CN114933704A - 一种杂原子连接的多孔有机聚合物的制备方法及其光催化解毒硫芥模拟物应用 - Google Patents

一种杂原子连接的多孔有机聚合物的制备方法及其光催化解毒硫芥模拟物应用 Download PDF

Info

Publication number
CN114933704A
CN114933704A CN202210625272.5A CN202210625272A CN114933704A CN 114933704 A CN114933704 A CN 114933704A CN 202210625272 A CN202210625272 A CN 202210625272A CN 114933704 A CN114933704 A CN 114933704A
Authority
CN
China
Prior art keywords
organic polymer
porous organic
heteroatom
photocatalytic
sulfur mustard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210625272.5A
Other languages
English (en)
Other versions
CN114933704B (zh
Inventor
梁汝萍
李学晶
邱建丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202210625272.5A priority Critical patent/CN114933704B/zh
Publication of CN114933704A publication Critical patent/CN114933704A/zh
Application granted granted Critical
Publication of CN114933704B publication Critical patent/CN114933704B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/02Chemical warfare substances, e.g. cholinesterase inhibitors
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种杂原子连接的多孔有机聚合物的制备方法及其光催化解毒硫芥模拟物应用,属于光催化材料技术领域。本发明通过4,4′,4″‑[苯‑1,3,5‑三基三(乙炔‑2,1‑二基)]三苯甲醛和1,2,4,5‑苯四胺盐酸盐在乙酸催化下的缩合反应,制成苯并咪唑连接的多孔有机聚合物POP‑IZ。该多孔有机聚合物具有大孔隙率,可以吸附硫芥模拟物2‑氯乙基乙基硫醚并扩散到聚合物中,有利于提高材料的光催化氧化效率。在光辐照和O2气氛下甲醇溶液中解毒硫芥模拟物的多相光催化活性研究结果表明,苯并咪唑连接的多孔有机聚合物可以选择性且快速地光催化氧化2‑氯乙基乙基硫醚为2‑氯乙基乙基亚砜,具有优异的光催化性能。

Description

一种杂原子连接的多孔有机聚合物的制备方法及其光催化解 毒硫芥模拟物应用
技术领域
本发明属于光催化材料技术领域,具体涉及一种杂原子连接的多孔有机聚合物的制备方法及其光催化解毒硫芥模拟物应用。
背景技术
化学战剂由于毒性强、作用快以及毒性持久,对全球构成了严重威胁(M.Wattana,T.Bey,Mustard Gas or Sulfur Mustard:An Old Chemical Agent as a New TerroristThreat,Prehospital Disaster Med.,2009,24,19-29)。虽然我们正处于和平的时代,但化学战剂的威胁仍然存在,故而研究化学战剂防护材料非常重要(H.Xiao,Z.-X.Low,D.B.Gore,R.Kumar,M.Asadnia,Z.Zhong,Porous metal-organic framework-basedfilters:Synthesis methods and applications for environmental remediation,Chem.Eng.J.,2022,430,133160)。快速、准确和可行的分析化学战剂和其它有毒有害化合物是一个重大的挑战(Y.Beldjoudi,A.Atilgan,J.A.Weber,I.Roy,R.M.Young,J.Yu,P.Deria,A.E.Enciso,M.R.Wasielewski,J.T.Hupp,J.F.Stoddart,SupramolecularPorous Organic Nanocomposites for Heterogeneous Photocatalysis of a SulfurMustard Simulant,Adv.Mater.,2020,32,2001592)。硫芥被称为“毒药之王”,是目前最大量生产、存储甚至使用的一种化学武器。硫芥易挥发,但稳定性好,可储存较长时间。硫芥一旦溶解在水或体液等极性溶液中,就会迅速解离,使内部电子重新排列,形成正碳离子或正硫离子(N.S.Bobbitt,M.L.Mendonca,A.J.Howarth,T.Islamoglu,J.T.Hupp,O.K.Farha,R.Q.Snurr,Metal-organic frameworks for the removal of toxic industrialchemicals and chemical warfare agents,Chem.Soc.Rev.,2017,46,3357-3385)。由于正硫离子具有较强的亲电性,很容易与人体内生物大分子的亲核原子S、N、O发生反应,与其共价键结合形成不可逆的烷基化产物(M.Siegert,F.Gandor,A.Kranawetvogl,H.
Figure BDA0003676973210000025
H.Thiermann,H.John,Methionine329 in human serum albumin:A novel target foralkylation by sulfur mustard,Drug Test.Anal.,2019,11,659-668.)。这种DNA的烷基化作用使得硫芥如此毒性所在,新型神经化学战剂的防护材料研究具有紧迫性和必要性。化学反应材料一般具有发生化学反应的官能团或原子基团,可与化学战剂发生化学反应,原位降解为无毒或极低毒性的物质,以达到彻底保护的目的(M.Cao,R.Pang,Q.-Y.Wang,Z.Han,Z.-Y.Wang,X.-Y.Dong,S.-F.Li,S.-Q.Zang,T.C.W.Mak,Porphyrinic SilverCluster Assembled Material for Simultaneous Capture and Photocatalysis ofMustard-Gas Simulant,J.Am.Chem.Soc.,2019,141,14505-14509)。根据目前的研究现状,光催化氧化法具有温和的氧化能力和良好的降解效果,是硫芥解毒方法之一(J.Henych,M.
Figure BDA0003676973210000026
Z.
Figure BDA0003676973210000027
K.Mazanec,J.Tolasz,M.Kormunda,J.Ederer,P.
Figure BDA0003676973210000028
Bifunctional TiO2/CeO2reactive adsorbent/photocatalyst for degradation of bis-p-nitrophenyl phosphate and CWAs,Chem.Eng.J.,2021,414,128822)。虽然目前还处于初步研究阶段,但它可以原位降解化学战剂,且不会造成二次污染。
光催化平台不仅具有精确的多孔结构能预富集硫芥,还能捕获光子诱导的电荷分离,从而提高硫芥的光催化降解效率。多孔有机聚合物(POPs)作为多孔材料的重要分支发展迅速,在制造不同应用的各种材料方面显示出巨大前景(M.Yu,X.Wang,X.Yang,Y.Zhao,J.-X.Jiang,Conjugated microporous copolymer networks with enhanced gasadsorption,Polymer Chemistry,2015,6,3217-3223)。基于POPs连接基的可调性和结构的有序性,它们可以促进光生电子和光生空穴的分离、扩散和迁移,具有作为光敏元件的光催化应用潜力。POPs具有良好的实际性能和再生性能,有重要的科学研究意义,有望代表神经化学战剂防护材料的未来发展方向。
发明内容
本发明的目的在于提供了一种杂原子连接的多孔有机聚合物的制备方法及其光催化解毒硫芥模拟物应用,该方法制备的多孔有机聚合物具有大孔隙率、操作简单、结构可调的特点,可以吸附硫芥模拟物2-氯乙基乙基硫醚并扩散到孔隙中,有利于提高材料的光催化氧化效率,且能够高选择性、快速地光催化氧化2-氯乙基乙基硫醚为2-氯乙基乙基亚砜,具有优异的光催化性能。
本发明具体是通过如下技术方案实现的:
本发明提供了一种杂原子连接的多孔有机聚合物的制备方法,包括如下步骤:
1)在均三甲苯与1,4-二氧六环的混合溶液中依次加入1,2,4,5-苯四胺盐酸盐、4,4′,4″-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛和乙酸溶液,超声混匀;
2)将步骤1)反应体系快速冷冻后抽真空并火焰密封,升温反应,反应后冷却至室温,过滤分离得到深棕色固体产物;
3)将步骤2)所得深棕色固体产物洗涤干燥后采用DMF和THF作为溶剂进行索氏萃取,收集粉末干燥后即得N杂原子连接的多孔有机聚合物POP-IZ。
进一步地,步骤1)混合溶液中均三甲苯与1,4-二氧六环的体积比为1:2。
进一步地,步骤1)所述1,2,4,5-苯四胺盐酸盐与4,4′,4″-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛的摩尔比为1.5:1。
进一步地,步骤2)所述升温反应的温度为120℃,反应时间3天。
进一步地,步骤3)所述洗涤采用的是DMF、DMA、丙酮和THF。
本发明所述方法制备的杂原子连接的多孔有机聚合物能够应用于光催化解毒硫芥模拟物。
进一步地,所述杂原子连接的多孔有机聚合物可以将2-氯乙基乙基硫醚光催化氧化为2-氯乙基乙基亚砜。
进一步地,以硫芥模拟物2-氯乙基乙基硫醚量计,所述杂原子连接的多孔有机聚合物的用量为10mol%。
进一步地,所述光催化采用的辐照光源为蓝色发光二极管。
与现有技术相比,本发明的有益效果是:
本发明开发了一种用于硫芥模拟物光氧化的杂原子连接多孔有机聚合物光催化剂的原子级设计策略:以含有发色团炔烃的单体4,4′,4″-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛为关键构建单元,制备的杂原子连接的多孔有机聚合物POP-IZ可用于光催化解毒硫芥模拟物2-氯乙基乙基硫醚。电子顺磁共振波谱呈现明显的三重峰信号,表明多孔有机聚合物产生单线态氧的能力,这是无光敏剂和无金属催化中心材料在光催化中应用的一个极其重要的性质。由于咪唑的N-H键与2-氯乙基乙基硫醚的S原子之间的弱相互作用,提升了POP-IZ对CEES光催化氧化的性能。N-杂原子连接的多孔有机聚合物在硫芥模拟物转化为亚砜(而非有毒砜)方面具有良好的选择性和快速的动力学(只需12分钟),表明本设计策略具有良好的应用潜力。
附图说明
图1是杂原子连接的多孔有机聚合物POP-IZ制备过程示意图。
图2是杂原子连接的多孔有机聚合物POP-IZ的傅里叶变换红外光谱图。
图3是杂原子连接的多孔有机聚合物POP-IZ的SEM图。
图4是杂原子连接的多孔有机聚合物POP-IZ的N2吸附脱附等温线图。
图5是杂原子连接的多孔有机聚合物POP-IZ的紫外可见漫反射光谱图。
图6是杂原子连接的多孔有机聚合物POP-IZ的电子顺磁共振波谱图。
图7是杂原子连接的多孔有机聚合物POP-IZ光催化解毒硫芥模拟物的1H NMR谱图。
图8是杂原子连接的多孔有机聚合物POP-IZ光催化解毒硫芥模拟物的13C NMR谱图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合实施例对本发明的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
除非另有定义,本文所使用的所有技术和科学术语与本发明技术领域的技术人员通常理解的含义相同。在本发明的说明书所使用的术语只是为了描述具体实施例的目的,并非用于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施例1:杂原子连接的多孔有机聚合物POP-IZ的制备与表征
在Pyrex管中,依次加入0.4mL均三甲苯和0.8mL 1,4-二氧六环的混合溶液、1,2,4,5-苯四胺盐酸盐(BTH,21.30mg,0.075mmol)和4,4′,4″-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛(BTTA,23.12mg,0.05mmol)、乙酸溶液(0.10mL,6M),超声处理20分钟使混合物均匀分散;将Pyrex管在液氮浴中快速冷冻,抽真空并火焰密封,置于120℃烘箱反应3天,产生深棕色固体,冷却至室温后,通过真空过滤分离得到产物;用N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMA)、丙酮和四氢呋喃(THF)多次洗涤产物,将所得固体产物在室温下干燥,然后用DMF和THF作为溶剂进行索氏萃取两天,收集粉末并在真空90℃干燥过夜,制成N杂原子连接的多孔有机聚合物POP-IZ。图1为杂原子连接的多孔有机聚合物POP-IZ的制备过程示意图。
采用傅里叶变换红外光谱(FT-IR)表征杂原子连接的多孔有机聚合物POP-IZ及其单体,图2是杂原子连接的多孔有机聚合物POP-IZ的傅里叶变换红外光谱图。确定了五元杂环的生成,然后最终验证了聚合物网络的形成。由图2可见,POP-IZ的红外光谱中在1615cm-1处出现了新的伸缩振动带,这归属于形成了典型的N-杂环中C=N键。在1070cm-1左右出现的新的特征峰归属于C-N-C键,表明形成了咪唑环骨架。同时,醛基单体BTTA反应后其C=O键伸缩振动频率强烈衰减甚至消失,保留了C≡C键伸缩振动频率。
采用扫描电子显微镜(SEM)观察杂原子连接的多孔有机聚合物POP-IZ的形貌,图3是杂原子连接的多孔有机聚合物POP-IZ的SEM图。由SEM结果可见,杂原子连接的聚合物POP-IZ的形态呈现球状聚集体结构。
采用比表面积测试法(BET)表征了杂原子连接的多孔有机聚合物的孔隙率。图4是杂原子连接的多孔有机聚合物POP-IZ的N2吸附脱附等温线图。图4获得的POP-IZ的永久孔隙率均来源于在77K下测量的N2的吸附-脱附等温线,定义为I型等温线。在低压下的急剧增加表明杂原子连接聚合物中存在微孔,而随后的缓慢吸收表明也有较大的孔隙。计算得到POP-IZ的Brunauer-Emmett-Teller(BET)比表面积为478.1m2g-1。以上结果表明,采用本发明方法成功制备了杂原子连接的多孔有机聚合物POP-IZ。
实施例2:杂原子连接的多孔有机聚合物POP-IZ在光催化解毒硫芥模拟物中的应用
光学性能的质量是影响功能材料光催化性能的关键因素。因此,我们对制备的杂原子连接的多孔有机聚合物的光催化活性进行了综合评价。通过紫外-可见(UV-Vis)漫反射光谱分析了杂原子连接的多孔有机聚合物POP-IZ的光催化活性。图5是杂原子连接的多孔有机聚合物POP-IZ的紫外可见漫反射光谱图。由图5可见,杂原子连接的多孔有机聚合物POP-IZ从紫外到可见光区域具有广泛吸收峰,表明杂原子连接的多孔有机聚合物POP-IZ具有优异的可见光捕获能力。因此,光催化实验使用蓝色发光二极管(LED,λmax=450-480nm)作为光催化氧化反应的辐照光源。
采用电子顺磁共振(EPR)光谱法检测杂原子连接的多孔有机聚合物POP-IZ在光照射下产生的活性氧(ROS)。图6是杂原子连接的多孔有机聚合物POP-IZ的电子顺磁共振波谱图。使用2,2,6,6-四甲基-4-哌啶酮(4-oxo-TMP)作为捕获剂,确定了POPs-IZ具有产生单线态氧(1O2)的光学性质。由图6可见,在光照条件下,杂原子连接的多孔有机聚合物POP-IZ的EPR谱中呈现明显1:1:1的三重峰特征信号,而在黑暗条件下几乎观察不到ROS信号。
称取一定量的光催化剂(10mol%,以2-氯乙基乙基硫醚的量为基准),以无水甲醇为溶剂,置于配备恒温水套的50mL可密封石英反应器中,用密封圈密封;使用微型注射器将硫芥模拟物2-氯乙基乙基硫醚(33.5μL,0.288mmol)和内标物二溴甲烷(20.2μL,0.288mmol)注入反应器,用氧气吹扫密封系统30分钟以置换反应器中的空余体积和溶解在反应液中的空气;在反应催化剂的光激发中使用发射介于λmax=450-480nm之间和功率为1W的蓝光LED,在不同的时间间隔下,用微型注射器从反应器中取出一定量的溶液,过滤并用0.5mL氘代甲醇(CD3OD)稀释后转移到核磁管中,通过1H NMR和13C NMR光谱对样品的反应过程进行检测,验证2-氯乙基乙基硫醚(CEES)转化为2-氯乙基乙基亚砜(CEESO)的过程,证实杂原子连接的多孔有机聚合物POP-IZ可作为光催化剂并具有良好的氧化选择性。图7是杂原子连接的多孔有机聚合物POP-IZ光催化解毒硫芥模拟物的1H NMR谱图。图8是杂原子连接的多孔有机聚合物POP-IZ光催化解毒硫芥模拟物的13C NMR谱图。
综上所述,本发明方法制备的杂原子连接的多孔有机聚合物POP-IZ对硫芥模拟物具有高效光催化氧化作用,且具有选择性高、氧化速率好的优点。杂原子(N原子)连接的多孔有机聚合物POP-IZ,作为均相介质中高效的单线态氧(1O2)光催化剂用于光催化解毒硫芥模拟物,在12分钟的时间内可完成硫芥模拟物的快速降解,首次采用无金属催化中心且无光敏剂分子的纯有机组分材料实现了硫芥模拟物的解毒。通过详细的结构分析,系统研究了杂原子连接的多孔有机聚合物POP-IZ的催化性能,揭示了杂原子连接的多孔有机聚合物的结构与性能之间的关系,以及杂原子在光催化性能中的差异和关键作用。结果进一步表明,采用本发明方法可实现多孔有机材料光催化剂的精确设计,并应用于硫芥等化学战剂的高效光催化降解。
以上所描述的实施例仅表达了本发明的几种优选实施例,其描述较为具体和详细,但并不用于限制本发明。应当指出,对于本领域的技术人员来说,本发明还可以有各种变化和更改,凡在本发明的构思和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种杂原子连接的多孔有机聚合物的制备方法,其特征在于,包括如下步骤:
1)在均三甲苯与1,4-二氧六环的混合溶液中依次加入1,2,4,5-苯四胺盐酸盐、4,4′,4″-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛和乙酸溶液,超声混匀;
2)将步骤1)反应体系快速冷冻后抽真空并火焰密封,升温反应,反应后冷却至室温,过滤分离得到深棕色固体产物;
3)将步骤2)所得深棕色固体产物洗涤干燥后采用DMF和THF作为溶剂进行索氏萃取,收集粉末干燥后即得N杂原子连接的多孔有机聚合物POP-IZ。
2.根据权利要求1所述杂原子连接的多孔有机聚合物的制备方法,其特征在于,步骤1)混合溶液中均三甲苯与1,4-二氧六环的体积比为1:2。
3.根据权利要求1所述杂原子连接的多孔有机聚合物的制备方法,其特征在于,步骤1)所述1,2,4,5-苯四胺盐酸盐与4,4′,4″-[苯-1,3,5-三基三(乙炔-2,1-二基)]三苯甲醛的摩尔比为1.5:1。
4.根据权利要求1所述杂原子连接的多孔有机聚合物的制备方法,其特征在于,步骤2)所述升温反应的温度为120℃,反应时间3天。
5.根据权利要求1所述杂原子连接的多孔有机聚合物的制备方法,其特征在于,步骤3)所述洗涤采用的是DMF、DMA、丙酮和THF。
6.如权利要求1-5任一项所述方法制备的杂原子连接的多孔有机聚合物应用于光催化解毒硫芥模拟物。
7.根据权利要求6所述杂原子连接的多孔有机聚合物的应用,其特征在于,所述杂原子连接的多孔有机聚合物可以将2-氯乙基乙基硫醚光催化氧化为2-氯乙基乙基亚砜。
8.根据权利要求6所述杂原子连接的多孔有机聚合物的应用,其特征在于,以硫芥模拟物2-氯乙基乙基硫醚量计,所述杂原子连接的多孔有机聚合物的用量为10mol%。
9.根据权利要求6所述杂原子连接的多孔有机聚合物的应用,其特征在于,所述光催化采用的辐照光源为蓝色发光二极管。
CN202210625272.5A 2022-06-02 2022-06-02 一种杂原子连接的多孔有机聚合物的制备方法及其光催化解毒硫芥模拟物应用 Active CN114933704B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210625272.5A CN114933704B (zh) 2022-06-02 2022-06-02 一种杂原子连接的多孔有机聚合物的制备方法及其光催化解毒硫芥模拟物应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210625272.5A CN114933704B (zh) 2022-06-02 2022-06-02 一种杂原子连接的多孔有机聚合物的制备方法及其光催化解毒硫芥模拟物应用

Publications (2)

Publication Number Publication Date
CN114933704A true CN114933704A (zh) 2022-08-23
CN114933704B CN114933704B (zh) 2023-04-07

Family

ID=82866926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210625272.5A Active CN114933704B (zh) 2022-06-02 2022-06-02 一种杂原子连接的多孔有机聚合物的制备方法及其光催化解毒硫芥模拟物应用

Country Status (1)

Country Link
CN (1) CN114933704B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106496530A (zh) * 2017-01-06 2017-03-15 吉林大学 一种多孔有机聚合物骨架材料及其制备方法与应用
CN110437459A (zh) * 2019-08-01 2019-11-12 郑州大学 一种催化降解芥子气模拟物材料及其制备方法
CN114085388A (zh) * 2021-12-23 2022-02-25 河北工业大学 一种含恶二唑连接基元的共价有机框架材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106496530A (zh) * 2017-01-06 2017-03-15 吉林大学 一种多孔有机聚合物骨架材料及其制备方法与应用
CN110437459A (zh) * 2019-08-01 2019-11-12 郑州大学 一种催化降解芥子气模拟物材料及其制备方法
CN114085388A (zh) * 2021-12-23 2022-02-25 河北工业大学 一种含恶二唑连接基元的共价有机框架材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CUI WR等: "Covalent organic framework sponges for efficient solar desalination and selective uranium recovery", 《ACS APPL. MATER. INTERFACES》 *
KAIRUI CAI等: "Facile construction of olefin-linked covalentorganic frameworks for enhanced photocatalytic organic transformation via wall surface engineering", 《J. MATER. CHEM. A》 *
YASSINE BELDJOUDI等: "Supramolecular Porous Organic Nanocomposites for Heterogeneous Photocatalysis of a Sulfur", 《ADV. MATER.》 *

Also Published As

Publication number Publication date
CN114933704B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
Guo et al. One-pot synthesis of a carbon dots@ zeolitic imidazolate framework-8 composite for enhanced Cu 2+ sensing
Xu et al. Methyl-shield Cu-BTC with high water stability through one-step synthesis and in situ functionalization
Wu et al. A microporous shp-topology metal–organic framework with an unprecedented high-nuclearity Co 10-cluster for iodine capture and histidine detection
CN111939876B (zh) 一种mof@活性炭纤维素特种纸及其制备方法与应用
Watandost et al. Oxidation of hydrogels based of sodium alginate and MnO2 as catalyst
Wang et al. NO2 removal under ambient conditions by nanoporous multivariate zirconium-based metal–organic framework
Zheng et al. Macrocycle polymeric networks based on a chair-like calix [4] pyrrole for the rapid and efficient adsorption of iodine from water
CN108067214A (zh) 一种碳掺杂二氧化钛光催化剂的制备方法
Zhou et al. Controlled superacid-catalyzed self-cross-linked polymer of intrinsic microporosity for high-performance CO2 separation
CN115193469B (zh) 光催化陶瓷膜的制备方法、应用及水处理方法
Chen et al. A porphyrin-based metal–organic framework with highly efficient adsorption and photocatalytic degradation performances for organic dyes
CN113083257A (zh) 多重互锁功能有机聚合物材料的制备方法及应用
CN114933704B (zh) 一种杂原子连接的多孔有机聚合物的制备方法及其光催化解毒硫芥模拟物应用
CN111363160A (zh) 一种三维共价的三嗪基杯[4]芳烃聚合物及其制备方法与应用
Nashtaei et al. Preparing PAN/MOF nanofiber composite by electrospinning method for carbon dioxide adsorption
CN113929905A (zh) 一种亚胺键连接的荧光共价有机框架的制备方法及应用
CN110156108B (zh) 一种利用基于MIL-101(Cr3+)的金属有机骨架材料吸附水中有机染料的方法
CN110559890B (zh) 一种自具微孔聚合物/氨基修饰mof混合基质膜及其制备方法和应用
CN113831491B (zh) 一种嘧啶唑共价有机框架的制备方法及吸附应用
CN113248706B (zh) 一种具有特定功能和孔隙结构的多孔有机聚合物及制备方法
CN115449043B (zh) 一种磺酸基功能化的新型共价有机框架材料及其应用
CN112316920B (zh) 一种多功能阳离子网状聚合物及其在污水净化领域的应用
Divya et al. COF‐Molecular Sieving Membrane Fabrication and Applications for Dye Separation
CN114247435B (zh) 一种高效吸附VOCs的有机变色材料的制备方法
CN112138635B (zh) 一种改性聚合物吸附材料的制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant