CN114944494B - 一种在低温条件下大批量制备高纯度m-n型单原子碳基催化剂的方法和应用 - Google Patents

一种在低温条件下大批量制备高纯度m-n型单原子碳基催化剂的方法和应用 Download PDF

Info

Publication number
CN114944494B
CN114944494B CN202210616267.8A CN202210616267A CN114944494B CN 114944494 B CN114944494 B CN 114944494B CN 202210616267 A CN202210616267 A CN 202210616267A CN 114944494 B CN114944494 B CN 114944494B
Authority
CN
China
Prior art keywords
active
type single
based catalyst
carrier
atom carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210616267.8A
Other languages
English (en)
Other versions
CN114944494A (zh
Inventor
姜艳霞
黎燕荣
程晓阳
孙世刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202210616267.8A priority Critical patent/CN114944494B/zh
Publication of CN114944494A publication Critical patent/CN114944494A/zh
Application granted granted Critical
Publication of CN114944494B publication Critical patent/CN114944494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种在低温条件下大批量制备高纯度M‑N型单原子碳基催化剂的方法,本发明首先制备了大小尺寸在150~400nm左右Zn‑ZIF菱形十二面体;在10%NH3和90%Ar气体环境中于700‑1000℃煅烧10min‑50min,然后将在惰性气氛中热处理70min‑110min,制备得到活性N‑C载体。第二步,采用溶液浸渍法或固体球磨法,将氯化金属盐分散吸附在第一步制备的活性N‑C载体中,然后在(惰性气氛和还原性气体)氩气和氢气混合气氛中(0%H2‑100%H2)中在300℃‑500℃温度下热处理2h‑6h,再随炉降温,得到最终催化剂。

Description

一种在低温条件下大批量制备高纯度M-N型单原子碳基催化 剂的方法和应用
技术领域
本发明属于纳米催化材料技术领域,具体涉及一种在低温条件下大批量制备高纯度M-N 型单原子碳基催化剂的方法和应用。
背景技术
高效且廉价的电催化剂在能源转换和储存领域起着至关重要的作用。碳基M-N-C型催化剂平衡了均相和多相催化剂的优缺点。具有活性位点均匀、配位环境可调节、高原子利用率、高催化效率和高稳定性等优点,因为活性位点原子结构明确,可用于揭示特定催化机理和明确反应途径,从而能合理设计出具有指定性能的目标催化剂。此外,大量的理论研究表明M-N-C 催化剂高效应用许多电化学过程,例如氢气析出/氧化、CO2/CO还原和N2还原。特别是,Fe 基M-N-C已被广泛研究为氧还原反应(ORR)的电催化剂表现出接近商业Pt/C催化剂的活性和稳定性。单原子催化剂的一个显著优势是结构明确的位点精确对应一个催化反应途径,并设计出针对性的催化剂活性。然而,这种优势仅仅停留在理论上,目前单一位点的M-N-Cs催化剂尚未在实验中得到证明。最主要的一个原因是现有的M-N-C催化剂通常通过高温热解含金属、含氮和含碳的分子或聚合物前体获得的,大量的研究人员都接受由金属粒子在热处理温度达到500-1100℃时转化为MN4位点的事实。然而高温热接合成材料通常是高度异构的,同时包含单个原子金属位点、金属颗粒、碳化铁颗粒和无定形碳。这种组成和结构的异质性不但阻碍了活性位点的结构的明确,同时难以与反应路径和催化机理上取得联系来指导下一代单原子催化剂的设计。为此,合成具有高纯度活性位点的催化剂对解决合理化设计明确催化结构和具有指定催化性能的单原子催化剂等复杂的科学问题很重要。
发明内容
本发明的主要目的,在于提供在低温条件下大批量制备高纯度M-N型单原子碳基催化剂的方法。
本发明解决其技术问题的所采用的技术方案是:
一种在低温条件下大批量制备高纯度M-N型单原子碳基催化剂的方法,包括以下步骤:
步骤(1):制备Zn-ZIF菱形十二面体;
步骤(2):将Zn-ZIF菱形十二面体转移到陶瓷舟中,在10%NH3和90%Ar气体环境中于 700-1000℃煅烧10min-50min,然后将在惰性气氛中热处理70min-110min,制备得到活性N-C载体;
步骤(3):采用溶液浸渍法或固体球磨法,氯化金属盐分散在碳载体中,使金属离子吸附在活性N-C载体;
步骤(4):将吸附了氯化金属盐的活性N-C转移到陶瓷舟中,在(惰性气氛和还原性气体) 氩气和氢气混合气氛中(0%H2-100%H2)中在200℃-500℃温度下热处理2h-6h,再随炉降温,最后得到高纯度M-N型单原子碳基催化剂。
在一实施例中,M=Fe,Co,Mn,Zn,Cu,Ni,Pt,Ru,Ru、Cr中的至少一种。
在一实施例中,步骤(2)将Zn-ZIF菱形十二面体转移到陶瓷舟中,在10%NH3和90%Ar 气体环境中于700-1000℃煅烧10min-50min,然后将在惰性气氛中热处理70min-110min,制备得到活性N-C载体。
优选地,步骤(3)中:采用溶液浸渍法或固体球磨法,氯化金属盐分散在碳载体中,使金属离子吸附在活性N-C载体。
优选地,所述的氯化金属盐包括FeCl2、FeCl3、CoCl2、MnCl2、ZnCl2、CuCl2和NiCl2。
优选的,所述步骤(2)10%NH3热处理时间10min-50min
优选的,所述步骤(3)氯化金属盐通过溶液浸渍法或固体球磨法分散在碳载体中。
优选的,所述步骤(4)(惰性气氛和还原性气体)氩气和氢气混合气氛中(0%H2-100%H2)。
优选的,所述步骤(4)在200℃-400℃温度下热处理。
本发明制备的高载量单原子MN4位点碳基M-N-C催化剂,金属载量为1-18wt%(ICP数据),Fe-N键占比为30-60%(XPS数据),比表面积为600-1000cm3g-1nm-1
本技术方案与背景技术相比,具有如下优点:
本发明有益效果是:
(1)开发出了采用具有较大的外表面积的活性N-C载体,氯化金属盐(FeCl2、FeCl3、 CoCl2、MnCl2、ZnCl2、CuCl2、NiCl2、RuCl3、RhCl3、CrCl3和PtCl4)中金属离子很容易吸附锚定在活性N-C载体上,保证金属原子均匀分散以及后续活性位点的高效转换。
(2)本发明提出在低温条件下通过氯离子与氢离子结合,使氯离子从金属盐中直接脱出形成活性位点,不经过高温,金属不会团聚,大大提高了活性位点的形成的效率。
(3)该方法制备M-N-C催化剂的单原子载量可调(1-18%wt),且可以大批量制备。
(4)制备得到M-N-C型催化剂在催化反应中表现优异性能,半波电位达到0.851Vvs. RHE。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1是本发明实施例1催化剂H-FeNC合成示意图。
图2是本发明实施例1制备得到物料(Zn-ZIF)的SEM图。
图3是本发明实施例1中制备的催化剂SEM图(N-C)。
图4是本发明实施例1中制备的催化剂H-FeNC的SEM图和TEM图。其中,(a)为SEM图,(b)为SEM图,(c)为TEM图,(d)为TEM图。
图5是本发明实施例1中制备得到H-FeNC的催化剂测试XRD谱图和球差电镜图(a)为 XRD谱图,(b)为球差电镜。
图6是本发明实施例1中制备得到催化剂XPS N1s数据图。
图7是本发明实施例1中制备得到催化剂ORR电催化性能测试图。
具体实施方式
实施例1
Zn-ZIF纳米立方体的合成:
(1)将1mmol Zn(NO3)2.6H2O和4mmol 2-甲基咪唑,分别溶解在100ml的甲醇溶液中,在剧烈搅拌下以形成均匀的溶液A和B溶液。
(2)在500rpm条件下,将步骤(1)A溶液快速倒入步骤(2)B溶液中,形成白色溶液,在室温下反应5小时。
(3)将步骤(2)中所得物料以8000-10000rpm的转速进行离心,用甲醇溶液洗涤3次,然后在60℃下干燥过夜,形成Zn-ZIF菱形十二面体。
活性N-C材料的合成:
(1)将500mg的Zn-ZIF菱形十二面体充分研磨,随后转移到陶瓷舟中。
(2)在10%NH3和90%Ar气体环境中于900℃煅烧25min,然后保持900℃不变,在纯惰性气氛Ar气中热处理95min,随后随炉降到室温,收集后得到活性N-C载体。高纯度Fe-N型单原子碳基催化剂合成:
(1)将5mg的氯化亚铁通过溶液/球磨的方式分散到20mg合成的活性N-C载体中,得到铁原子分散均匀的黑色粉末,然后转移到陶瓷舟中。
(2)将步骤(1)中装有活性N-C的瓷舟转移入管式炉中的,排尽空气,在氩气(90%)和氢气混合气氛中(10%H2),将炉子的中心以5℃min-1的升温速率升至230℃,并在此温度下保持1h。然后以5℃min-1的速率进一步升温至360℃,保持5h,之后冷却至室温,得到高纯度M-N型单原子碳基催化剂。
实施例2
和实施例1类似,所不同的是,FeCl2替换成CoCL2
实施例3
和实施例1类似,所不同的是,FeCl2替换成MnCL2
实施例4
和实施例1类似,所不同的是,FeCl2替换成ZnCL2
实施例5
和实施例1类似,所不同的是,FeCl2替换成NiCL2
实施例6
和实施例1类似,所不同的是,FeCl2替换成CuCL2
实施例7
和实施例1类似,所不同的是,FeCl2替换成RuCL3,RuCL3溶解在0.1M/L的HClO4溶液中,配成0.3M/L RuCL3溶液,将50mg活性N-C载体分散在50ml0.3M/L RuCL3溶液中,超声2-5h,离心真空60℃干燥,随后热处理。
实施例8
和实施例7类似,所不同的是,RuCl3替换成RuhCL3
实施例9
和实施例7类似,所不同的是,RuCl3替换成CrCL3
实施例10
和实施例7类似,所不同的是,RuCl3替换成PtCL4
电催化测试:
取实施例1制备的高载量M-N-C催化剂检测测试。
在这项工作中,所有电化学测量均在标准三电极系统中的CHI760e电化学工作站上进行。参比电极是饱和甘汞电极(SCE)。使用石墨棒作为对电极。使用玻碳电极(GC,0.19625cm2) 作为工作电极。通过将6mg催化剂超声分散在1mL包含600μL异丙醇,380μL超纯水和20 μL 5%Nafion溶液的溶液中来制备催化剂油墨。然后将25μL催化剂墨水覆盖在旋转圆盘电极(RDE,直径5mm,几何表面积0.19625cm2)或旋转圆盘电极(RRDE,圆盘面积:0.2475 cm2,Pt环面积:0.1866cm2)上并干燥。最后,催化剂的负载量约为0.6mgcm-2。通过使用转换方程ERHE=ESCE+0.2415+0.059pH,将这项工作中的电势称为可逆氢电极(RHE)电势。
在这项工作中,在O2或N2饱和的0.1M HClO4溶液中,以10mV s-1的扫描速率获得了所有催化剂的ORR极化曲线线性扫描伏安法(LSV)和循环伏安图。RRDE测量是通过线性扫描伏安法(LSV)在转速为900rpm和扫描速度为10mV s-1的条件下,相对于RHE的电势范围为0.1至1.1V,而环形电极相对于RHE保持在1.2V条件下进行测试。所有电极电势数据都进行了80%的IR补偿。
结果显示,H-FeNC具有出色的氧还原反应(ORR)活性,并在酸性介质中具有超强的耐久性以及出色的燃料电池性能。其半波电势(E1/2)为RHE的0.851V。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (9)

1.一种在低温条件下大批量制备高纯度M-N型单原子碳基催化剂的方法,包括以下步骤:
步骤(1): 制备Zn-ZIF菱形十二面体;
步骤(2): 将Zn-ZIF菱形十二面体转移到陶瓷舟中,在7-13%NH3和87-93%Ar气体环境中于700-1000℃煅烧10 min -50min,然后在惰性气氛中700-1000℃热处理70min-110min,制备得到活性N-C载体;
步骤(3): 采用溶液浸渍法或固体球磨法,将氯化金属盐分散在活性N-C载体中,使金属离子吸附在活性N-C载体;
步骤(4):然后将吸附了氯化金属盐的活性N-C载体转移到陶瓷舟中,在惰性气氛和还原性气体混合气氛中在200℃-500℃温度下热处理2h -6h,再随炉降温,最后得到高纯度M-N型单原子碳基催化剂;所述惰性气氛和还原性气体混合气氛为90%氩气和10%氢气混合气氛。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)包括以下步骤:将0.5-1.5mmol Zn(NO3)2.6H2O和3-5 mmol 2-甲基咪唑,分别溶解在100 ml的甲醇溶液中在剧烈搅拌下以形成均匀的溶液;然后,将两份均匀溶液混合搅拌4-6h; 最后,通过离心分离得到150-400nm尺寸的Zn-ZIF菱形十二面体。
3.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,将Zn-ZIF菱形十二面体转移到陶瓷舟中,在10%NH3和90%Ar气体环境中处理。
4.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,氯化金属盐与活性N-C载体的质量比4-6:18-22。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述的氯化金属盐包括FeCl2、FeCl3、CoCl2、MnCl2、ZnCl2、CuCl2、NiCl2、RuCl3、RhCl3、CrCl3和PtCl4中的至少一种。
6.根据权利要求1所述的制备方法,其特征在于,步骤(4)中:在200℃-400℃温度下热处理。
7.根据权利要求1-6任一项所述的制备方法制备得到的M-N型单原子碳基催化剂。
8. 根据权利要求7所述的M-N型单原子碳基催化剂,其特征在于:金属载量为1-18wt%,Fe-N键占比为30-60%,比表面积为600-1000cm3g-1nm-1
9.根据权利要求7所述的M-N型单原子碳基催化剂在电催化氧还原及质子交换膜燃料电池中的应用。
CN202210616267.8A 2022-06-01 2022-06-01 一种在低温条件下大批量制备高纯度m-n型单原子碳基催化剂的方法和应用 Active CN114944494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210616267.8A CN114944494B (zh) 2022-06-01 2022-06-01 一种在低温条件下大批量制备高纯度m-n型单原子碳基催化剂的方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210616267.8A CN114944494B (zh) 2022-06-01 2022-06-01 一种在低温条件下大批量制备高纯度m-n型单原子碳基催化剂的方法和应用

Publications (2)

Publication Number Publication Date
CN114944494A CN114944494A (zh) 2022-08-26
CN114944494B true CN114944494B (zh) 2024-05-24

Family

ID=82909716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210616267.8A Active CN114944494B (zh) 2022-06-01 2022-06-01 一种在低温条件下大批量制备高纯度m-n型单原子碳基催化剂的方法和应用

Country Status (1)

Country Link
CN (1) CN114944494B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110013881A (zh) * 2019-04-30 2019-07-16 哈尔滨工业大学 原子级分散的金属与氮共掺杂碳基氧还原反应催化剂的制备方法
CN111313040A (zh) * 2018-12-12 2020-06-19 中国科学院大连化学物理研究所 一种Fe-N-C催化剂及其制备和应用
CN111715203A (zh) * 2019-03-19 2020-09-29 南开大学 一种新型碳基材料负载锌单原子催化剂的制备方法
CN112853377A (zh) * 2021-01-18 2021-05-28 南昌航空大学 一种双功能无金属氮掺杂碳催化剂的制备方法及其应用
CN112886030A (zh) * 2021-01-12 2021-06-01 厦门大学 一种多孔凹形立方体CoNP@CoSA-N-C催化剂及其制备方法和应用
CN113649043A (zh) * 2021-08-17 2021-11-16 大连理工大学 一种高负载Mn-N活性位点掺杂碳材料催化剂的制备方法及其在锂硫电池上的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879752B2 (en) * 2006-08-11 2011-02-01 GM Global Technology Operations LLC Electrocatalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111313040A (zh) * 2018-12-12 2020-06-19 中国科学院大连化学物理研究所 一种Fe-N-C催化剂及其制备和应用
CN111715203A (zh) * 2019-03-19 2020-09-29 南开大学 一种新型碳基材料负载锌单原子催化剂的制备方法
CN110013881A (zh) * 2019-04-30 2019-07-16 哈尔滨工业大学 原子级分散的金属与氮共掺杂碳基氧还原反应催化剂的制备方法
CN112886030A (zh) * 2021-01-12 2021-06-01 厦门大学 一种多孔凹形立方体CoNP@CoSA-N-C催化剂及其制备方法和应用
CN112853377A (zh) * 2021-01-18 2021-05-28 南昌航空大学 一种双功能无金属氮掺杂碳催化剂的制备方法及其应用
CN113649043A (zh) * 2021-08-17 2021-11-16 大连理工大学 一种高负载Mn-N活性位点掺杂碳材料催化剂的制备方法及其在锂硫电池上的应用

Also Published As

Publication number Publication date
CN114944494A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
Xu et al. Atomically dispersed Fe-NC derived from dual metal-organic frameworks as efficient oxygen reduction electrocatalysts in direct methanol fuel cells
Niu et al. Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis
Xia et al. A metal–organic framework route to in situ encapsulation of Co@ Co 3 O 4@ C core@ bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction
Shen et al. High-performance oxygen reduction electrocatalysts derived from uniform cobalt–adenine assemblies
CN112582629B (zh) 一种超薄碳纳米片负载的纳米高熵合金电催化剂及其制备方法
Wang et al. Low-loading Pt nanoparticles combined with the atomically dispersed FeN4 sites supported by FeSA-NC for improved activity and stability towards oxygen reduction reaction/hydrogen evolution reaction in acid and alkaline media
Zhong et al. Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries
Wang et al. Tuning the electron density distribution of the Co-NC catalysts through guest molecules and heteroatom doping to boost oxygen reduction activity
Cheng et al. Zeolitic imidazole framework-derived FeN5-doped carbon as superior CO2 electrocatalysts
Huang et al. Chelating agent assisted heat treatment of carbon supported cobalt oxide nanoparticle for use as cathode catalyst of polymer electrolyte membrane fuel cell (PEMFC)
Zong et al. Hydrogen evolution and oxygen reduction reactions catalyzed by core-shelled Fe@ Ru nanoparticles embedded in porous dodecahedron carbon
Wang et al. A metal–organic framework derived PtCo/C electrocatalyst for ethanol electro-oxidation
Gao et al. MOF-driven ultrafine Co9S8 nanocrystals embedded in N, S-Codoped Multilayer-Assembled carbon nanoplates for efficient bifunctional oxygen electrocatalysis
Guo et al. Size effect of Rhodium nanoparticles supported on carbon black on the performance of hydrogen evolution reaction
Feng et al. Co 3 (PO 4) 2 Nanoparticles Embedded in Nitrogen-Doped Carbon as an Advanced Electrocatalyst for OER in Alkaline Solution
Salah et al. Dispersing small Ru nanoparticles into boron nitride remodified by reduced graphene oxide for high-efficient electrocatalytic hydrogen evolution reaction
Wang et al. In situ synthesis of CoFe2O4 nanoparticles embedded in N-doped carbon nanotubes for efficient electrocatalytic oxygen reduction reaction
Zhou et al. PtFe and Fe3C nanoparticles encapsulated in Fe–N-doped carbon bowl toward the oxygen reduction reaction
Wu et al. Direct transformation of raw biomass into a Fe–N x–C single-atom catalyst for efficient oxygen reduction reaction
Zhou et al. Boosting the activity of non-platinum group metal electrocatalyst for the reduction of oxygen via dual-ligated atomically dispersed precursors immobilized on carbon supports
Huang et al. Fe–N–C nanostick derived from 1D Fe-ZIFs for electrocatalytic oxygen reduction
Feng et al. Highly stable cathodes for proton exchange membrane fuel cells: Novel carbon supported Au@ PtNiAu concave octahedral core-shell nanocatalyst
Yang et al. Nanoconfinement effects of Ni@ CNT for efficient electrocatalytic oxygen reduction and evolution reaction
Duraisamy et al. In situ decoration of Co3O4 on N-doped hollow carbon sphere as an effective bifunctional oxygen electrocatalyst for oxygen evolution and oxygen reduction reactions
Zhao et al. Synthesis of novel hollow carbon nanotubes@ Co-Fe alloy/iron phthalocyanine electrocatalyst by self-assembly method for OER and ORR study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant