CN114951634A - 高熵合金耐磨耐腐蚀涂层及其制备方法 - Google Patents

高熵合金耐磨耐腐蚀涂层及其制备方法 Download PDF

Info

Publication number
CN114951634A
CN114951634A CN202210479809.1A CN202210479809A CN114951634A CN 114951634 A CN114951634 A CN 114951634A CN 202210479809 A CN202210479809 A CN 202210479809A CN 114951634 A CN114951634 A CN 114951634A
Authority
CN
China
Prior art keywords
coating
resistant
powder
corrosion
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210479809.1A
Other languages
English (en)
Other versions
CN114951634B (zh
Inventor
夏志新
谢勇
于云鹤
侯纪新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202210479809.1A priority Critical patent/CN114951634B/zh
Publication of CN114951634A publication Critical patent/CN114951634A/zh
Application granted granted Critical
Publication of CN114951634B publication Critical patent/CN114951634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种高熵合金耐磨耐腐蚀涂层及其制备方法。其中涂层由涂层粉末制得,涂层粉末的粒径为100~350目,以原子百分数计,涂层粉末的组成为:17~22%的钴、17~22%的铬、17~22%的镍、17~22%的铜及余量铝。该涂层具有BCC结构,可应用在以钢、铝、钛、铜等各类金属为基材的结构材料中,涂层与基材有着较高的结合强度。采用该CoCrNiCuAl涂层,具有超高的磨性能及耐腐蚀性能,有效提高了结构的服役性能,有效的扩大了材料的使用环境。

Description

高熵合金耐磨耐腐蚀涂层及其制备方法
技术领域
本发明涉及金属材料及其制备技术领域,尤其涉及一种高熵合金耐磨耐腐蚀涂层及其制备方法。
背景技术
在生产生活中,为了降低结构部件在服役过程中因摩擦、腐蚀导致的材料损耗,保证生产安全,通常会在重要的零部件上涂覆特殊涂层,以提高零部件的耐磨、耐腐蚀性能。特别是在航空航天、交通运输、石油开采、核反应等行业中,许多设备、器件需要在高速、重载或酸性、碱性环境等极端条件下服役工作,对涂层材料的耐磨耐腐蚀性能提出了更严苛的要求。
高熵合金一般指含有四种以上主要元素的新型合金,高熵效应使得高熵合金具备了高强度、高硬度、耐高温等优异性能,而被应用于各类特种涂层中,目前已成为涂层研究领域的热点。不过,现有高熵合金的耐磨、耐腐蚀性能往往还不能够满足一些极端苛刻产品的要求,且涂层与基材的结合强度较低而易脱落。
发明内容
本发明的目的是针对现有技术存在的问题,提供一种具有高耐磨耐腐蚀性能的高熵合金涂层及其制备方法。
为达到上述目的,本发明采用的技术方案是:
一种高熵合金耐磨耐腐蚀涂层,所述涂层由涂层粉末制得,以原子百分数计,所述涂层粉末的组成为:17~22%的钴、17~22%的铬、17~22%的镍、17~22%的铜及余量铝,所述涂层粉末的晶体为体心立方晶格结构。
优选地,所述涂层粉末的粒径为100~350目。
优选地,以原子百分数计,所述涂层粉末的组成为:20%的钴、20%的铬、20%的镍、20%的铜及20%的铝。
在一些优选实施方式中,所述涂层的极化电阻大于75Ω·cm2
所述的高熵合金耐磨耐腐蚀涂层的制备方法,包括如下步骤:
S1、制备所述涂层粉末;
S2、将所述涂层粉末涂覆在基材上,所述基材与所述涂层的界面上形成梯度固溶体。
优选地,所述步骤S1具体包括如下分步骤:
S11、按照比例称取一定质量的钴、铬、镍、铜、铝,将其混合后进行熔炼,得到合金液体,所述合金液体冷却成型后得到合金固体;
S12、将所述合金固体粉碎,得到合金粉末;
S13、对所述合金粉末进行筛分处理,选择粒径为100~350目的合金粉末,得到所述涂层粉末。
进一步优选地,在所述分步骤S12中,所述合金固体采用电子束旋转盘雾化的方法制得所述合金粉末。
更进一步优选地,在所述分步骤S12与S13之间,还包括S121:将所述合金粉末置于真空干燥箱中进行干燥处理。
进一步优选地,在所述分步骤S11中,所述钴、铬、镍、铜、铝为单质,所述钴、铬、镍、铜、铝在真空电弧熔炼炉中进行熔炼,熔炼后的所述合金液体倒入棒状模具中成型。
在一些优选实施方式中,所述涂层粉末采用激光熔化沉积的方法涂覆在所述基材上,其中激光功率为1000~1800W。
在一些优选实施方式中,所述涂层粉末采用电弧熔化沉积的方法涂覆在所述基材上,其中电流为0.25~1A。
在一些优选实施方式中,所述涂层粉末采用离子喷涂的方法涂覆在所述基材上。
优选地,所述基材为钢、铝、铜、钛中的任一种。
本发明提供的高熵合金耐磨耐腐蚀涂层,是一种化学式为CoCrNiCuAl的高熵合金涂层,通过实验发现及验证,该高熵合金为体心立方晶格(BCC)结构,且至少具有以下优势:
(1)相对于面心立方晶格(FCC)结构的材料而言,BCC结构材料塑性变形的微观机制更为复杂:在FCC结构的材料中,滑移面通常是不变的密排面,实验观察到的FCC结构的滑移系是{111}<110>,其中{111}面是FCC结构中最密排的晶面,同时又是层错能比较低且容易出现层错的面,而<110>/2是这种晶体中最短的点阵矢量,因此FCC结构的塑性变形阻力较小;而在本发明的BCC结构材料中,可以开动很多个滑移面,包括密排面和非密排面,畸变时具有较高的晶格摩擦阻力,不易变形,体现为涂层的高硬度、高耐磨及高耐腐蚀性能;
(2)传统涂层由于与基材的理化性质差异较大,基材与涂层相容性较差、结合强度不高,易脱落;本发明提供的高熵合金粉末涂层能够在界面处形成梯度固溶体,具有高的连接界面强度,与基材的结合强度高,且在本发明中验证了涂层与基层界面有较高的剪切强度,与基材强度相当;
(3)以本发明的耐磨耐腐蚀涂层粉末为原料,可采用激光熔化沉积、电弧熔化沉积、等离子喷涂等多种涂层制备手段,合成高耐磨耐腐蚀CoCrNiCuAl涂层,广泛运用于钢、铝、钛、铜等合金体的结构部件,有效提高了结构的服役性能,扩大零件的服役范围。
附图说明
图1为实施例3中CoCrNiCuAl涂层的扫描电镜示意图;
图2为实施例4中CoCrNiCuAl涂层的扫描电镜示意图;
图3为实施例3中基材-涂层连接界面处的反极图;
图4为实施例3中基材-涂层连接界面处的相分布图;
图5为实施例3中CoCrNiCuAl涂层的磨痕形貌图;
图6为实施例4中CoCrNiCuAl涂层的磨痕形貌图。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。
实施例1
本实施例提供一种涂层粉末。以原子百分数计,该涂层粉末的组成为:20%的钴、20%的铬、20%的镍、20%的铜及20%的铝。
该涂层粉末的制备方法包括如下步骤:
S11、按照上述比例称取一定质量的钴、铬、镍、铜、铝为原料,各原料组分均为单质,将各原料组分混合后在真空电弧熔炼炉中进行熔炼,熔炼温度控制在1600℃左右,得到合金液体,再将该合金液体倒入棒状模具中冷却成型,得到棒状合金固体;
S12、以氩气为保护介质,将棒状合金固体通过电子束旋转盘雾化的方法粉碎,得到合金粉末;
S121:将合金粉末置于真空干燥箱中进行干燥处理,烘干温度约为180℃,真空环境用于防止合金粉末氧化;
S13、利用筛网对已干燥的合金粉末进行筛分处理,选择粒径为100~350目的合金粉末,得到CoCrNiCuAl涂层粉末,该涂层粉末的晶体为BCC结构,可以直接作为制备高耐磨耐腐蚀涂层的原料。
实施例2
本实施例提供一种涂层粉末,该涂层粉末与实施例1基本相同,主要区别在于涂层粉末的配方不同。
本实施例中,以原子百分数计,涂层粉末的组成为:18%的钴、18%的铬、18%的镍、18%的铜及余量的铝(约28%)。
实施例3
本实施例提供一种高熵合金耐磨耐腐蚀涂层,该涂层的制备方法如下:以45号钢为基材,将实施例1中的涂层粉末采用激光熔化沉积的方法涂覆在基材上,制取CoCrNiCuAl涂层。其中工艺参数为:激光功率1200W,扫描速度6mm/s,送粉量4.5g/min,搭接率50%。
本实施例中,进一步对制得涂层的理化性质进行了实验研究。图1所示为该涂层的扫描电镜示意图,其中浅色区域富含Co、Cr、Ni元素,深色区域富含Cu、Al元素。参见图3、4所示,可以看出钢基材为FCC结构,涂层为BCC结构。在基材-涂层连接界面处,基材出现了外延生长,基材与涂层相互渗透,交界处出现了成分梯度区,且越靠近基材的涂层,其晶粒越细小,硬度越高,表明基材与涂层具有较高的结合强度,涂层不易脱落。进一步通过剪切实验验证,得到该涂层的剪切强度可以高达350MPa。
参见5所示,本实施例中还对无涂层基材及有涂层基材分别进行摩擦磨损实验,实验载荷为10N,摩擦磨损实验结果如下:
Figure BDA0003627113540000041
由上表可知,相同条件下,45号钢基材的磨损体积远大于CoCrNiCuAl涂层的磨损体积,且45号钢基材的摩擦系数远大于CoCrNiCuAl涂层的摩擦系数,表明CoCrNiCuAl涂层的耐磨损性能要远高于45号钢基材的耐磨损性能。
本实施例中还对无涂层基材及有涂层基材分别进行电化学实验,对实验材料外加电流进行极化腐蚀,实验结果如下:
Figure BDA0003627113540000042
该实验中,材料的自腐蚀电位越大、自腐蚀电流越小、极化电阻越大,则表明其耐腐蚀性能越好。由上表可知,CoCrNiCuAl涂层的耐腐蚀性能远高于45号钢基材的耐腐蚀性能。
实施例4
本实施例提供一种高熵合金耐磨耐腐蚀涂层,该涂层的制备方法如下:以TC4钛合金为基材,将实施例2中的涂层粉末采用激光熔化沉积的方法涂覆在基材上,制取CoCrNiCuAl涂层。其中工艺参数为:激光功率1400W,扫描速度6mm/s,送粉量4.5g/min,搭接率50%。
本实施例中,进一步对制得涂层的理化性质进行了实验研究。图2所示为该涂层的扫描电镜示意图。通过剪切实验可知,该涂层的剪切强度可以高达320MPa,与基材的结合强度高。
参见6所示,本实施例中还对无涂层基材及有涂层基材分别进行摩擦磨损实验,实验载荷为10N,摩擦磨损实验结果如下:
Figure BDA0003627113540000051
实验表明,CoCrNiCuAl涂层的耐磨损性能要远高于TC4钛合金基材的耐磨损性能。
本实施例中还对无涂层基材及有涂层基材分别进行电化学实验,对实验材料外加电流进行极化腐蚀,实验结果如下:
Figure BDA0003627113540000052
由上表可知,CoCrNiCuAl涂层的耐腐蚀性能远大于TC4钛合金基材的耐腐蚀性能。
综上,本发明提供的高熵合金耐磨耐腐蚀涂层,由于高熵合金CoCrNiCuAl的高性能晶体结构,使得涂层与基材的结合强度高,并具有优异的耐磨耐腐蚀性能,适用于各种严苛的服役工况。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

1.一种高熵合金耐磨耐腐蚀涂层,其特征在于:所述涂层由涂层粉末制得,以原子百分数计,所述涂层粉末的组成为:17~22%的钴、17~22%的铬、17~22%的镍、17~22%的铜及余量铝,所述涂层粉末的晶体为体心立方晶格结构。
2.根据权利要求1所述的高熵合金耐磨耐腐蚀涂层,其特征在于:以原子百分数计,所述涂层粉末的组成为:20%的钴、20%的铬、20%的镍、20%的铜及20%的铝。
3.根据权利要求1所述的高熵合金耐磨耐腐蚀涂层,其特征在于:所述涂层的极化电阻大于75Ω·cm2
4.一种如权利要求1至3任一项所述的高熵合金耐磨耐腐蚀涂层的制备方法,其特征在于,所述制备方法包括如下步骤:
S1、制备所述涂层粉末;
S2、将所述涂层粉末涂覆在基材上,所述基材与所述涂层的界面上形成梯度固溶体。
5.根据权利要求4所述的高熵合金耐磨耐腐蚀涂层的制备方法,其特征在于,所述步骤S1具体包括如下分步骤:
S11、按照比例称取一定质量的钴、铬、镍、铜、铝,将其混合后进行熔炼,得到合金液体,所述合金液体冷却成型后得到合金固体;
S12、将所述合金固体粉碎,得到合金粉末;
S13、对所述合金粉末进行筛分处理,选择粒径为100~350目的合金粉末,得到所述涂层粉末。
6.根据权利要求5所述的高熵合金耐磨耐腐蚀涂层的制备方法,其特征在于:在所述分步骤S12中,所述合金固体采用电子束旋转盘雾化的方法制得所述合金粉末。
7.根据权利要求6所述的高熵合金耐磨耐腐蚀涂层的制备方法,其特征在于:在所述分步骤S12与S13之间,还包括S121:将所述合金粉末置于真空干燥箱中进行干燥处理。
8.根据权利要求5所述的高熵合金耐磨耐腐蚀涂层的制备方法,其特征在于:在所述分步骤S11中,所述钴、铬、镍、铜、铝均为单质,所述钴、铬、镍、铜、铝在真空电弧熔炼炉中进行熔炼,熔炼后的所述合金液体倒入棒状模具中成型。
9.根据权利要求4所述的高熵合金耐磨耐腐蚀涂层的制备方法,其特征在于:所述步骤S2中,所述涂层粉末采用激光熔化沉积的方法涂覆在所述基材上,其中激光功率为1000~1800W;和/或,
所述步骤S2中,所述涂层粉末采用电弧熔化沉积的方法涂覆在所述基材上,其中电流强度为0.25~1A;和/或,
所述步骤S2中,所述涂层粉末采用离子喷涂的方法涂覆在所述基材上。
10.根据权利要求4至9任一项所述的高熵合金耐磨耐腐蚀涂层的制备方法,其特征在于:所述基材为钢、铝、铜、钛中的任一种。
CN202210479809.1A 2022-05-05 2022-05-05 高熵合金耐磨耐腐蚀涂层及其制备方法 Active CN114951634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210479809.1A CN114951634B (zh) 2022-05-05 2022-05-05 高熵合金耐磨耐腐蚀涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210479809.1A CN114951634B (zh) 2022-05-05 2022-05-05 高熵合金耐磨耐腐蚀涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN114951634A true CN114951634A (zh) 2022-08-30
CN114951634B CN114951634B (zh) 2023-12-12

Family

ID=82980464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210479809.1A Active CN114951634B (zh) 2022-05-05 2022-05-05 高熵合金耐磨耐腐蚀涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN114951634B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028981A2 (fr) * 2006-09-08 2008-03-13 Centre National De La Recherche Scientifique (Cnrs) Procédé pour déposer sur un substrat une couche mince d'alliage métallique et un alliage métallique sous forme de couche mince
CN102828139A (zh) * 2012-09-28 2012-12-19 安徽工业大学 一种喷涂用高熵合金粉末
CN103290404A (zh) * 2013-05-06 2013-09-11 浙江工业大学 激光熔覆用高熵合金粉末和高熵合金涂层的制备方法
KR20180097909A (ko) * 2017-02-24 2018-09-03 국민대학교산학협력단 나노 결정립 고 엔트로피 합금의 제조방법 및 이로부터 제조된 고 엔트로피 합금
CN108677129A (zh) * 2018-07-06 2018-10-19 扬州大学 一种FeCoNiCrSiAl高熵合金涂层及其制备方法
CN110359038A (zh) * 2019-08-27 2019-10-22 兰州理工大学 一种原位合成低压冷喷涂NiCoCrAlCu高熵合金涂层的制备方法
CN113913667A (zh) * 2021-10-08 2022-01-11 广东省科学院新材料研究所 一种高熵合金、制备方法及激光熔覆方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028981A2 (fr) * 2006-09-08 2008-03-13 Centre National De La Recherche Scientifique (Cnrs) Procédé pour déposer sur un substrat une couche mince d'alliage métallique et un alliage métallique sous forme de couche mince
CN102828139A (zh) * 2012-09-28 2012-12-19 安徽工业大学 一种喷涂用高熵合金粉末
CN103290404A (zh) * 2013-05-06 2013-09-11 浙江工业大学 激光熔覆用高熵合金粉末和高熵合金涂层的制备方法
KR20180097909A (ko) * 2017-02-24 2018-09-03 국민대학교산학협력단 나노 결정립 고 엔트로피 합금의 제조방법 및 이로부터 제조된 고 엔트로피 합금
CN108677129A (zh) * 2018-07-06 2018-10-19 扬州大学 一种FeCoNiCrSiAl高熵合金涂层及其制备方法
CN110359038A (zh) * 2019-08-27 2019-10-22 兰州理工大学 一种原位合成低压冷喷涂NiCoCrAlCu高熵合金涂层的制备方法
CN113913667A (zh) * 2021-10-08 2022-01-11 广东省科学院新材料研究所 一种高熵合金、制备方法及激光熔覆方法

Also Published As

Publication number Publication date
CN114951634B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
CN110344047B (zh) 一种原位合成低压冷喷涂CuNiCoFeCrAl2.8高熵合金涂层的制备方法
KR101450988B1 (ko) 철-크롬-몰리브덴 기반 열 분사 분말 및 그의 제조 방법
US9919358B2 (en) Sintered molybdenum carbide-based spray powder
CN111254376B (zh) 高熵陶瓷复合涂层的制备方法
EP3558570A1 (en) Aluminum alloy products having fine eutectic-type structures, and methods for making the same
RU2666199C2 (ru) Способ получения напыляемых порошков, содержащих нитрид хрома
Lin et al. Influence of laser re-melting and vacuum heat treatment on plasma-sprayed FeCoCrNiAl alloy coatings
CN108677129A (zh) 一种FeCoNiCrSiAl高熵合金涂层及其制备方法
CN113621843B (zh) 一种高强韧耐腐蚀FeCoNiCuAl高熵合金吸波材料、制备方法及用途
CN113373363B (zh) 难熔高熵复合材料及其制备方法
TW201534744A (zh) W-Ni濺鍍靶
CN105506613A (zh) 一种高熵合金涂层的制备方法
CN114939654B (zh) 一种用于激光增材制造的高熵合金粉末及其制备方法、应用
Yusefi et al. WCu functionally graded material: Low temperature fabrication and mechanical characterization
TWI387661B (zh) Manufacturing method of nickel alloy target
Chen et al. Investigation of Al–Cr alloy targets sintered by various powder metallurgy methods and their particle generation behaviors in sputtering process
CN111763904B (zh) 一种高熵合金粉末、高电阻涂层及其制备方法和应用
CA2177921C (en) Method for producing a tib 2-based coating and the coated article so produced
CN107243641A (zh) 一种高活性纳米晶高熵合金粉体及其制备方法
CN114951634B (zh) 高熵合金耐磨耐腐蚀涂层及其制备方法
CN116275010A (zh) 一种原位氮化物增强3d打印镍基高温合金粉末
CN114951633B (zh) 高铝高熵合金超耐磨耐腐蚀涂层及其制备方法
WO2021247813A1 (en) Aluminum-scandium composite, aluminum-scandium composite sputtering target and methods of making
CN108213429B (zh) 一种激光熔化沉积不锈钢基复合材料所用粉料及制备方法
Zhang et al. Effect of heat treatment on the microstructure and mechanical properties of 7075 aluminum alloy cold-spray coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant