中,得到溶解后的TDI预聚体溶液;将Fe3O4@SiO2纳米颗粒加入到TDI预聚体溶液中,超声分散均匀;然后加入芯材继续搅拌,得到混合液;将得到的混合液加入到表面活性剂溶液中得到乳液,之后在温度为40~60℃的条件下在乳液中加入1,4丁二醇,65~75℃的条件下反应0.5~1h,反应结束后冷却至室温,洗涤后干燥即得聚氨酯微胶囊。
上述制备方法中:所述的表面活性剂为质量比为4~10:0.1~0.5的阿拉伯胶和十二烷基三甲基溴化铵。
上述制备方法中:表面活性剂、TDI预聚体、Fe3O4@SiO2纳米颗粒、芯材和1,4丁二醇的质量比依次为7~8:8~10:0.3~0.8:25~30:6~7。
上述制备方法中:Fe3O4@SiO2纳米颗粒的制备方法如下:
s1、将FeCl3、二水合柠檬酸三钠、乙二醇混合搅拌均匀后加入乙酸钠,再次混匀得到混合液,将混合液倒入高温反应釜中180~220℃反应8~12h,水冷反应釜收集固体,将该固体洗涤后即可得到Fe3O4颗粒;
s2、将制得的Fe3O4纳米颗粒、无水乙醇和浓氨水在温度为30~40℃,转速为150~400rpm/min的条件下搅拌混匀,之后加入正硅酸乙酯搅拌10~12h,超声清洗,即可得Fe3O4@SiO2纳米颗粒。
上述制备方法中::s1中:FeCl3、二水合柠檬酸三钠、乙二醇和乙酸钠的质量比为为3~4:1~2:110~120:5.5~6.5;
s2中,Fe3O4纳米颗粒和正硅酸乙酯的体积比为3~5:2~3。
上述制备方法中:将TDI溶解于预干燥的氯苯CH溶剂中搅拌均匀,进行N2净化,蒸馏后去除混合物中多余的反应物得到用于形成微胶囊壳体的TDI预聚体,TDI预聚体的固体含量为10~16wt%。
上述制备方法中:聚氨酯丙烯酸酯低聚体的制备过程为:将IPDI和催化剂DBTDL在温度为40~60℃的条件下混合,并在其中缓慢加入HEMA,加入完毕后在55~64℃反应3~5小时,反应完成后加入稀释剂St和光引发剂184,得到紫外光和水分双重触发芯材聚氨酯丙烯酸酯低聚体;
其中:IPDI、DBTDL、HEMA、稀释剂St和光引发剂184的质量比为20~25:0.03~0.04:12.5~13.5:14.8~15.3:1.2~1.8。
一种紫外光和水分双重触发的聚氨酯微胶囊,该聚氨酯微胶囊采用权利要求1-8任一项所述的方法制备得到。
本发明技术方案中,上述方法制得的紫外光和水分双重触发的聚氨酯微胶囊可以在水分和紫外光的激励下对环氧树脂内机械与电树枝损伤实现自修复。
本发明技术方案中:利用二异氰酸酯IPDI两个异氰酸酯基团活性差别,控制反应条件使二异氰酸酯活性较高的异氰酸酯基团与与羟基丙烯酸酯的羟基反应生成的可紫外光固化的丙烯酰氧基团,得微胶囊芯材即聚氨酯丙烯酸酯低聚体。
本发明技术方案中:将制备的TDI预聚体和芯材聚氨酯丙烯酸酯低聚体在表面活性剂(1,4丁二醇)的作用下发生界面聚合反应,同时在混合物中Fe3O4@SiO2纳米颗粒即可生成具有紫外光和水分双重触发性能的聚氨酯微胶囊,其微胶囊壳层均匀附着有磁性纳米颗粒。
本发明技术方案中:Fe3O4纳米颗粒粒径为130nm左右。所制备的Fe3O4纳米颗粒测得的磁化曲线表明,其具有超顺磁特性,形貌为圆形。
本发明技术方案中:制备的紫外光和水分双触发靶向微胶囊壁厚为4μm左右。
本发明技术方案中:测得微胶囊和芯材的TGA质量损失曲线,芯材热分解温度在315℃左右,经壳体的包覆后降解温度提升至351℃。
本发明技术方案中:含Fe3O4@SiO2纳米颗粒和TiO2@SiO2纳米颗粒的复合PU壳层具有更好的紫外光吸收效果,提高了紫外光波段的吸收强度,同时对可见光波段的吸收强度显著提升。
本发明技术方案中:聚氨酯丙烯酸酯低聚体一端为丙烯酰氧基团,另一端为异氰酸酯基团。利用二异氰酸酯IPDI两个异氰酸酯基团活性差别,控制反应温度为70℃使二异氰酸酯活性较高的异氰酸酯基团与与羟基丙烯酸酯的羟基反应生成的可紫外光固化的丙烯酰氧基团,得微胶囊芯材即聚氨酯丙烯酸酯。
本发明的有益效果在于:
1)本发明Fe3O4@SiO2纳米颗粒和TiO2@SiO2纳米颗粒,通过场发射扫描电镜、场发射透射电镜、TGA热重分析、紫外光分度计、磁性曲线、红外光谱的测试,获得了微纳结构体的形貌特性以及功能特性,经过检测分析,所制备的Fe3O4@SiO2纳米颗粒兼具超顺磁特性和低电导率的特性,TiO2@SiO2纳米颗粒具有较好的屏蔽紫外光的性能,两种微纳结构体为微胶囊的功能特性提供了基础;
2)本发明制备了一种紫外光和水分双重触发的聚氨酯微胶囊,通过场发射扫描电镜、场发射透射电镜、TGA热重分析以及红外光谱的测试,获得了聚氨酯微胶囊的形貌特征和两种微纳结构体在聚氨酯壳层的分布情况。所制备的聚氨酯微胶囊克服了现有微胶囊体系单一触发机制的缺点以及造成基体本征性能下降的不足,为绝缘材料机械损伤与电损伤自修复提供新的思路。
附图说明
本发明的附图说明如下:
图1Fe3O4纳米颗粒TEM图;
图2Fe3O4@SiO2纳米颗粒TEM图;
图3Fe3O4和Fe3O4@SiO2纳米颗粒红外光谱图;
图4Fe3O4和Fe3O4@SiO2纳米颗粒磁化曲线;
图5为微胶囊SEM图;
图6为微胶囊壳层SEM图;
图7为构微胶囊OM图;
图8为纳米颗粒/PU壳层TEM图;
图9为微胶囊粒径分布图;
图10为微胶囊红外光图谱;图11为微胶囊和芯材质量损失曲线图;
图12为纳米颗粒/PU壳层、PU壳层和184光引发剂紫外光吸收曲线图;
图13为芯材、HEMA和IPDI红外光图谱图。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明的保护范围不限于此:
实施例1
一种紫外光和水分双重触发的聚氨酯微胶囊制备方法,包括以下步骤:
s1、将3.25g的FeCl3、1.3g二水合柠檬酸三钠、113.2g乙二醇混合搅拌均匀后加入5.92g乙酸钠搅拌均匀后将混合液倒入高温反应釜中200℃反应10h,水冷反应釜收集Fe3O4颗粒并用无水乙醇和与离子水分别超声清洗3遍。
s2、取4ml制得的Fe3O4纳米颗粒与300ml无水乙醇、4ml浓氨水在35℃水浴下以400r/min下机械搅拌30min后移取2.5ml正硅酸乙酯(2.3325g)加入混合液中搅拌反应12h,使用无水乙醇和去离子水分别超声清洗3遍,即可得Fe3O4@SiO2纳米颗粒;
s3、将21.86gTDI溶解于预干燥的141.66gCH溶剂(氯苯,AR,99%)中搅拌均匀,进行N2净化,蒸馏后去除混合物中多余的反应物可得TDI预聚体。
S4、紫外光-水触发修复剂(微胶囊芯材)的制备。具体步骤为:在三口烧瓶中加入22.23g异佛尔酮二异氰酸酯(IPDI)和0.035g催化剂二月桂酸二丁基锡(DBTDL),机械搅拌并置于50℃水浴中,将13.01g甲基丙烯酸羟乙酯(HEMA)逐滴加入三口烧瓶中,滴加完成后将体系升温到60℃反应5小时。反应完成后加入15.1g稀释剂St和1.51g光引发剂184。得到紫外光-水双触发芯材聚氨酯丙烯酸酯低聚体。聚氨酯丙烯酸酯低聚体一端为丙烯酰氧基团,另一端为异氰酸酯基团。
S5、紫外光与水分双重触发的聚氨酯微胶囊的成型。具体步骤为:
①在500ml烧杯中加入120ml超纯水和阴离子表面活性剂阿拉伯胶(GA)7g,表面活性剂十二烷基三甲基溴化铵(DTAB)0.2g,在转速400r/min下机械搅拌3h。
②将9.0g TDI预聚体溶于20ml CH溶剂中,在65℃下机械搅拌10min至预聚体完全溶解,将0.5g Fe3O4@SiO2纳米颗粒倒入溶解后的TDI预聚体溶液中,超声分散3小时。继续加入27.0g芯材机械搅拌20min,然后将混合物慢慢倒入步骤①的溶液中,并置于50℃水浴锅中,将6.3g 1,4丁二醇逐滴加入乳液中,升温至70℃反应1h。待冷却至室温后,加入去离子水洗涤3次,经抽滤后置于空气中干燥24h,即得紫外光和水分双重触发的聚氨酯微胶囊。
实施例2
本实施例中,除了S6中,仅将机械搅拌转速改为500r/min,其余均与实施例1相同,制成紫外光和水分双重触发的聚氨酯微胶囊。
实施例3
本实施例中,除了S6中,仅将机械搅拌转速改为600r/min,其余均与实施例1相同,制成紫外光和水分双重触发的聚氨酯微胶囊。
实施例4
本实施例中,除了S6中,仅将阴离子表面活性剂阿拉伯胶(GA)改为5g,其余均与实施例1相同,制成紫外光和水分双重触发的聚氨酯微胶囊。
实施例5
本实施例中,除了S6中,仅将阴离子表面活性剂阿拉伯胶(GA)改为9g,其余均与实施例1相同,制成紫外光和水分双重触发的聚氨酯微胶囊。
于实施例1、实施例2、实施例3中,所制得的微胶囊粒径分布如图9所示,其中以实施例2的粒径分布为最优。
于实施例1中,所述s1和s2中,Fe3O4和Fe3O4@SiO2纳米颗粒TEM图如图1和图2所示。Fe3O4和Fe3O4@SiO2纳米颗粒的红外光谱图和磁化曲线分别如如图3和图4所示。
结合Fe3O4和Fe3O4@SiO2纳米颗粒的TEM图及红外光谱图,证明SiO2包覆Fe3O4的核壳结构已经形成。在外加磁场的激励下,壳层上的Fe3O4纳米颗粒中感应磁场方向与外加磁场方向相同,牵动胶囊向磁场方向移动;壳层上的SiO2可以吸收外部的紫外光,避免芯材受激励而失效。
于实施例1中,所述s3中,通过测定预聚体的固体含量以及NCO含量的测试,获得了预聚体的固体含量为15.5wt%,NCO含量为13.3wt%,制备的TDI预聚体NCO含量满足技术要求。
于实施例1中,所述s5中,微胶囊的整体形貌SEM图如图5所示,壳层厚度SEM图如图6所示,微胶囊的光学显微镜形貌图如图7所示,纳米颗粒/PU壳层TEM图如图8所示。微胶囊粒径分布图如图9所示,微胶囊红外光图谱如图10所示,微胶囊和芯材质量损失曲线如图11所示,纳米颗粒/PU壳层、PU壳层和184光引发剂紫外光吸收曲线如图12所示,图13为甲基丙烯酸羟乙酯(HEMA)、IPDI及合成物聚氨酯丙烯酸酯低聚体的红外光谱图。
结合测试结果,合成的紫外光-水双触发靶向微胶囊为球形颗粒,微胶囊壁厚在4μm左右,TiO2@SiO2纳米粒子在功能壳层中均匀分布,形成了具有紫外屏蔽功能的TiO2@SiO2/PU壳层,TiO2@SiO2粒径范围为40~50nm。微胶囊的粒径在150-190μm之间,平均粒径为173.5μm。由微胶囊红外光谱图图10所示,在1249cm-1,1620cm-1,1749cm-1,3240cm-1处分别对应C-O的伸缩振动吸收峰,氢键合C=O的伸缩振动吸收峰,非氢键合C=O的伸缩振动吸收峰以及N-H的拉伸振动吸收峰。可以证明氨基甲酸(NHCOO)基团存在微胶囊中,即聚氨酯壳层已形成。由微胶囊和芯材的TGA质量损失曲线,由图可知芯材热分解温度在315℃左右,经壳体的包覆后降解温度提升至351℃。PU壳层热分解温度为213℃,具有较好的热稳定性。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (9)

1.一种紫外光和水分双重触发的聚氨酯微胶囊的制备方法,其特征在于:该方法包括以下步骤:
(1)将表面活性剂和水混合,得到表面活性剂溶液;
(2)将TDI预聚体溶解在有机溶剂中,得到溶解后的TDI预聚体溶液;将Fe3O4@SiO2纳米颗粒加入到TDI预聚体溶液中,超声分散均匀;然后加入芯材继续搅拌,得到混合液;将得到的混合液加入到表面活性剂溶液中得到乳液,之后在温度为40~60℃的条件下在乳液中加入1,4丁二醇,65~75℃的条件下反应0.5~1h,反应结束后冷却至室温,洗涤后干燥即得聚氨酯微胶囊。
2.根据权利要求1所述的紫外光和水分双重触发的聚氨酯微胶囊的制备方法,其特征在于:所述的表面活性剂为质量比为4~10:0.1~0.5的阿拉伯胶和十二烷基三甲基溴化铵。
3.根据权利要求1所述的紫外光和水分双重触发的聚氨酯微胶囊的制备方法,其特征在于:表面活性剂、TDI预聚体、Fe3O4@SiO2纳米颗粒、芯材和1,4丁二醇的质量比依次为7~8:8~10:0.3~0.8:25~30:6~7。
4.根据权利要求1所述的紫外光和水分双重触发的聚氨酯微胶囊的制备方法,其特征在于:Fe3O4@SiO2 纳米颗粒的制备方法如下:
s1、将FeCl3 、二水合柠檬酸三钠、乙二醇混合搅拌均匀后加入乙酸钠,再次混匀得到混合液,将混合液倒入高温反应釜中180~220℃反应8~12h,水冷反应釜收集固体,将该固体洗涤后即可得到Fe3O4 颗粒;
s2、将制得的Fe3O4纳米颗粒、无水乙醇和浓氨水在温度为30~40℃,转速为150~400rpm/min的条件下搅拌混匀,之后加入正硅酸乙酯搅拌10~12 h,超声清洗,即可得Fe3O4@SiO2 纳米颗粒。
5.根据权利要求4所述的紫外光和水分双重触发的聚氨酯微胶囊的制备方法,其特征在于:s1中:FeCl3、二水合柠檬酸三钠、乙二醇和乙酸钠的质量比为为3~4:1~2:110~120:5.5~6.5;
s2中,Fe3O4纳米颗粒和正硅酸乙酯的体积比为3~5:2~3。
6.根据权利要求1所述的紫外光和水分双重触发的聚氨酯微胶囊的制备方法,其特征在于:将TDI溶解于预干燥的氯苯CH溶剂中搅拌均匀,进行N2 净化,蒸馏后去除混合物中多余的反应物得到用于形成微胶囊壳体的TDI预聚体,TDI预聚体的固体含量为10~16 wt%。
7.根据权利要求1所述的紫外光和水分双重触发的聚氨酯微胶囊的制备方法,其特征在于:聚氨酯丙烯酸酯低聚体的制备过程为:将IPDI和催化剂DBTDL在温度为40~60℃的条件下混合,并在其中缓慢加入 HEMA,加入完毕后在 55~64℃反应3~5小时,反应完成后加入稀释剂St和光引发剂184,得到紫外光和水分双重触发芯材聚氨酯丙烯酸酯低聚体;
其中:IPDI、DBTDL、HEMA、稀释剂St和光引发剂184的质量比为20~25:0.03~0.04:12.5~13.5:14.8~15.3:1.2~1.8。
8.一种紫外光和水分双重触发的聚氨酯微胶囊,其特征在,该聚氨酯微胶囊采用权利要求1-7任一项所述的方法制备得到。
9.权利要求1所述方法制得的紫外光和水分双重触发的聚氨酯微胶囊可以在水分和紫外光的激励下对环氧树脂内机械与电树枝损伤实现自修复。
CN202210689930.7A 2022-06-17 2022-06-17 紫外光和水分双重触发的聚氨酯微胶囊及制备方法和应用 Pending CN115007076A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210689930.7A CN115007076A (zh) 2022-06-17 2022-06-17 紫外光和水分双重触发的聚氨酯微胶囊及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210689930.7A CN115007076A (zh) 2022-06-17 2022-06-17 紫外光和水分双重触发的聚氨酯微胶囊及制备方法和应用

Publications (1)

Publication Number Publication Date
CN115007076A true CN115007076A (zh) 2022-09-06

Family

ID=83074138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210689930.7A Pending CN115007076A (zh) 2022-06-17 2022-06-17 紫外光和水分双重触发的聚氨酯微胶囊及制备方法和应用

Country Status (1)

Country Link
CN (1) CN115007076A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097194A (zh) * 2010-12-10 2011-06-15 北京化工大学 壳核结构SiO2/Fe3O4复合磁性粒子的制备方法
CN102350281A (zh) * 2011-06-24 2012-02-15 东北师范大学 基于荧光介孔二氧化硅蛋黄-蛋壳纳米胶囊的制备方法
WO2015074342A1 (zh) * 2013-11-25 2015-05-28 深圳大学 一种以聚氨酯为壁材的环氧微胶囊的制备方法
CN110013807A (zh) * 2019-04-28 2019-07-16 燕山大学 一种光引发自修复微胶囊的制备方法
AU2021105572A4 (en) * 2021-08-16 2021-10-14 Institute of Tobacco Research of CAAS Anti-ultraviolet microbial agent and application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097194A (zh) * 2010-12-10 2011-06-15 北京化工大学 壳核结构SiO2/Fe3O4复合磁性粒子的制备方法
CN102350281A (zh) * 2011-06-24 2012-02-15 东北师范大学 基于荧光介孔二氧化硅蛋黄-蛋壳纳米胶囊的制备方法
WO2015074342A1 (zh) * 2013-11-25 2015-05-28 深圳大学 一种以聚氨酯为壁材的环氧微胶囊的制备方法
CN110013807A (zh) * 2019-04-28 2019-07-16 燕山大学 一种光引发自修复微胶囊的制备方法
AU2021105572A4 (en) * 2021-08-16 2021-10-14 Institute of Tobacco Research of CAAS Anti-ultraviolet microbial agent and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POTAO SUN: "A novel UV, moisture and magnetic field tripleresponse smart insulating material achieving highly targeted self-healing based on nanofunctionalized microcapsules", NANOSCALE, vol. 14, no. 6, pages 2199 - 2209 *
梁琛: "单组份光敏微胶囊/纳米SiO2/环氧树脂复合绝缘介质的自修复特性", 电工技术学报, vol. 37, no. 06, pages 1564 - 1571 *

Similar Documents

Publication Publication Date Title
WO2014194600A1 (zh) 一种以聚脲为壁材的环氧微胶囊及其制备方法
CN102336884A (zh) 一种大分子单体改性纳米二氧化硅水硅溶胶及其光固化水性聚氨酯纳米复合乳液的制备方法
CN111057264B (zh) 高透过率智能液晶调光膜及其制备方法
Xiao et al. Highly sensitive detection of Fe3+ ions using waterborne polyurethane‐carbon dots self‐healable fluorescence film
CN115232465B (zh) 一种可在海水中实现自修复的强韧自修复材料的制备方法
CN103225210A (zh) 一种表面接枝改性的芳纶纤维及其制备方法
CN111925642A (zh) 自修复碳纳米管-阳离子水性聚氨酯电磁屏蔽复合材料的制备方法
CN110343269A (zh) 一种碳纤维表面原位生长聚合物粒子制备高性能复合材料的方法
US20100273946A1 (en) Microcapsule, method for making the same, and composite using the same
CN112992404A (zh) 一种高导电率导电浆料
CN115007076A (zh) 紫外光和水分双重触发的聚氨酯微胶囊及制备方法和应用
CN114874587A (zh) 一种具有机械损伤靶向自愈合性能的环氧树脂复合绝缘材料
CN109796576B (zh) 一种玻璃纤维成膜剂及其制备方法
CN105948117B (zh) 一种以水热法制备HfO2纳米颗粒的方法
Guan et al. Fluorescent CdTe-QD-encoded nanocellulose microspheres by green spraying method
CN113817437A (zh) 一种增硬聚氨酯丙烯酸酯胶黏剂及其制备方法
CN109698075B (zh) 多核-单壳结构Au@mSiO2复合微球、制备方法及应用
CN108753134B (zh) 一种水性金属漆及其制备方法
Chandrashekhar et al. Development of flexible bio based porous polyurethane nanocellulose composites for wastewater treatment
CN102942932A (zh) 一种稀土掺杂氟化物纳米分散液的制备方法
CN112760020A (zh) 一种抗菌防腐聚脲涂料及其制备方法
CN114735763B (zh) 一种中空多壳层金属氧化物及其制备方法和用于方舱的防爆聚脲
KR101183517B1 (ko) 우레탄 아크릴레이트, 이를 포함하는 바인더 조성물 및 이를 이용한 섬유 가공 처리방법
CN108191256A (zh) 一种下转换增透薄膜及其制备方法与应用
KR102659609B1 (ko) 탄소섬유 피복방법 및 이를 통해 제조되는 탄소섬유 직조원단

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220906