CN114990616B - Ni-FeOx/FeNi3/NF复合电催化剂及其制备方法与应用 - Google Patents

Ni-FeOx/FeNi3/NF复合电催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN114990616B
CN114990616B CN202210489160.1A CN202210489160A CN114990616B CN 114990616 B CN114990616 B CN 114990616B CN 202210489160 A CN202210489160 A CN 202210489160A CN 114990616 B CN114990616 B CN 114990616B
Authority
CN
China
Prior art keywords
feni
feo
electrocatalyst
precursor
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210489160.1A
Other languages
English (en)
Other versions
CN114990616A (zh
Inventor
胡良胜
阿卜杜勒·卡尤姆
周健鸿
夏红
鲁福身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shantou University
Original Assignee
Shantou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shantou University filed Critical Shantou University
Priority to CN202210489160.1A priority Critical patent/CN114990616B/zh
Publication of CN114990616A publication Critical patent/CN114990616A/zh
Application granted granted Critical
Publication of CN114990616B publication Critical patent/CN114990616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明涉及一种Ni‑FeOx/FeNi3/NF复合电催化剂及其制备方法与应用,制备方法包括以下步骤:(1)制备铁源‑燃料溶液前驱体;(2)将前驱体溶液滴加到NF表面,然后放置于120~200℃的加热板上进行原位燃烧反应,得到非晶态的多孔Ni‑FexOy纳米粒子;(3)将步骤(2)所得非晶态的多孔Ni‑FexOy纳米粒子转移到管式炉中在氩气氛围下,在300‑600℃中煅烧1~4小时。本发明采用原位溶液燃烧法和煅烧法相结合在泡沫镍基底上制备了大面积的镍掺杂铁基复合电催化剂Ni‑FeOx/FeNi3/NF,其中Ni‑FeOx、FeNi3和碳保护层协同作用,大大提高水分解催化活性,Ni‑FeOx/FeNi3/NF在OER/HER反应中表现出高活性、耐用、可承受大电流密度、高稳定性等特点。而且本发明的制备方法新颖、经济、简便、可扩展。

Description

Ni-FeOx/FeNi3/NF复合电催化剂及其制备方法与应用
技术领域
本发明属于生物技术领域,具体涉及一种Ni-FeOx/FeNi3/NF复合电催化剂及其制备方法与应用。
背景技术
镍/铁基材料是一类具有重要应用前景的析氧反应(OER)电催化剂,但是目前它们大多不适用于析氢反应(HER)。为了进一步降低电极的电阻和过电位,并提高其稳定性,人们提出了多种增强镍铁基催化剂中电荷转移的策略,包括形成氧空位、掺杂、缺陷工程、杂化结构和碳复合材料等。但是现有的镍铁基氧化物催化剂都是粉末状,需要通过电绝缘聚合物粘合剂粘连到集流体,所制备的电极只能承载相对较小的电流密度(<100mA cm-2),难以满足商业生产需求。由于粘合剂会覆盖催化剂表面,因此将减小催化剂活性面积,减弱电荷转移,导致催化剂在大电流密度时过电势高和易脱落等问题。尽管个别催化剂可在1000mA cm-2的工业电流密度条件下运行,但研究者很少考虑或评估它们的经济性和商业可行性。人们通常采用电沉积法、溶剂热法、电磁感应加热法等复杂或昂贵的技术来制备水分解电催化剂,难以实现其商业化应用。因此,通过简单经济的方法在载体/集流体上直接生长高效、稳定、大电流密度的自支撑全解水电极具有巨大的商业价值。
发明内容
本发明的目的在于提供一种简单、可放大的原位溶液燃烧法制备高效、稳定的Ni-FeOx/FeNi3复合电催化剂,以解决目前存在的技术问题。
一种Ni-FeOx/FeNi3/NF复合电催化剂的制备方法,包括以下步骤:
(1)制备铁源-燃料溶液前驱体;
(2)将前驱体滴加到泡沫镍(NF)表面,然后放置于120~200℃的加热板上进行原位燃烧反应,得到非晶态的多孔Ni-FexOy纳米粒子;
(3)将步骤(2)所得非晶态的多孔Ni-FexOy纳米粒子转移到管式炉中在氩气氛围下,在300-600℃中煅烧1~4小时,实现结晶、碳化以及合金化,转化为最终的Ni-FeOx/FeNi3/NF自支撑复合催化剂。
本发明提供了一种新颖、可扩展、经济、简便的方法来合成无粘结剂、自支撑型高效电极,用于电催化等领域。本发明制备自支撑Ni-FeOx/FeNi3/NF复合催化剂不需要任何额外的粘合剂。原位燃烧反应过程中释放的能量使得Ni-FeOx/FeNi3电催化剂纳米粒子在泡沫镍基底上紧密附着或沉积。泡沫镍不仅作为基底,而且作为电催化剂的一部分,为Ni-FeOx和FeNi3合金的形成提供了镍源。得到的自支撑Ni-FeOx/FeNi3/NF电极具有良好的HER、OER性能,稳定、高效而且电流密度大。
进一步的,所述铁源为Fe(NO3)3·9H2O。
进一步的,每1.5cm2的NF上滴加200-500μL铁源-燃料溶液前驱体,其中滴加400μL时效果最佳。
进一步的,所述燃料为乙二胺、乙二醇、甘氨酸中的一种或者多种。燃料的分子结构和长度会影响纳米粒子的形成。燃点主要取决于氧化剂的浓度,浓度越大,燃点越低,经过优化的温度范围为120~200℃,其中180℃下制得的样品性能最好。
进一步的,所述铁源-燃料溶液的浓度为0.12M~1.2M,其中浓度为0.48M效果最佳。
进一步的,所述非晶态的多孔Ni-FexOy纳米粒子中Fe:Ni的摩尔比为1:1-1.5,其中摩尔比为1:1.3时效果最佳。
上述制备方法所得Ni-FeOx/FeNi3/NF复合电催化剂。该催化剂由镍掺杂的铁氧化合物(Fe2O3和Fe3O4)和NiFe合金纳米颗粒组成的复合结构(Ni-FeOx/FeNi3),纳米颗粒表面还负载了一层薄薄的碳保护层。
上述Ni-FeOx/FeNi3/NF复合电催化剂的应用,用于电催化分解水。
与现有技术相比,本发明采用原位溶液燃烧法和煅烧法相结合在泡沫镍(NF)基底上制备了大面积的镍掺杂的氧化铁(Ni-FeOx)和FeNi3组成的复合电催化剂Ni-FeOx/FeNi3/NF,其中Ni-FeOx、FeNi3和碳保护层协同作用,大大提高水分解催化活性。本发明的复合电催化剂Ni-FeOx/FeNi3/NF在OER/HER反应中表现出高活性、耐用、可承受大电流密度、高稳定性等特点;在电流密度分别为50mA cm-2和1000mA cm-2时,HER反应的过电位仅为71mV和269mV、OER的过电位仅为270mV和405mV;而且电流密度为50mA cm-2时,催化剂可在HER和OER反应中分别稳定运行280小时和200小时。
附图说明
图1是Ni-FeOx/FeNi3/NF电极的制备示意图;
图2是Ni-FexOy和Ni-FeOx/FeNi3样品的XRD图谱;
图3中(a)是Ni-FexOy/NF样品SEM图像,图3中(b)是Ni-FeOx/FeNi3/NF电极的SEM图像;
图4是Ni-FeOx/FeNi3样品的TEM图像;
图5中(a)是Ni-FeOx/FeNi3/NF以及Ni-Fe2O3/NF、Pt/C/NF、NF对比电极在HER反应中的LSV曲线,图5中(b)是Ni-FeOx/FeNi3/NF在HER反应中的稳定性;
图6中(a)是Ni-FeOx/FeNi3/NF以及Ni-Fe2O3/NF、Pt/C/NF、NF对比电极在OER反应中的LSV曲线,图6中(b)是Ni-FeOx/FeNi3/NF在OER反应中的稳定性;
图7前驱体溶液体积对Ni-FeOx/FeNi3/NF HER性能影响的LSV曲线;
图8退火温度对Ni-FeOx/FeNi3/NF HER性能影响的LSV曲线;
图9前驱体溶液组分对催化剂HER活性影响的LSV曲线;
图10在NF基底上制备的对比催化剂在OER反应中的LSV曲线;
图11在碳布基底上制备的双金属催化剂在OER反应中的LSV曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
实施例1
Ni-FeOx/FeNi3/NF电极的制备,如图1所示,包括以下步骤:把Fe(NO3)3·9H2O(氧化剂)溶解在燃料(乙二胺或乙二醇或甘氨酸)中,配制成0.48M的氧化燃料溶液前驱体。将1.5cm2大小的NF放置于加热板上,滴加400μL的前驱体溶液到NF表面,180℃加热1小时后完成Ni-FexOy的负载。再将所得样品转移到管式炉中在氩气氛围下在400℃中煅烧1~4小时,制得Ni-FeOx/FeNi3/NF电极。
对比例1
把硝酸钴或硝酸镍溶解在燃料(乙二胺或乙二醇或甘氨酸)中,配制成0.48M氧化燃料溶液前驱体。将1.5cm2大小的NF放置于加热板上,滴加400μL前驱体溶液到NF表面,在180℃加热1小时。再将所得样品转移到管式炉中在氩气氛围下,在400℃中煅烧1~4小时。
对比例2
把Fe(NO3)3·9H2O、硝酸钴和硝酸镍中的任意两种溶解在燃料(乙二胺或乙二醇或甘氨酸)中,配制成不同含量比例的0.48M氧化燃料溶液前驱体。将1.5cm2大小的NF放置于加热板上,滴加400μL前驱体溶液到NF表面,在180℃加热1小时。再将所得样品转移到管式炉中在氩气氛围下,在400℃中煅烧1~4小时。
对比例3
把Fe(NO3)3·9H2O、硝酸钴和硝酸镍中的任意两种按照1:1的比例溶解在燃料(乙二胺或乙二醇或甘氨酸)中,配制成0.48M氧化燃料溶液前驱体。将碳布放置于加热板上,滴加400μL前驱体溶液到碳布表面,在180℃加热1小时。再将所得样品转移到管式炉中在氩气氛围下,在400℃中煅烧1~4小时。
对比例4
Pt/C/NF电极的制备
把质量分数为20%的Pt/C粉末分散在含有50μL Nafion(5%,DuPont)的1mL乙醇-水(体积比为1:1)溶液中,然后滴在泡沫镍上,置于60℃烘箱中烘干,制得的Pt/C/NF电极(催化剂负载量约为4mg cm-2)。
性能表征
1、XRD和微观结构表征
将实施例1的Ni-FeOx/FeNi3样品从电极表面刮下,分别进行XRD和微观结构表征。XRD结果表明,电极表面的Ni-FeOx/FeNi3样品具有晶体结构。如图2所示,30.1°、35.4°、37.0°、43.2°、53.6°、57.0°和62.6°的衍射峰,归属于立方Fe3O4的(220)、(220)、(222)、(422)、(511)和(440)晶面。44.0°、51.3°和75.5°的衍射峰,归属于立方FeNi3的(111),(200)和(220)晶面。实施例1的多孔Ni-FexOy纳米粒子中Fe:Ni的摩尔比为1:1.3。
对实施例1制备的电催化剂Ni-FeOx/FeNi3/NF进行扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征分析。由于燃烧反应过程中释放气体,无定形Ni-FexOy纳米粒子在NF基底上产生了高度多孔的3D网络结构,如图3中(a)。热处理后得到的Ni-FeOx/FeNi3/NF保持了纳米粒子收缩的多孔结构,如图3中(b)。图4中(a)同样显示了Ni-FeOx/FeNi3为多孔网络结构,纳米粒子尺寸在10~50nm之间。高倍TEM图像,如图4中(b)显示Ni-FeOx/FeNi3纳米粒子由三种不同的晶相组成。0.297nm和0.201nm的晶面间距归属于Fe3O4(220)和FeNi3(111)晶面,0.253nm和0.208nm的晶面间距与Fe2O3的(311)和(400)晶面相吻合,证明Fe2O3和Fe3O4两种物质都存在于Ni-FeOx/FeNi3纳米粒子中。然而,由于Fe2O3样品含量低,在XRD中未能检出来。此外,高分辨TEM图像清晰地显示在Ni-FeOx和FeNi3表面存在碳包覆层,如图4中(b)。
2、电化学测试
采用CHI760E电化学工作站由标准的三电极体系完成电化学测试,其中Ni-FeOx/FeNi3/NF、Ni-Fe2O3/NF、Pt/C/NF、对比例1-3的对比电极或NF等为工作电极,Hg/HgO为参比电极,石墨棒为对电极。采用5mV·s-1的扫速在获得线性扫描伏安曲线(LSV),经iR校正和Nernst方程(E(RHE)=E(Hg/HgO)+0.098+0.059V×pH)转换后获得反应电位。
HER结果如图5表明,电流密度分别为50mA cm-2和1000mA cm-2时,Ni-FeOx/FeNi3/NF的HER反应过电位仅为71mV和269mV,Ni-FeOx/FeNi3/NF复合电催化剂在约50mA cm-2的电流密度下能稳定工作280小时。OER结果如图6表明,电流密度分别为50mA cm-2和1000mA cm-2时,Ni-FeOx/FeNi3/NF的OER反应的过电位仅为270mV和405mV,Ni-FeOx/FeNi3/NF复合催化剂在约50mA cm-2的电流密度下能稳定工作200小时。通过这种新颖、简单、可放大策略合成的Ni-FeOx/FeNi3/NF电极在水分解呈现优异的活性和稳定性,具有广阔的应用前景。
在条件优化实验中,由不同体积(200μL、300μL、400μL、500μL)的Fe(NO3)3·9H2O前驱体溶液制备的Ni-FeOx/FeNi3/NF(3*0.5cm2)样品的电化学性能如图7所示,400μL(即用266μL cm-2前驱体制备了约4mg cm-2的电催化剂)制备的样品性能优于其他样品的性能;在不同退火温度(300℃、400℃、500℃、600℃)下制备的Ni-FeOx/FeNi3/NF样品的电化学性能如图8所示,400℃中退火制备的样品性能优于其他样品的性能。本发明还尝试了分别在120℃、140℃、160℃、180℃、200℃加热1小时后完成Ni-FexOy的负载,发现在180℃加热1h的样品性能最好。研究发现本发明的非晶态的多孔Ni-FexOy纳米粒子中Fe:Ni的摩尔比为1:1-1.5,当摩尔比为1:1.3时效果最佳。本发明还尝试将铁源-燃料溶液浓度配置成0.12M、0.48M、1M、1.2M,当铁源-燃料溶液浓度为0.48M时效果最佳。
对比例1-2中由单一Fe或Co前驱体溶液和双金属CoaFeb前驱体溶液在NF基底上制备不同的样品的HER电化学性能如图9所示,单一Fe前驱体溶液制备的样品的HER电化学性能优于其他前驱体溶液制备的样品的性能。对比例1-2中由前驱体溶液在NF基底上制备单一Ni或Co和双金属NiCo、NiFe的样品的OER电化学性能如图10所示,所得催化剂的OER电化学性能远低于Ni-FeOx/FeNi3/NF的性能。对比例3中由Ni、Fe或Co中任意两种前驱体溶液在碳布基底上制备双金属样品的OER电化学性能如图11所示,所得催化剂的OER电化学性能同样远低于Ni-FeOx/FeNi3/NF的性能。

Claims (5)

1.一种Ni-FeOx/FeNi3/NF复合电催化剂的制备方法,其特征在于,包括以下步骤:
(1)制备铁源-燃料溶液前驱体;
(2)将前驱体滴加到NF表面,然后放置于120~200℃的加热板上进行原位燃烧反应,得到非晶态的多孔Ni-FexOy纳米粒子;
(3)将步骤(2)所得非晶态的多孔Ni-FexOy纳米粒子转移到管式炉中在氩气氛围下,在300-600℃中煅烧1~4小时;
其中,所述燃料为乙二胺、乙二醇、甘氨酸中的一种或者多种;
所述铁源-燃料溶液的浓度为0.12M~1.2M;
每1.5cm2的NF上滴加200-500μL铁源-燃料溶液前驱体。
2.根据权利要求1所述Ni-FeOx/FeNi3/NF复合电催化剂的制备方法,其特征在于,所述铁源为Fe(NO3)3·9H2O。
3.根据权利要求1所述Ni-FeOx/FeNi3/NF复合电催化剂的制备方法,其特征在于,所述非晶态的多孔Ni-FexOy纳米粒子中Fe:Ni的摩尔比为1:1-1.5。
4.根据权利要求1-3任一项所述制备方法所得Ni-FeOx/FeNi3/NF复合电催化剂。
5.根据权利要求4所述Ni-FeOx/FeNi3/NF复合电催化剂的应用,其特征在于,用于电催化分解水。
CN202210489160.1A 2022-05-07 2022-05-07 Ni-FeOx/FeNi3/NF复合电催化剂及其制备方法与应用 Active CN114990616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210489160.1A CN114990616B (zh) 2022-05-07 2022-05-07 Ni-FeOx/FeNi3/NF复合电催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210489160.1A CN114990616B (zh) 2022-05-07 2022-05-07 Ni-FeOx/FeNi3/NF复合电催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114990616A CN114990616A (zh) 2022-09-02
CN114990616B true CN114990616B (zh) 2023-11-03

Family

ID=83025842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210489160.1A Active CN114990616B (zh) 2022-05-07 2022-05-07 Ni-FeOx/FeNi3/NF复合电催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114990616B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107008461A (zh) * 2017-03-31 2017-08-04 中山大学 蜂窝状大孔结构过渡金属基催化剂电极及其制备方法和应用
WO2020168390A1 (en) * 2019-02-21 2020-08-27 Newsouth Innovations Pty Limited Nanoparticle and its use as a water-splitting catalyst
CN113019398A (zh) * 2021-03-02 2021-06-25 山东大学 一种高活性自支撑oer电催化剂材料及其制备方法与应用
WO2021209547A1 (en) * 2020-04-15 2021-10-21 Fundació Institut Català D'investigació Química (Iciq) Method of preparation of electrode for electrocatalysis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008063843A2 (en) * 2006-11-03 2008-05-29 Florida State University Composites and electrodes for electrochemical devices and processes for producing the same
CN114059082B (zh) * 2021-11-30 2024-03-19 安徽理工大学 一种N,P共掺杂NF@NiMoO4中空纳米线复合材料及其制备方法和应用
CN114959736B (zh) * 2022-04-29 2023-04-07 盐城工学院 一种用于电催化全解水的铁镍硒氧化物电极材料、电极及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107008461A (zh) * 2017-03-31 2017-08-04 中山大学 蜂窝状大孔结构过渡金属基催化剂电极及其制备方法和应用
WO2020168390A1 (en) * 2019-02-21 2020-08-27 Newsouth Innovations Pty Limited Nanoparticle and its use as a water-splitting catalyst
WO2021209547A1 (en) * 2020-04-15 2021-10-21 Fundació Institut Català D'investigació Química (Iciq) Method of preparation of electrode for electrocatalysis
CN113019398A (zh) * 2021-03-02 2021-06-25 山东大学 一种高活性自支撑oer电催化剂材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Iron doped Ni3S2 nanorods directly grown on FeNi3 foam as an efficient bifunctional catalyst for overall water splitting;Wenxiu Zhang等;Chemical Engineering Journal;第396卷;1-12 *

Also Published As

Publication number Publication date
CN114990616A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN111185188B (zh) 一种铁钴镍铜基高熵合金电解水催化材料及其制备方法
Huang et al. Selective selenization of mixed-linker Ni-MOFs: NiSe2@ NC core-shell nano-octahedrons with tunable interfacial electronic structure for hydrogen evolution reaction
Wang et al. The application of CeO 2-based materials in electrocatalysis
Qiao et al. 3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media
Yang et al. An efficient NiS@ N/SC hybrid oxygen evolution electrocatalyst derived from metal-organic framework
Lin et al. Perovskite nanoparticles@ N-doped carbon nanofibers as robust and efficient oxygen electrocatalysts for Zn-air batteries
CN109701545B (zh) 一种负载钒钴合金纳米颗粒的电催化材料及其制备方法
Li et al. Synthesis of nitrogen-rich porous carbon nanotubes coated Co nanomaterials as efficient ORR electrocatalysts via MOFs as precursor
CN113089017B (zh) 一种金属铋纳米颗粒复合材料及其制备方法和用途
CN112349921B (zh) 一种氮掺杂石墨烯空心球催化剂、制备方法及应用
Wang et al. Nanoscale nickel–iron nitride-derived efficient electrochemical oxygen evolution catalysts
Zhang et al. Engineering electrocatalytic fiber architectures
Ma et al. Rare-earth metal oxide hybridized PtFe nanocrystals synthesized via microfluidic process for enhanced electrochemical catalytic performance
CN111672521A (zh) 一种过渡金属单原子材料及其制备方法和应用
CN113471452B (zh) 一种用于析氢氧还原的多位点复合纳米管及其制法与应用
CN110635141B (zh) 一种基于协同改性的非贵金属肼氧化催化剂及其制备方法
He et al. Metal organic framework derived perovskite/spinel heterojunction as efficient bifunctional oxygen electrocatalyst for rechargeable and flexible Zn-air batteries
CN112725819A (zh) 一种钨钼基氮碳化物纳米材料及其制备方法与应用
CN112909271A (zh) 一种具有海胆状形貌的整体式过渡金属磷化物电催化剂及其制备方法与应用
Guo et al. Core-shell structured metal organic framework materials derived cobalt/iron–nitrogen Co-doped carbon electrocatalysts for efficient oxygen reduction
Chen et al. Heteroepitaxial metal-organic frameworks derived cobalt and nitrogen codoped carbon nanosheets to boost oxygen reduction
Xiong et al. Prospective applications of transition metal-based nanomaterials
Zhao et al. In-situ growth of cobalt manganate spinel nanodots on carbon black toward high-performance zinc-air battery: Dual functions of 3-aminopropyltriethoxysilane
CN112397736A (zh) 一种基于MOF制备的FePt@C复合纳米材料及其应用
CN114990616B (zh) Ni-FeOx/FeNi3/NF复合电催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant