CN114966568A - 一种权矢量时变的匀加速飞行雷达空时自适应处理方法 - Google Patents

一种权矢量时变的匀加速飞行雷达空时自适应处理方法 Download PDF

Info

Publication number
CN114966568A
CN114966568A CN202210577171.5A CN202210577171A CN114966568A CN 114966568 A CN114966568 A CN 114966568A CN 202210577171 A CN202210577171 A CN 202210577171A CN 114966568 A CN114966568 A CN 114966568A
Authority
CN
China
Prior art keywords
time
echo data
speed
cpi
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210577171.5A
Other languages
English (en)
Other versions
CN114966568B (zh
Inventor
王彤
路彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202210577171.5A priority Critical patent/CN114966568B/zh
Publication of CN114966568A publication Critical patent/CN114966568A/zh
Application granted granted Critical
Publication of CN114966568B publication Critical patent/CN114966568B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种权矢量时变的匀加速飞行雷达空时自适应处理方法,包括:获取雷达天线阵列接收到的回波数据矩阵;雷达搭载于匀加速平台上,回波数据矩阵的维度为NM×L,其中,N表示天线阵列的阵元数,M表示一个相干处理间隔内相干脉冲数,L表示回波数据矩阵中包含的距离单元数;利用预设窗口在回波数据矩阵上沿相干脉冲滑动,得到P个NK×L维的子CPI回波数据Dp;其中,P=M‑K+1,K表示预设窗口的长度,p∈{1,2,…,P};确定雷达能观测到的最大不模糊速度区间,并根据最大不模糊速度区间确定速度搜索间隔;根据速度搜索间隔和子CPI回波数据Dp,确定所有距离单元、速度搜索通道的滤波输出。本发明有效解决了现有脉冲域STAP方法处理匀加速数据时出现的目标能量散焦和杂波抑制性能下降问题。

Description

一种权矢量时变的匀加速飞行雷达空时自适应处理方法
技术领域
本发明属于雷达技术领域,具体涉及一种权矢量时变的匀加速飞行雷达空时自适应处理方法。
背景技术
相较于地基雷达,将雷达搭载在高空飞行的平台上可以获得对地面和低空目标更广阔的探测范围,进行更加灵活地实现快速部署。但是,雷达下视工作时,感兴趣的慢速小目标往往会湮没在地杂波之中,因此在目标检测之前要进行杂波抑制。STAP(Space TimeAdaptive Processing,空时自适应处理)技术可以利用系统的空时二维自由度,按照杂波二维频域特性自适应地形成零陷,达到有效抑制杂波的目的。
目前,经典STAP方法都默认将雷达平台在一个CPI(Coherent ProcessingInterval,相干处理间隔)内的运动近似为匀速直线的“理想运动”,对平台速度变化在一个CPI内不可忽略的变速运动研究相对较少。近年来,空中平台的发展逐渐趋于无人化和高机动化,这些先进飞行平台在工作时大多会采取快速机动变轨的方式来躲避敌方雷达探测和导弹拦截,可能导致平台速度变化在一个CPI内不可忽略,传统的匀速直线运动假设模型不再适用。因此,有必要考虑平台更复杂运动的影响。
对于一个杂波散射点,当平台变速运动时,其多普勒频率在一个CPI内的不同脉冲时刻是不同的,可以理解为是由于平台变速运动造成雷达在空间上非均匀采样引起的。显然,在平台变速运动的情况下,雷达的杂波特性相较平台理想运动时发生了变化,继续使用针对平台理想运动假设提出的传统STAP方法可能面临着性能下降的问题。
传统权矢量固定的脉冲域STAP方法是针对平台匀速直线运动所开发,该方法有效的基础是平台匀速直线运动时的目标多普勒频率与脉冲序号无关,使用同一权矢量(即第一个子CPI的最优权矢量)处理所有子CPI数据后,相邻子CPI输出间会相差一个固定的相位项,这时只需选用合适频率的DFT滤波器对输出结果进行匹配滤波即可获得目标的最大信噪比增益。而当平台匀加速运动时,无论是杂波还是目标,多普勒频率在一个CPI内都不再固定,而是随脉冲时变。受此影响,目标和杂波点的时域导向矢量也不再是范德蒙形式,而是多了一项和平台加速度、主波束指向有关的二次相位项,且该二次相位项的取值还与脉冲序号的平方成正比。
因此,使用传统权矢量固定的脉冲域STAP方法处理匀加速数据时,相邻子CPI输出间不能提取出一个固定的相位项,后续的DFT滤波处理也无法实现目标输出能量的最大化,导致目标散焦和出现杂波抑制性能下降的问题。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种权矢量时变的匀加速飞行雷达空时自适应处理方法。本发明要解决的技术问题通过以下技术方案实现:
本发明提供一种权矢量时变的匀加速飞行雷达空时自适应处理方法,包括:
获取雷达天线阵列接收到的回波数据矩阵;所述雷达搭载于匀加速平台上,所述回波数据矩阵的维度为NM×L,其中,N表示所述天线阵列的阵元数,M表示一个相干处理间隔内相干脉冲数,L表示所述回波数据矩阵中包含的距离单元数;
利用预设窗口在所述回波数据矩阵上沿相干脉冲滑动,得到P个NK×L维的子CPI回波数据Dp;其中,P=M-K+1,K表示所述预设窗口的长度,p∈{1,2,…,P};
确定雷达能观测到的最大不模糊速度区间,并根据所述最大不模糊速度区间确定速度搜索间隔;
根据所述速度搜索间隔和所述子CPI回波数据Dp,确定所有距离单元、所有速度搜索通道的滤波输出
Figure BDA0003662624880000031
在本发明的一个实施例中,所述确定雷达能观测到的最大不模糊速度区间,并根据所述最大不模糊速度区间确定速度搜索间隔的步骤,包括:
根据雷达的系统参数确定雷达能观测到的最大不模糊速度区间Φ;其中,Φ∈[-vmax,vmax],vmax表示目标的最大不模糊速度,vmax=λfr/4,λ表示雷达发射信号波长,fr表示雷达发射相干脉冲的重复频率;
根据所述最大不模糊速度区间,按照如下公式确定速度搜索间隔:
Figure BDA0003662624880000032
式中,
Figure BDA0003662624880000033
表示多普勒分辨率。
在本发明的一个实施例中,所述根据所述速度搜索间隔和所述子CPI回波数据Dp,确定所有距离单元、所有速度搜索通道的滤波输出
Figure BDA0003662624880000034
的步骤,包括:
针对第l个距离单元、第q个速度搜索通道,根据所述速度搜索间隔及所述最大不模糊速度,确定第q个速度搜索通道对应的搜索速度vq
根据搜索速度vq、所述平台的加速度a以及雷达系统参数,计算第p个子CPI回波数据的目标空时导向矢量
Figure BDA0003662624880000035
根据所述目标空时导向矢量
Figure BDA0003662624880000036
计算第p个子CPI回波数据的自适应权矢量后,确定第p个子CPI回波数据的滤波输出;
令p的取值加1,并返回所述根据所述搜索速度vq、所述平台的加速度a以及雷达系统参数,计算第p个子CPI的目标空时导向矢量
Figure BDA0003662624880000037
的步骤,直至p=P,得到第l个距离单元、第q个速度搜索通道的所有子CPI回波数据的滤波输出,并经时域积累后获得检验统计量z;
令q的取值加1,并返回所述根据所述第q个速度搜索通道对应的搜索速度vq、所述平台的加速度a以及雷达系统参数,计算第p个子CPI的目标空时导向矢量
Figure BDA0003662624880000038
的步骤,直至q=Q,得到第l个距离单元、所有速度搜索通道的滤波输出
Figure BDA0003662624880000041
令l的取值加1,并返回所述根据所述速度搜索间隔及所述最大不模糊速度,确定第q个速度搜索通道对应的搜索速度vq的步骤,直至l=L,得到所有距离单元、所有速度搜索通道的滤波输出
Figure BDA0003662624880000042
在本发明的一个实施例中,按照如下公式确定第q个速度搜索通道对应的搜索速度vq
vq=-vmax+(q-1)Δv。
在本发明的一个实施例中,所述根据搜索速度vq、所述平台的加速度a以及雷达系统参数,计算第p个子CPI回波数据的目标空时导向矢量
Figure BDA0003662624880000043
的步骤,包括:
计算一个相干处理间隔上的目标空时导向矢量:
Figure BDA0003662624880000044
式中,st表示一个相干处理间隔上的目标时域导向矢量,ss表示一个相干处理间隔上的目标空域导向矢量;其中,
Figure BDA0003662624880000045
Figure BDA0003662624880000046
式中,⊙表示Hadamard积,
Figure BDA0003662624880000047
为虚数,(·)T表示转置运算,d表示阵元间距,
Figure BDA0003662624880000048
θ0分别表示目标俯仰角和方位角,t=(M-1)Tr表示雷达发射第一个脉冲到最后一个脉冲的时间间隔,aradial表示平台加速度a在目标方向上的径向分量,
Figure BDA0003662624880000049
θα表示天线轴向与速度方向夹角;
计算第p个子CPI回波数据的目标空时导向矢量
Figure BDA0003662624880000051
Figure BDA0003662624880000052
在本发明的一个实施例中,所述根据所述目标空时导向矢量
Figure BDA0003662624880000053
计算第p个子CPI回波数据的自适应权矢量后,确定第p个子CPI回波数据的滤波输出的步骤,包括:
根据线性约束最小方差准则,确定第p个子CPI回波数据的自适应权矢量:
Figure BDA0003662624880000054
其中,
Figure BDA0003662624880000055
表示利用第l个距离单元前后相邻的L0个训练距离单元估计得到的杂波加噪声协方差矩阵;
利用所述第p个子CPI回波数据的自适应权矢量对所述第p个子CPI回波数据进行空时处理:
Figure BDA0003662624880000056
式中,
Figure BDA0003662624880000057
表示第l个距离单元、第p个子CPI回波数据,yp表示第p个子CPI回波数据的滤波输出。
在本发明的一个实施例中,第p个子CPI回波数据Dp为:
Figure BDA0003662624880000058
其中,
Figure BDA0003662624880000061
Jp是一个脉冲选择矩阵,维数为M×K,
Figure BDA0003662624880000062
表示Kronecker积,(·)H表示共轭转置运算,0α×β表示α×β维全0矩阵,Iε表示ε×ε维单位阵。
与现有技术相比,本发明的有益效果在于:
本发明提供一种权矢量时变的匀加速飞行雷达空时自适应处理方法,该方法在处理匀加速回波数据矩阵时,对脉冲域滑窗产生的不同子CPI回波数据分别计算自适应权矢量,使得各子CPI回波数据的滤波输出之间不再存在初始相位差,可以在抑制杂波后直接相加提高信杂比,有效解决了现有脉冲域STAP方法处理匀加速数据时出现的目标能量散焦和杂波抑制性能下降问题。
以下将结合附图及实施例对本发明做进一步详细说明。
附图说明
图1是本发明实施例提供的权矢量时变的匀加速飞行雷达空时自适应处理方法的一种流程图;
图2是本发明实施例提供的权矢量时变的匀加速飞行雷达空时自适应处理方法的一种示意图;
图3是本发明实施例提供的权矢量时变的匀加速飞行雷达空时自适应处理方法的另一种流程图;
图4是本发明实施例提供的不同子CPI脉冲数K下的一种改善因子图;
图5a是利用现有的EP-STAP方法处理匀加速数据后的距离-速度图;
图5b是利用现有的EP-STAP方法处理匀加速数据后的一种目标位置示意图;
图5c是利用现有的EP-STAP方法处理匀加速数据后的另一种目标位置示意图;
图6a是利用本发明提供的权矢量时变的匀加速飞行雷达空时自适应处理方法处理匀加速数据后的距离-速度图;
图6b是利用本发明提供的权矢量时变的匀加速飞行雷达空时自适应处理方法处理匀加速数据后的一种目标位置示意图;
图6c是利用本发明提供的权矢量时变的匀加速飞行雷达空时自适应处理方法处理匀加速数据后的另一种目标位置示意图;
图7a是利用现有的EP-STAP方法的处理结果图;
图7b是利用本发明提供的权矢量时变的匀加速飞行雷达空时自适应处理方法的处理结果图;
图7c是本发明实施例提供的改善因子的一种对比示意图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
图1是本发明实施例提供的权矢量时变的匀加速飞行雷达空时自适应处理方法的一种流程图。如图1所示,本发明实施例提供一种权矢量时变的匀加速飞行雷达空时自适应处理方法,包括:
S1、获取雷达天线阵列接收到的回波数据矩阵;雷达搭载于匀加速平台上,回波数据矩阵的维度为NM×L,其中,N表示天线阵列的阵元数,M表示一个相干处理间隔内相干脉冲数,L表示回波数据矩阵中包含的距离单元数;
S2、利用预设窗口在回波数据矩阵上沿相干脉冲滑动,得到P个NK×L维的子CPI回波数据Dp;其中,P=M-K+1,K表示预设窗口的长度,p∈{1,2,…,P};
S3、确定雷达能观测到的最大不模糊速度区间,并根据最大不模糊速度区间确定速度搜索间隔;
S4、根据速度搜索间隔和子CPI回波数据Dp,确定所有距离单元、所有速度搜索通道的滤波输出
Figure BDA0003662624880000071
图2是本发明实施例提供的权矢量时变的匀加速飞行雷达空时自适应处理方法的一种示意图。具体地,搭载在匀加速平台上的雷达几何模型如图2所示,首先获取雷达天线阵列接收到的回波数据矩阵X,其维度为NM×L;上述步骤S2中,使用一个长度为K的预设窗口在回波数据矩阵X上沿脉冲依次滑动,每次可滑动一个脉冲重复间隔,滑动结束后,获得P个NK×L维的子CPI回波数据Dp,其中,P=M-K+1,p∈{1,2,…,P}。
可选地,若第p个子CPI内的K个脉冲对应到完整相干处理间隔内的编号为{p,p+1,…,p+K-1},则第p个子CPI回波数据Dp可以表示为:
Figure BDA0003662624880000081
其中,
Figure BDA0003662624880000082
应当理解,Jp是一个脉冲选择矩阵,维数为M×K,作用是选择在完整CPI内脉冲编号为{p,p+1,…,p+K-1}的脉冲,
Figure BDA0003662624880000083
表示Kronecker积,(·)H表示共轭转置运算,0α×β表示α×β维全0矩阵,Iε表示ε×ε维单位阵。
可选地,上述步骤S3中,确定雷达能观测到的最大不模糊速度区间,并根据最大不模糊速度区间确定速度搜索间隔的步骤,包括:
S301、根据雷达的系统参数确定雷达能观测到的最大不模糊速度区间Φ;其中,Φ∈[-vmax,vmax],vmax表示目标的最大不模糊速度,vmax=λfr/4,λ表示雷达发射信号波长,fr表示雷达发射相干脉冲的重复频率;
S302、根据最大不模糊速度区间,按照如下公式确定速度搜索间隔:
Figure BDA0003662624880000084
式中,
Figure BDA0003662624880000085
表示多普勒分辨率。
应当理解,在目标相对雷达的径向速度未知时,需要对目标进行速度搜索。上述步骤S301中,首先根据雷达系统参数确定雷达能观测到的最大不模糊速度区间Φ,也就是感兴趣的目标速度范围;可选地,Φ∈[-vmax,vmax]。
进一步地,步骤S302中,计算速度搜索间隔
Figure BDA0003662624880000091
而后以-vmax为初始搜索速度、按照速度搜索间隔进行目标速度搜索。
可选地,上述步骤S4中,根据速度搜索间隔和子CPI回波数据Dp,确定所有距离单元、所有速度搜索通道的滤波输出的步骤,包括:
S401、针对第l个距离单元、第q个速度搜索通道,根据速度搜索间隔及最大不模糊速度,确定第q个速度搜索通道对应的搜索速度vq
S402、根据搜索速度vq、平台的加速度a以及雷达系统参数,计算第p个子CPI回波数据的目标空时导向矢量
Figure BDA0003662624880000092
S403、根据目标空时导向矢量
Figure BDA0003662624880000093
计算第p个子CPI回波数据的自适应权矢量后,确定第p个子CPI回波数据的滤波输出;
S404、令p的取值加1,并返回步骤S402执行根据搜索速度vq、平台的加速度a以及雷达系统参数,计算第p个子CPI的目标空时导向矢量
Figure BDA0003662624880000094
的步骤,直至p=P,得到第l个距离单元、第q个速度搜索通道的所有子CPI回波数据的滤波输出,并经时域积累后获得检验统计量z;
S405、令q的取值加1,并返回步骤S402执行根据搜索速度vq、平台的加速度a以及雷达系统参数,计算第p个子CPI的目标空时导向矢量
Figure BDA0003662624880000095
的步骤,直至q=Q,得到第l个距离单元、所有速度搜索通道的滤波输出
Figure BDA0003662624880000096
S406、令l的取值加1,并返回步骤S401执行根据速度搜索间隔及最大不模糊速度,确定第q个速度搜索通道对应的搜索速度vq的步骤,直至l=L,得到所有距离单元、所有速度搜索通道的滤波输出
Figure BDA0003662624880000097
图3是本发明实施例提供的权矢量时变的匀加速飞行雷达空时自适应处理方法的另一种流程图。请参见图3,本实施例中,首先令l=1、q=1,l∈{1,2,…,L},q∈{1,2,…,Q},l表示第l个距离单元,q表示第q个速度搜索通道。需要说明的是,速度搜索通道数数量Q与一个相干处理间隔内相干脉冲数M相等。
第q个速度搜索通道对应的搜索速度vq的表达式为:
vq=-vmax+(q-1)Δv
由于平台匀加速运动时目标与雷达间的相对径向速度在一个CPI内随脉冲编号变化,为了便于分析,本实施例可将搜索速度vq视为目标在一个CPI内的平均速度。
令p=1,p∈{1,2,…,P},p表示第p个子CPI回波数据。
进一步地,根据第q个速度搜索通道对应的搜索速度vq、平台加速度a和其他雷达系统参数,计算第p个子CPI的目标空时导向矢量
Figure BDA0003662624880000101
具体的,上述步骤S402包括:
步骤S4021、计算一个相干处理间隔上的目标空时导向矢量::
Figure BDA0003662624880000102
式中,st和ss分别表示一个相干处理间隔上的目标时域导向矢量和目标空域导向矢量;其中,
Figure BDA0003662624880000103
Figure BDA0003662624880000104
式中,⊙表示Hadamard积,
Figure BDA0003662624880000105
为虚数,(·)T表示转置运算,d表示阵元间距,
Figure BDA0003662624880000106
θ0分别表示目标俯仰角和方位角,t=(M-1)Tr表示雷达发射第一个脉冲到最后一个脉冲的时间间隔,aradial表示平台加速度a在目标方向上的径向分量,
Figure BDA0003662624880000111
θα表示天线轴向与速度方向夹角。
步骤S4022、,确定第p个子CPI的目标空时导向矢量
Figure BDA0003662624880000112
计算第p个子CPI回波数据的目标空时导向矢量
Figure BDA0003662624880000113
Figure BDA0003662624880000114
可选地,上述步骤S403中根据目标空时导向矢量
Figure BDA0003662624880000115
计算第p个子CPI回波数据的自适应权矢量后,确定第p个子CPI回波数据的滤波输出,包括:
步骤S4031、由于第p个子CPI回波数据的自适应权矢量
Figure BDA0003662624880000116
的计算应在线性约束最小方差准则下进行,因此可确定第p个子CPI回波数据的自适应权矢量为:
Figure BDA0003662624880000117
其中,
Figure BDA0003662624880000118
表示利用第l个距离单元前后相邻的L0个训练距离单元估计得到的杂波加噪声协方差矩阵,表达式为:
Figure BDA0003662624880000119
式中,
Figure BDA00036626248800001110
表示第l个距离单元、第p个子CPI的回波数据,维度为NK×1,yp表示第p个子CPI回波数据的滤波输出。
步骤S4032、利用第p个子CPI回波数据的自适应权矢量对第p个子CPI回波数据进行空时处理:
Figure BDA0003662624880000121
yp表示第p个子CPI回波数据的滤波输出。
进一步地,在上述步骤S404中,令p的值依次加1,并重复执行步骤S402~S403,直到p的值为P,得到第l个距离单元、第q个速度搜索通道的所有P个子CPI回波数据的滤波输出{y1,y2,…,yP},输出结果经时域积累后获得检验统计量z。
具体来说,将P个子CPI回波数据的滤波输出排成列矢量,得到:
y=[y1 y2 … yP]T
由于本发明分别对不同子CPI计算不同的权矢量,使得目标在子CPI间的相位变化在子CPI处理时进行了补偿,后续时域积累时,不再使用DFT滤波器进行匹配滤波,而是将各子CPI的输出直接相加,因此,对P个子CPI回波数据的滤波输出进行时域积累得到:
z=fHy
其中,f=[1 1 … 1]T是一个P×1维全1列矢量。
可选地,步骤S405中,令q的值加1,并重复执行步骤S402~S404,直到q的值为Q,得到第l个距离单元,所有Q个速度搜索通道输出
Figure BDA0003662624880000122
可选地,步骤S406中,令l的值加1,并重复执行步骤S402~S405,直到l的值为L,得到所有L个距离单元、所有Q个速度搜索通道的最终滤波输出
Figure BDA0003662624880000123
下面通过仿真实验对上述权矢量时变的匀加速飞行雷达空时自适应处理方法做进一步说明。
本实施例中,搭载在匀加速飞行平台上的雷达为相控阵雷达,天线为8元水平均匀线阵,一个相干处理间隔内包含300个相干脉冲,系统带宽0.5MHz,平台初始速度为100m/s,平台加速度为100m/s2,雷达脉冲重复频率为800Hz,平台高度6km;阵面构型选为正侧阵,主波束指向和阵面法线夹角为45°;实验添加2个目标,目标1位于第200号距离单元,目标平均速度为-19.6m/s,负号表示远离雷达,信噪比为10dB,目标2位于第470号距离单元,目标平均速度为79.33m/s,信噪比为0dB。
进一步地,基于上述参数,仿真实验中使用传统权矢量固定的脉冲域STAP方法(简记为EP-STAP方法)和本发明提供的权矢量时变的匀加速飞行雷达空时自适应处理方法(简记为VEP-STAP方法)进行对比。
图4是本发明实施例提供的不同子CPI脉冲数K下的一种改善因子图,从图4中可以看到,当K=2时性能最差,这是因为此时系统在时域上仅有2个自由度,不足以抑制空时耦合的杂波;当K=3时,系统改善因子至少提高了4dB,这是因为此时系统可用的时域自由度变多,对杂波的抑制性能也变强;当K>3时,系统性能会得到进一步提升,但提升幅度非常有限,与此同时,K的增大意味着估计协方差矩阵需要的独立样本数量也会更多。为兼顾性能和样本需求,接下来的仿真中都令K=3。
图5a是利用现有的EP-STAP方法处理匀加速数据后的距离-速度图,图5b-5c是利用现有的EP-STAP方法处理匀加速数据后的目标位置示意图。请参见图5a-5c,目标1和目标2的输出分别为45.30dB、35.94dB,目标周围参考单元(取目标所在距离门的前8个距离门和后8个距离门)的平均输出分别为12.72dB、39.24dB,因此目标1可以被检测到,但扩散在几个连续的速度搜索通道上,目标2湮没在主瓣杂波区,这是因为EP-STAP方法无法有效积累目标增益,导致目标检测性能下降。
图6a是利用本发明提供的权矢量时变的匀加速飞行雷达空时自适应处理方法处理匀加速数据后的距离-速度图,图6b-6c是利用本发明提供的权矢量时变的匀加速飞行雷达空时自适应处理方法处理匀加速数据后的目标位置示意图。请参见图6a-6c,目标1和目标2的输出分别为52.36dB、42.17dB,目标周围参考单元的平均输出分别为13.98dB、26.37dB,所以目标1和目标2都能被检测到。对比图5和图6可以发现本发明方法处理后,目标1的输出由45.30dB提高到52.36dB,目标2的输出由35.94dB提高到42.17dB。这是因为本发明方法对不同的子CPI分别计算了不同的权矢量,使得各子CPI都能有效地抑制杂波并保护目标增益,解决了传统EP-STAP处理后目标散焦的问题。
图7(a)是利用现有的EP-STAP方法的处理结果图,图7(b)是利用本发明提供的权矢量时变的匀加速飞行雷达空时自适应处理方法的处理结果图,图7(c)是本发明实施例提供的改善因子的一种对比示意图。如图7(a)-7(c),两种方法在旁瓣杂波区性能相当,但在主瓣杂波区,本发明提供的权矢量时变的匀加速飞行雷达空时自适应处理方法的改善因子提高约15dB,性能明显优于传统EP-STAP方法,这是因为两种方法都可以通过空时自适应处理很好地抑制旁瓣杂波,但由于平台加速,目标和杂波散射体多普勒频率随脉冲时变,传统的EP-STAP无法有效积累目标增益,导致主杂波扩散,而本发明所提方法对不同的子CPI分别计算了不同的权矢量,使得各子CPI都能有效地抑制杂波并保护目标增益,解决了目标散焦问题。
显然,仿真结果表明上述权矢量时变的匀加速飞行雷达空时自适应处理方法可有效提高雷达处理匀加速数据的杂波抑制性能。
通过上述各实施例可知,本发明的有益效果在于:
本发明提供一种权矢量时变的匀加速飞行雷达空时自适应处理方法,该方法在处理匀加速回波数据矩阵时,对脉冲域滑窗产生的不同子CPI回波数据分别计算自适应权矢量,使得各子CPI回波数据的滤波输出之间不再存在初始相位差,可以在抑制杂波后直接相加提高信杂比,有效解决了现有脉冲域STAP方法处理匀加速数据时出现的目标能量散焦和杂波抑制性能下降问题。
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (7)

1.一种权矢量时变的匀加速飞行雷达空时自适应处理方法,其特征在于,包括:
获取雷达天线阵列接收到的回波数据矩阵;所述雷达搭载于匀加速平台上,所述回波数据矩阵的维度为NM×L,其中,N表示所述天线阵列的阵元数,M表示一个相干处理间隔内相干脉冲数,L表示所述回波数据矩阵中包含的距离单元数;
利用预设窗口在所述回波数据矩阵上沿相干脉冲滑动,得到P个NK×L维的子CPI回波数据Dp;其中,P=M-K+1,K表示所述预设窗口的长度,p∈{1,2,…,P};
确定雷达能观测到的最大不模糊速度区间,并根据所述最大不模糊速度区间确定速度搜索间隔;
根据所述速度搜索间隔和所述子CPI回波数据Dp,确定所有距离单元、所有速度搜索通道的滤波输出
Figure FDA0003662624870000011
2.根据权利要求1所述的权矢量时变的匀加速飞行雷达空时自适应处理方法,其特征在于,所述确定雷达能观测到的最大不模糊速度区间,并根据所述最大不模糊速度区间确定速度搜索间隔的步骤,包括:
根据雷达的系统参数确定雷达能观测到的最大不模糊速度区间Φ;其中,Φ∈[-vmax,vmax],vmax表示目标的最大不模糊速度,vmax=λfr/4,λ表示雷达发射信号波长,fr表示雷达发射相干脉冲的重复频率;
根据所述最大不模糊速度区间,按照如下公式确定速度搜索间隔:
Figure FDA0003662624870000012
式中,
Figure FDA0003662624870000013
表示多普勒分辨率。
3.根据权利要求2所述的权矢量时变的匀加速飞行雷达空时自适应处理方法,其特征在于,所述根据所述速度搜索间隔和所述子CPI回波数据Dp,确定所有距离单元、所有速度搜索通道的滤波输出
Figure FDA0003662624870000021
的步骤,包括:
针对第l个距离单元、第q个速度搜索通道,根据所述速度搜索间隔及所述最大不模糊速度,确定第q个速度搜索通道对应的搜索速度vq
根据搜索速度vq、所述平台的加速度a以及雷达系统参数,计算第p个子CPI回波数据的目标空时导向矢量
Figure FDA0003662624870000022
根据所述目标空时导向矢量
Figure FDA0003662624870000023
计算第p个子CPI回波数据的自适应权矢量后,确定第p个子CPI回波数据的滤波输出;
令p的取值加1,并返回所述根据所述搜索速度vq、所述平台的加速度a以及雷达系统参数,计算第p个子CPI的目标空时导向矢量
Figure FDA0003662624870000024
的步骤,直至p=P,得到第l个距离单元、第q个速度搜索通道的所有子CPI回波数据的滤波输出,并经时域积累后获得检验统计量z;
令q的取值加1,并返回所述根据所述第q个速度搜索通道对应的搜索速度vq、所述平台的加速度a以及雷达系统参数,计算第p个子CPI的目标空时导向矢量
Figure FDA0003662624870000025
的步骤,直至q=Q,得到第l个距离单元、所有速度搜索通道的滤波输出
Figure FDA0003662624870000026
令l的取值加1,并返回所述根据所述速度搜索间隔及所述最大不模糊速度,确定第q个速度搜索通道对应的搜索速度vq的步骤,直至l=L,得到所有距离单元、所有速度搜索通道的滤波输出
Figure FDA0003662624870000027
4.根据权利要求3所述的权矢量时变的匀加速飞行雷达空时自适应处理方法,其特征在于,按照如下公式确定第q个速度搜索通道对应的搜索速度vq
vq=-vmax+(q-1)Δv。
5.根据权利要求3所述的权矢量时变的匀加速飞行雷达空时自适应处理方法,其特征在于,所述根据搜索速度vq、所述平台的加速度a以及雷达系统参数,计算第p个子CPI回波数据的目标空时导向矢量
Figure FDA0003662624870000031
的步骤,包括:
计算一个相干处理间隔上的目标空时导向矢量:
Figure FDA0003662624870000032
式中,st表示一个相干处理间隔上的目标时域导向矢量,ss表示一个相干处理间隔上的目标空域导向矢量;其中,
Figure FDA0003662624870000033
Figure FDA0003662624870000034
式中,⊙表示Hadamard积,
Figure FDA0003662624870000035
为虚数,(·)T表示转置运算,d表示阵元间距,
Figure FDA0003662624870000036
θ0分别表示目标俯仰角和方位角,t=(M-1)Tr表示雷达发射第一个脉冲到最后一个脉冲的时间间隔,aradial表示平台加速度a在目标方向上的径向分量,
Figure FDA0003662624870000037
θα表示天线轴向与速度方向夹角;
计算第p个子CPI回波数据的目标空时导向矢量
Figure FDA0003662624870000038
Figure FDA0003662624870000041
6.根据权利要求3所述的权矢量时变的匀加速飞行雷达空时自适应处理方法,其特征在于,所述根据所述目标空时导向矢量
Figure FDA0003662624870000042
计算第p个子CPI回波数据的自适应权矢量后,确定第p个子CPI回波数据的滤波输出的步骤,包括:
根据线性约束最小方差准则,确定第p个子CPI回波数据的自适应权矢量:
Figure FDA0003662624870000043
其中,
Figure FDA0003662624870000044
表示利用第l个距离单元前后相邻的L0个训练距离单元估计得到的杂波加噪声协方差矩阵;
利用所述第p个子CPI回波数据的自适应权矢量对所述第p个子CPI回波数据进行空时处理:
Figure FDA0003662624870000045
式中,
Figure FDA0003662624870000046
表示第l个距离单元、第p个子CPI回波数据,yp表示第p个子CPI回波数据的滤波输出。
7.根据权利要求1所述的权矢量时变的匀加速飞行雷达空时自适应处理方法,其特征在于,第p个子CPI回波数据Dp为:
Figure FDA0003662624870000047
其中,
Figure FDA0003662624870000051
Jp是一个脉冲选择矩阵,维数为M×K,
Figure FDA0003662624870000052
表示Kronecker积,(·)H表示共轭转置运算,0α×β表示α×β维全0矩阵,Iε表示ε×ε维单位阵。
CN202210577171.5A 2022-05-25 2022-05-25 一种权矢量时变的匀加速飞行雷达空时自适应处理方法 Active CN114966568B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210577171.5A CN114966568B (zh) 2022-05-25 2022-05-25 一种权矢量时变的匀加速飞行雷达空时自适应处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210577171.5A CN114966568B (zh) 2022-05-25 2022-05-25 一种权矢量时变的匀加速飞行雷达空时自适应处理方法

Publications (2)

Publication Number Publication Date
CN114966568A true CN114966568A (zh) 2022-08-30
CN114966568B CN114966568B (zh) 2024-06-25

Family

ID=82956529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210577171.5A Active CN114966568B (zh) 2022-05-25 2022-05-25 一种权矢量时变的匀加速飞行雷达空时自适应处理方法

Country Status (1)

Country Link
CN (1) CN114966568B (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005415A (en) * 1975-03-31 1977-01-25 The United States Of America As Represented By The Secretary Of The Navy Automated radar data processing system
US20040150552A1 (en) * 2003-01-30 2004-08-05 Barbella Peter F. Technique for non-coherent integration of targets with ambiguous velocities
CN101738606A (zh) * 2008-11-21 2010-06-16 清华大学 基于广义多普勒滤波器组的雷达目标相参积累检测方法
CN104535971A (zh) * 2014-12-08 2015-04-22 广西大学 一种基于空时插值的杂波抑制方法和装置
CN104635219A (zh) * 2015-02-12 2015-05-20 西安电子科技大学 基于阵元-脉冲域补偿的匀加速平台空时自适应处理方法
CN104977571A (zh) * 2015-06-25 2015-10-14 西安电子科技大学 基于俯仰频率分集stap的距离模糊杂波抑制方法
CN105738879A (zh) * 2016-02-29 2016-07-06 西安电子科技大学 基于稀疏恢复的雷达杂波空时自适应预滤波方法
CN105913074A (zh) * 2016-04-05 2016-08-31 西安电子科技大学 基于幅度与径向速度联合的sar图像动目标聚类方法
CN106546966A (zh) * 2016-10-31 2017-03-29 西安电子科技大学 基于多项式拟合的杂波背景下雷达噪声功率估计方法
WO2018014166A1 (zh) * 2016-07-18 2018-01-25 深圳大学 一种波束-多普勒通道自适应选择stap方法
JP2018105769A (ja) * 2016-12-27 2018-07-05 株式会社東芝 レーダ装置及びそのレーダ信号処理方法
CN109188385A (zh) * 2018-08-31 2019-01-11 西安电子科技大学 杂波背景下的高速微弱目标检测方法
CN110412559A (zh) * 2019-07-26 2019-11-05 西安电子科技大学 分布式无人机mimo雷达的非相参融合目标检测方法
RU2018144308A (ru) * 2018-12-14 2020-06-16 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ пространственно-временной адаптивной обработки сигналов в моноимпульсной корабельной радиолокационной станции с активной фазированной антенной решеткой
CN113376602A (zh) * 2021-05-12 2021-09-10 西安电子科技大学 宽带机载相控阵雷达的直接空时自适应处理方法
CN113376603A (zh) * 2021-05-12 2021-09-10 西安电子科技大学 宽带机载相控阵雷达的子带空时自适应处理方法
CN113504509A (zh) * 2021-06-08 2021-10-15 西安理工大学 一种波束域补偿的匀加速机载雷达杂波抑制方法
CN113534055A (zh) * 2021-06-11 2021-10-22 西安电子科技大学 一种插值补偿的匀加速机载雷达杂波抑制方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005415A (en) * 1975-03-31 1977-01-25 The United States Of America As Represented By The Secretary Of The Navy Automated radar data processing system
US20040150552A1 (en) * 2003-01-30 2004-08-05 Barbella Peter F. Technique for non-coherent integration of targets with ambiguous velocities
CN101738606A (zh) * 2008-11-21 2010-06-16 清华大学 基于广义多普勒滤波器组的雷达目标相参积累检测方法
CN104535971A (zh) * 2014-12-08 2015-04-22 广西大学 一种基于空时插值的杂波抑制方法和装置
CN104635219A (zh) * 2015-02-12 2015-05-20 西安电子科技大学 基于阵元-脉冲域补偿的匀加速平台空时自适应处理方法
CN104977571A (zh) * 2015-06-25 2015-10-14 西安电子科技大学 基于俯仰频率分集stap的距离模糊杂波抑制方法
CN105738879A (zh) * 2016-02-29 2016-07-06 西安电子科技大学 基于稀疏恢复的雷达杂波空时自适应预滤波方法
CN105913074A (zh) * 2016-04-05 2016-08-31 西安电子科技大学 基于幅度与径向速度联合的sar图像动目标聚类方法
WO2018014166A1 (zh) * 2016-07-18 2018-01-25 深圳大学 一种波束-多普勒通道自适应选择stap方法
CN106546966A (zh) * 2016-10-31 2017-03-29 西安电子科技大学 基于多项式拟合的杂波背景下雷达噪声功率估计方法
JP2018105769A (ja) * 2016-12-27 2018-07-05 株式会社東芝 レーダ装置及びそのレーダ信号処理方法
CN109188385A (zh) * 2018-08-31 2019-01-11 西安电子科技大学 杂波背景下的高速微弱目标检测方法
RU2018144308A (ru) * 2018-12-14 2020-06-16 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ пространственно-временной адаптивной обработки сигналов в моноимпульсной корабельной радиолокационной станции с активной фазированной антенной решеткой
CN110412559A (zh) * 2019-07-26 2019-11-05 西安电子科技大学 分布式无人机mimo雷达的非相参融合目标检测方法
CN113376602A (zh) * 2021-05-12 2021-09-10 西安电子科技大学 宽带机载相控阵雷达的直接空时自适应处理方法
CN113376603A (zh) * 2021-05-12 2021-09-10 西安电子科技大学 宽带机载相控阵雷达的子带空时自适应处理方法
CN113504509A (zh) * 2021-06-08 2021-10-15 西安理工大学 一种波束域补偿的匀加速机载雷达杂波抑制方法
CN113534055A (zh) * 2021-06-11 2021-10-22 西安电子科技大学 一种插值补偿的匀加速机载雷达杂波抑制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIANG JIE等: "Clutter Suppression Method of Inter-Pulse Frequency Agility Based on Zero Point Constraint", 《2021 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR)》, 31 December 2021 (2021-12-31), pages 3285 - 3289, XP034287278, DOI: 10.1109/Radar53847.2021.10028249 *
肖慧: "LFMCW雷达高速/加速目标参数估计及测距范围扩展技术研究", 《中国博士学位论文全文数据库 信息科技辑》, no. 7, 15 July 2009 (2009-07-15), pages 136 - 93 *
肖浩等: "一种稳健的机载面阵雷达非均匀杂波抑制方法", 《电子与信息学报》, no. 1, 31 January 2021 (2021-01-31), pages 138 - 144 *
陈帅霖等: "基于动态规划的机动目标加权自适应相参积累方法", 《雷达学报》, no. 3, 4 May 2017 (2017-05-04), pages 309 - 315 *

Also Published As

Publication number Publication date
CN114966568B (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
CN110412559B (zh) 分布式无人机mimo雷达的非相参融合目标检测方法
Baizert et al. Forward-looking radar GMTI benefits using a linear frequency diverse array
CN106872954B (zh) 一种高超声速平台杂波抑制和运动目标成像方法
CN108761419B (zh) 基于组合空时主通道自适应处理的低空风切变风速估计方法
US9562968B2 (en) Sensor system and method for determining target location using sparsity-based processing
CN103383448B (zh) 适用于hprf波形机载雷达的杂波抑制方法
CN105445704B (zh) 一种sar图像中的雷达动目标抑制方法
CN106772253B (zh) 一种非均匀杂波环境下的雷达杂波抑制方法
EP1286180B1 (en) Periodic repetition interval staggered post-doppler adaptive monopulse processing for detection and location of a moving target in ground clutter
CN105738879A (zh) 基于稀疏恢复的雷达杂波空时自适应预滤波方法
Hussain et al. Target parameter estimation in reduced dimension stap for airborne phased array radar
CN105301589B (zh) 高分辨宽测绘带sar地面运动目标成像方法
CN109471083A (zh) 基于空时级联的机载外辐射源雷达杂波抑制方法
CN113504509A (zh) 一种波束域补偿的匀加速机载雷达杂波抑制方法
CN111007503A (zh) 基于频率谱精确定位的运动目标聚焦和定位方法及系统
CN109901162B (zh) 一种适用于分布式地球同步轨道sar的长基线成像stap方法
CN110554391A (zh) 基于ddd-gmb的低空风切变风速估计方法
CN104793210B (zh) 基于压缩感知的机载相控阵雷达低空风切变风速估计方法
CN113534055B (zh) 一种插值补偿的匀加速机载雷达杂波抑制方法
CN107748364A (zh) 基于降秩多级维纳滤波器的低空风切变风场速度估计方法
CN112906476B (zh) 一种基于信杂噪比损失的机载雷达训练样本选择方法
CN113253222A (zh) 机载fda-mimo双基地雷达距离模糊杂波抑制及降维搜索方法
CN114966568B (zh) 一种权矢量时变的匀加速飞行雷达空时自适应处理方法
CN105319538B (zh) 基于辅助通道的空时自适应杂波抑制方法
Quirini et al. Non-uniform linear arrays for target detection and DoA estimation in passive radar STAP

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant