CN114975759B - 一种快速制备YbAl3热电薄膜的方法 - Google Patents

一种快速制备YbAl3热电薄膜的方法 Download PDF

Info

Publication number
CN114975759B
CN114975759B CN202210410567.0A CN202210410567A CN114975759B CN 114975759 B CN114975759 B CN 114975759B CN 202210410567 A CN202210410567 A CN 202210410567A CN 114975759 B CN114975759 B CN 114975759B
Authority
CN
China
Prior art keywords
powder
ybal
film
substrate
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210410567.0A
Other languages
English (en)
Other versions
CN114975759A (zh
Inventor
赵文俞
张晓鹏
贺丹琪
翟鹏程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202210410567.0A priority Critical patent/CN114975759B/zh
Publication of CN114975759A publication Critical patent/CN114975759A/zh
Application granted granted Critical
Publication of CN114975759B publication Critical patent/CN114975759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种快速制备YbAl3热电薄膜的方法,以Al粉和YbAl3粉为原料,首先采用蒸镀工艺将原料蒸镀至基板表面,快速形成前驱体薄膜;然后采用改进的高温退火工艺,促进得到结晶度较好的单相YbAl3薄膜。本发明涉及的工艺简单、制备时间短,所制备的YbAl3热电薄膜结晶度较好,可为YbAl3热电薄膜的规模化制备和大规模应用奠定良好的基础。

Description

一种快速制备YbAl3热电薄膜的方法
技术领域
本发明属于新能源材料技术领域,具体涉及一种快速制备YbAl3热电薄膜的方法。
背景技术
热电材料是一种通过材料内部载流子的有效运动实现热能和电能直接转化的一种功能材料。热电技术是一种可靠的绿色环保的新型能源转换技术,主要应用于温差发电和热电制冷等领域。热电器件与其它能源转换器件相比,具有很多突出优点,如无噪音、结构简单、稳定性高、寿命长、体积小方便携带、环保无污染和适用温度范围广等。近年来,一些非常规热电材料引起研究学者的关注,如YbAl3,它是一种典型的重费米子材料,是低温区间功率因子最高的热电材料,具有优异的综合电输运性能(极高电导率和大Seebeck系数),已经成为一种在低温区范围非常有潜力的n型热电材料。另外,在我国Yb元素和Al元素资源非常丰富、价格也比较便宜,且这两种元素对环境危害较小。因此YbAl3二元化合物材料被公认为是一种具有潜在应用前景的低温区热电材料。
由于热电器件在集成电路、微型电子设备、可穿戴电子设备和微传感器热电器件的应用潜力,热电器件小型化已成为一个迅速发展的学科。目前,用于制备热电薄膜材料的方法有主要包括真空蒸发镀膜、溅射镀膜法、离子镀膜法、离子化学气相沉积、分子束外延法和脉冲激光沉积等。其中,真空蒸发镀膜是将块体或者粉末等固体材料置于真空条件下,给予一个高的电流使材料迅速升温然后熔融挥发并沉积在玻璃片等衬底上形成所需的薄膜材料。真空蒸发镀膜方法制备工艺简单,制备速度快且效率较高;但其制备过程较快,不容易形成结晶度较高的薄膜材料。同时,目前YbAl3薄膜的制备工艺较为欠缺,有学者探索了利用YbAl3靶材和Al靶材双靶共溅射制备YbAl3热电薄膜的工艺,但是靶材的烧结工艺及其显微结构、基板温度、靶材功率和输出电压等对YbAl3热电薄膜的影响较大;且容易导致YbAl2的出现并难以去除;此外,溅射时间太长效率低下,不利于YbAl3热电薄膜的批量制备和大规模应用。因此,从材料制备工艺的简便性和科学性方面考虑,研究单相YbAl3薄膜材料的制备工艺对开展YbAl3热电薄膜材料的大规模应用具有非常积极的意义。
发明内容
本发明的主要目的在于针对现有技术存在的问题和不足,提供一种单相YbAl3薄膜的制备方法;涉及的工艺简单、制备时间短,所制备的YbAl3热电薄膜结晶度较好,可为YbAl3热电薄膜的规模化制备和大规模应用奠定良好的基础。
为实现上述目的,本发明采用的技术方案为:
一种快速制备YbAl3热电薄膜的方法,包括如下步骤:
1)以Al粉和YbAl3粉为原料,将原料在真空条件下蒸镀至基板表面,得表面含前驱体薄膜的基板;
2)向耐高温容器中加入Al粉,然后将步骤1)所得表面含前驱体薄膜的基板设置耐高温容器中,并控制基板蒸镀薄膜的一面与耐高温容器的内表面形成将Al粉包含在其中的密闭空间;然后在绝氧条件下加热进行高温退火,冷却,即在基板表面得到单相的YbAl3热电薄膜。
上述方案中,所述基板可选用玻璃基板或铜基底(如铜箔等)等。
上述方案中,所述Al粉和YbAl3粉的质量比为1:(4~6)。
上述方案中,所述蒸镀步骤包括:将Al粉和YbAl3粉分别放置在蒸发钨舟中,在真空度<6×10-3pa的条件下同时蒸镀YbAl3粉和Al粉;其中蒸镀YbAl3粉采用的电流为180~210A,蒸镀速度为
Figure BDA0003603502150000021
蒸镀Al粉采用的电流为150~180A,速度为
Figure BDA0003603502150000022
同时蒸镀时间为5~10min。
优选的,采用铜基底时,在同时蒸镀YbAl3粉和Al粉前,预先蒸镀Al粉,具体步骤包括:在真空度<6×10-3pa的条件下,控制电流为150~180A,速度
Figure BDA0003603502150000023
时间为5~10min;其中预先蒸镀的Al粉质量与同时蒸镀步骤引入的YbAl3粉的质量比为1:(4~8)。通过对铜基底预先蒸镀铝粉,先用较薄的Al层隔绝YbAl3和铜箔,可有效防止Yb和Cu发生反应;然后再将YbAl3粉和Al粉进行共镀,使Yb和Al完全反应。
上述方案中,步骤2)所述耐高温容器可选用坩埚等。
优选的,所述坩埚选用氧化铝等氧化物坩埚时,在使用前包覆一层耐高温且不与Al粉反应的保护层(如铜箔等);防止Yb和Al退火过程中氧化生成YbAlO3
上述方案中,步骤2)中所述Al粉的添加量控制在步骤2)所述密闭空间体积的0.04%以上。
进一步的,所述Al粉的添加量还控制在步骤2)所述密闭空间体积的0.1%以下;Al粉用量太高时,会造成原料浪费,增加制备成本。
上述方案中,所述绝氧条件可选用真空或惰性气氛条件。
上述方案中,所述惰性气氛可选用氮气或氩气等。
上述方案中,所述高温退火温度为600~650℃,时间为2~10min。
上述方案中,步骤2)所述加热速率可选用8~10℃/min。
本发明以Al粉和YbAl3粉为原料,首先采用蒸镀工艺将原料蒸镀至基板表面,快速形成前驱体薄膜;然后采用改进的高温退火工艺,通过在包含前驱体薄膜的密闭空间中引入一定用量的Al粉,在高温条件下可在密闭空间中增加Al蒸汽压,可有效抑制YbAl3薄膜上Al的大量挥发等问题,促进得到结晶度较好的单相YbAl3薄膜。
根据上述方案,可快速制备得到单相的YbAl3热电薄膜。
以上述内容为基础,在不脱离本发明基本技术思想的前提下,根据本领域的普通技术知识和手段,对其内容还可以有多种形式的修改、替换或变更。
与现有技术相比,本发明的有益效果为:
1)本发明首次公开了一种快速制备YbAl3热电薄膜的方法,在较短时间内即可得到目标产物,可有效避免现有磁控溅射等工艺需预烧靶材、溅射速度慢、容易生成YbAl2等问题;涉及的工艺超简单、制备时间超短,可显著降低能耗;可为YbAl3热电薄膜的规模化制备和大规模应用奠定良好基础;
2)本发明所得YbAl3热电薄膜具有良好的单相性,可为单相YbAl3热电薄膜的制备提供一条新思路。
附图说明
图1为实施例1、实施例2所述薄膜退火前的XRD图谱;
图2为实施例1所述薄膜退火后的形貌图;
图3为实施例1所述薄膜退火后的XRD图谱;
图4为实施例1所述薄膜退火后的场发射扫描电镜图;
图5为实施例2所述薄膜退火后的形貌图;
图6为实施例2所述薄膜退火后的XRD图谱;
图7为实施例2所述薄膜退火后的场发射扫描电镜图;
图8为对比例1所述薄膜退火后的XRD图谱;
图9为对比例2所述薄膜退火后的XRD图谱。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
以下实施例中,采用的Al粉为市售产品;YbAl3粉以Yb粉和Al粉为原料按1:3的摩尔比混料,采用自蔓延高温合成(Self-propagating high*temperature synthesis,简称SHS)方法合成。
实施例1
一种快速制备YbAl3热电薄膜的方法,具体步骤如下:
1)以Al粉和YbAl3粉为原料,分别称量两份质量为0.2g的Al粉,一份质量为0.95g的YbAl3粉;
2)以铜箔为基板,将称取的原料分别放入蒸发钨舟中,然后将三个蒸发钨舟放入真空蒸发镀膜腔体中进行真空蒸发镀膜;其中真空蒸发镀膜的工艺包括如下步骤:
在真空度<6×10-3pa的条件下(抽真空采用的时间为30min),先蒸镀其中一份Al粉,其中控制蒸镀电流为150A,蒸镀速度为
Figure BDA0003603502150000041
时间为5min;然后同时蒸镀YbAl3粉和另外一份Al粉,其中蒸镀YbAl3采用的电流为200A,速度
Figure BDA0003603502150000042
蒸镀Al粉采用的电流为150A,速度
Figure BDA0003603502150000043
同时蒸镀时间为5min;
3)坩埚(氧化铝坩埚,100ml)用铜箔包覆形成保护层,防止产物氧化,向坩埚内部放入占坩埚体积0.05%的Al粉,将表面蒸镀好薄膜的基板倒扣在氧化铝坩埚上,其中含薄膜的一面与坩埚内表面形成将Al粉包含其中的密闭空间(密闭空间基本与坩埚体积相同);然后放进管式炉里进行退火,退火工艺包括如下步骤:首先以10℃/min升温至630℃,保温5min;随炉冷却至室温;全程保护气氛为Ar气;即在基板表面得到单相的YbAl3热电薄膜。
将步骤2)所得蒸镀好的薄膜(前驱体薄膜)进行X射线衍射分析,结果如图1所示,结果表明:步骤2)所得前驱体薄膜的主相为Yb和Al,含有少量的YbAl3
图2为本实例所得产物的形貌图,可以看出,所得产物表面平整,呈现灰黑色。
对本实施例所得最终产物进行X射线衍射分析,结果如图3所示,可以看出,所得产物主相为纯相YbAl3并且结晶度良好(其中,铜对应铜箔引入的特征峰),表明采用本发明上述制备工艺,在短时间内可得到纯相的YbAl3热电薄膜。
图4为本实施例所得产物表面的场发射扫描电镜照片,可以看出,所得产物表面分布微米级的大颗粒,这些大颗粒主要由1μm左右的球形小颗粒聚集而成。
实施例2
一种快速制备YbAl3热电薄膜的方法,具体步骤如下:
1)以Al粉和YbAl3粉为原料,分别称量一份质量为0.15g的Al粉,一份质量为0.2g的Al粉,一份质量为0.95g的YbAl3粉;
2)以铜箔为基板,将称取的原料分别放入蒸发钨舟中,然后将三个钨舟放入真空蒸发镀膜腔体中进行真空蒸发镀膜;其中真空蒸发镀膜的工艺包括如下步骤:
在真空度<6×10-3pa的条件下(抽真空采用的时间为30min),先蒸镀其中一份0.15g的Al粉,其中控制蒸镀电流为150A,蒸镀速度为
Figure BDA0003603502150000044
时间为5min;然后同时蒸镀YbAl3粉和另外一粉0.2g的Al粉,其中蒸镀YbAl3采用的电流为200A,速度
Figure BDA0003603502150000045
蒸镀Al粉采用的电流为150A,速度
Figure BDA0003603502150000046
同时蒸镀时间为5min;
在得表面含前驱体薄膜的基板,其中含前驱体薄膜的表征结果见图1,其主相为Yb和Al,含有少量的YbAl3
4)坩埚(氧化铝坩埚,100ml)用铜箔包覆形成保护层,防止产物氧化,向坩埚内部放入坩埚体积0.05%的Al粉,将表面蒸镀好薄膜的基板倒扣在氧化铝坩埚上,其中含薄膜的一面与坩埚内表面形成将Al粉包含其中的密闭空间(密闭空间基本与坩埚体积相同);然后放进管式炉里进行退火,退火工艺包括如下步骤:首先以10℃/min升温至630℃,保温5min;随炉冷却至室温;全程保护气氛为Ar气;即在基板表面得到单相的YbAl3热电薄膜。
图5为本实施例所得产物的形貌图,可以看出,所得产物表面平整,呈现灰黑色。
对本实施例所得最终产物进行X射线衍射分析,结果如图6所示,可以看出,所得产物主相为纯相YbAl3并且结晶度良好(铜对应铜箔引入的特征峰),表明采用本发明上述制备工艺,在短时间内可得到纯相的YbAl3热电薄膜。
图7为本实施例所得产物表面的场发射扫描电镜照片,可以看出,所得产物表面分布微米级的大颗粒,这些大颗粒主要由1μm左右的球形小颗粒聚集而成。
对比例1
一种快速制备YbAl3热电薄膜的方法,其制备方法与实施例1大致相同,不同之处在于采用的退火工艺包括如下步骤:
将表面蒸镀好薄膜的基板直接放进管式炉里进行退火,首先以10℃/min升温至650℃,然后保温5min后随炉冷却至室温;全程保护气氛为Ar气。
对退火所得产物进行X射线衍射分析,结果如图8所示,结果表明:在上述反应条件下,Al部分挥发,剩余的Yb、Al与Cu基底发生反应进一步生成Cu3.5YbAl1.5相。
对比例2
一种快速制备YbAl3热电薄膜的方法,其制备方法与实施例1大致相同,不同之处在于采用的退火工艺包括如下步骤:
向100ml的氧化铝坩埚内部放入占坩埚体积0.05%的Al粉,将表面蒸镀好薄膜的基板倒扣在氧化铝坩埚上,其中含薄膜的一面与坩埚内表面形成将Al粉包含其中的密闭空间(密闭空间基本与坩埚体积相同);然后放进管式炉里进行退火,具体退火工艺包括如下步骤:首先以10℃/min升温至650℃,然后保温5min后随炉冷却至室温;全程保护气氛为真空条件、Ar气。
对退火所得产物进行物相分析,如图9所示,结果表明:所得产物主相为YbAlO3和YbAl3
上述实施例仅是为了清楚地说明所做的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或者变动,这里无需也无法对所有的实施方式予以穷举,因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (8)

1.一种快速制备YbAl3热电薄膜的方法,其特征在于,包括如下步骤:
1)以Al粉和YbAl3粉为原料,将原料在真空条件下蒸镀至基板表面,得表面含前驱体薄膜的基板;
所述蒸镀步骤包括:将Al粉和YbAl3粉分别放置在蒸发钨舟中,在真空度<6×10-3pa的条件下同时蒸镀YbAl3粉和Al粉;其中蒸镀YbAl3粉采用的电流为180~210A,蒸镀速度为
Figure FDA0004053845580000011
蒸镀Al粉采用的电流为150~180A,速度为
Figure FDA0004053845580000012
同时蒸镀时间为5~10min;
2)向耐高温容器中加入Al粉,然后将步骤1)所得表面含前驱体薄膜的基板设置在耐高温容器中,并控制基板蒸镀薄膜的一面与耐高温容器的内表面形成将Al粉包含在其中的密闭空间;然后在绝氧条件下加热进行高温退火,冷却,即在基板表面得到单相的YbAl3热电薄膜;
所述高温退火温度为600~650℃,时间为2~10min;
所述Al粉的添加量控制在步骤2)所述密闭空间体积的0.1%以下。
2.根据权利要求1所述的所述方法,其特征在于,所述基板为玻璃基板或铜基底。
3.根据权利要求1所述的所述方法,其特征在于,步骤1)中所述Al粉和YbAl3粉的质量比为1:(4~6)。
4.根据权利要求2所述的所述方法,其特征在于,采用铜基底时,在同时蒸镀YbAl3粉和Al粉前,预先蒸镀Al粉,具体步骤包括:在真空度<6×10-3pa的条件下,控制电流为150~180A,速度
Figure FDA0004053845580000013
时间为5~10min;其中预先蒸镀的Al粉质量与同时蒸镀步骤引入的YbAl3粉的质量比为1:(4~8)。
5.根据权利要求1所述的所述方法,其特征在于,步骤2)所述耐高温容器选用氧化物坩埚时,在使用前包覆一层耐高温且不与Al粉反应的保护层。
6.根据权利要求1所述的所述方法,其特征在于,步骤2)所述Al粉的添加量控制在步骤2)所述密闭空间体积的0.04%以上。
7.根据权利要求1所述的所述方法,其特征在于,所述绝氧条件为真空或惰性气氛条件。
8.权利要求1~7任一项所述制备方法制得的YbAl3热电薄膜,其特征在于,其组成为单相YbAl3
CN202210410567.0A 2022-04-19 2022-04-19 一种快速制备YbAl3热电薄膜的方法 Active CN114975759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210410567.0A CN114975759B (zh) 2022-04-19 2022-04-19 一种快速制备YbAl3热电薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210410567.0A CN114975759B (zh) 2022-04-19 2022-04-19 一种快速制备YbAl3热电薄膜的方法

Publications (2)

Publication Number Publication Date
CN114975759A CN114975759A (zh) 2022-08-30
CN114975759B true CN114975759B (zh) 2023-05-02

Family

ID=82976657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210410567.0A Active CN114975759B (zh) 2022-04-19 2022-04-19 一种快速制备YbAl3热电薄膜的方法

Country Status (1)

Country Link
CN (1) CN114975759B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179643A (ja) * 2002-11-12 2004-06-24 National Institute Of Advanced Industrial & Technology 熱電変換材料薄膜とセンサ素子及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238861B2 (en) * 2012-02-21 2016-01-19 Zetta Research and Development LLC—AQT Series Closed-space annealing process for production of CIGS thin-films

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179643A (ja) * 2002-11-12 2004-06-24 National Institute Of Advanced Industrial & Technology 熱電変換材料薄膜とセンサ素子及びその製造方法

Also Published As

Publication number Publication date
CN114975759A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Minami Transparent and conductive multicomponent oxide films prepared by magnetron sputtering
JP4279455B2 (ja) 混合金属カルコゲナイドナノ粒子の溶液合成法および前駆体膜のスプレー析出法
TWI583811B (zh) A Cu-Ga sputtering target, a method for manufacturing the target, a light absorbing layer, and a solar cell using the light absorbing layer
Reddy et al. Formation of polycrystalline SnS layers by a two-step process
TW201905231A (zh) 原子級薄金屬硫族化合物的合成
US9103000B2 (en) Low melting point sputter targets for chalcogenide photovoltaic applications and methods of manufacturing the same
He et al. Enhancement of thermoelectric performance of N-type Bi2Te3 based thin films via in situ annealing during magnetron sputtering
Hu et al. Advances in flexible thermoelectric materials and devices fabricated by magnetron sputtering
CN112251722B (zh) 一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法
CN114975759B (zh) 一种快速制备YbAl3热电薄膜的方法
Wasa et al. Some features of magnetron sputtering
JP2019149523A (ja) ストロンチウムを含む薄膜及びその製造方法
Kim et al. Preparation of copper (Cu) thin films by MOCVD and their conversion to copper selenide (CuSe) thin films through selenium vapor deposition
JP6428439B2 (ja) 珪化バリウム系バルク体、珪化バリウム系スパッタリングターゲット及びそれを用いた珪化バリウム系結晶膜の製造方法
Cheng et al. Optimization of post-selenization process of Co-sputtered CuIn and CuGa precursor for 11.19% efficiency Cu (In, Ga) Se 2 solar cells
Liu et al. Structural and optical properties of the Cu 2 ZnSnSe 4 thin films grown by nano-ink coating and selenization
Zhang et al. Boosted thermoelectric properties of molybdenum oxide thin films deposited on Si substrates
WO2022211739A1 (en) Ambient scalable synthesis of surfactant-free nanostructured chalcogenide particles for near room-temperature thermoelectric applications
Adurodija et al. Preparation of CuInSe2 thin films by selenization of co-sputtered Cu–In precursors
JP2016000674A (ja) 珪化バリウム系多結晶体及び前記珪化バリウム多結晶体からなるスパッタリングターゲット又は熱電変換素子
Tsai et al. Annealing effect on the structural and optoelectronic properties of Cu-Cr-O thin films deposited by reactive magnetron sputtering using a single CuCr target
Hong et al. Synthesis and Low-temperature Sintering of CuInSe2-CuGaSe2 Powders
JP7562093B2 (ja) 珪化物系合金薄膜及びその製造方法
Zhao et al. Deposition of high-Tc superconducting Y-Ba-Cu-O thin films at low temperatures using a plasma-enhanced organometallic chemical vapor deposition approach
CN116253558B (zh) 一种石墨烯包覆的电子化合物制备方法及薄膜制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant